
The ecology of *Encephalartos lanatus* in Middelburg district, Mpumalanga Province (South Africa)

Nonele Memory Sigasa

201716267

A dissertation submitted in fulfilment of the requirements for the Master of Science in Agriculture

Supervisor: Dr T. N. Suinyuy

Co-supervisor (s): Prof W. Otang-Mbeng

: Dr A. Magadlela

School of Agricultural Science
Faculty of Agriculture and Natural Sciences

May 2025

Table of Contents

Declaration	v
Dedication	vi
Acknowledgements	vii
List of Tables	viii
Chapter 4	viii
List of Figures	ix
Chapter 2	ix
Chapter 3	ix
Chapter 4	ix
List of Abbreviations	X
Publication(s) related to the project research	xii
General overview of chapters in this dissertation	xiii
Abstract	xiv
Chapter 1	1
General introduction	1
1.1 Background	2
1.2 Rationale of the study	4
1.3 Aim and Objectives	
1.4 Research question(s)	7
References	8
Chapter 2	13
Literature Review	13
2.1 Description/ classification of cycad species	14
2.2 Geographical distribution of cycads	15
2.3 Importance of cycads regarding ethnobotany, ornamentals, and food	16
2.4 Conservation status of cycads	17
2.5 South African Biodiversity Policy	17
2.6 Functional role of cycads in the ecosystem	18
2.6.1 Food and Shelter	18
2.6.2 Cycad's role in nitrogen (N ₂) fixation	19

2.7 Soil enzyme activities	20
References	22
Chapter 3	29
EFFECTS OF FIRE ON THE POPULATION STRUCTURE OF THE AFRICAN	l CYCAD
ENCEPHALARTOS LANATUS STAPF & BURTT DAVY (1926)	
Population Structure of an African Cycad: Fire May Stimulate the Coning Phe	
Encephalartos lanatus (Zamiaceae) and Also Predispose Its Cones to Damage	
Abstract	
3.1 Introduction	
3.2 Materials and Methods	
3.2.1 Locality and Study Species	34
3.2.2 Data Collection	35
3.2.3 Data Analysis	36
3.3 Results	37
3.3.1 Population Structure	37
3.3.2 Effects of Fire on Population Structure	38
3.4 Discussion	39
Supplementary Materials	43
Author Contributions	
Funding	43
Institutional Review Board Statement	43
Data Availability Statement	43
Acknowledgments	43
Conflicts of Interest	
References	44
Chapter 4	51
DIVERSITY OF MICROBES IN THE CORALLOID ROOTS, THEIR ACTIVIT	IES AND
THE CONTRIBUTION OF ENCEPHALARTOS LANATUS TO SOIL NUTRIENT	STATUS
IN BOTSHABELO, MPUMALANGA, SOUTH AFRICA	
The impact of microbes and their associated extracellular enzymes on <i>Encephalart</i>	os lanatus
thriving under harsh environmental conditions in Middelburg, Mpumalanga	52

Abstract	53
4.1 Introduction	54
4.2 Materials and Methods	57
4.2.1 Sites for collecting soil samples	57
4.2.3 Analysis of Soil Properties	58
4.2.4 Collection and sterilization of coralloid roots	59
4.2.5 Extraction, sequencing, and amplification of bacteria	from E. lanatus rhizosphere,
non-rhizosphere soils and coralloid roots	59
4.2.6 Enzyme activities	60
4.2.7 Statistical analysis	61
4.3 Results	61
4.3.1 Soil properties	61
4.3.2 Identification of <i>E. lanatus</i> microbes from coralloid	roots, rhizosphere and non-
rhizosphere soils	-
4.3.3 Soil extracellular enzyme activities	72
4.3.4 Relationships between soil characteristics of <i>E. lanatu.</i>	s in both the rhizosphere and
non-rhizosphere soils	73
4.4 Discussion	74
4.5 Conclusions	80
Author contributions	80
Funding	80
Institutional Review Board Statement	80
Data Availability Statement	80
Acknowledgements	80
Conflict of Interest	80
References	81
Chapter 5	93
General Conclusions and Recommendations	93
5.1 General conclusions	94
5.2 Recommendations for future work	94
References	95

Declaration

I, Nonele Memory Sigasa, hereby declare that the dissertation submitted to the University of Mpumalanga is my original work and has not been submitted to other institutions previously. Additionally, all sources I have used have been properly cited and acknowledged through detailed references.

Stude	ent: Ms N.M. Sigasa
SigasaM Signature	23/04/2025 Date
Superv	isor: Dr T.N. Suinyuy
Signature	Date23/04/2025
Co-superv	isor(s): Dr A. Magadlela
Signature	23/04/2025 Date
Co-superviso	or(s): Prof W. Otang-Mbeng
Signature	Date

Dedication

My late grandmother, Dorothy Ngobe, and my late mother, Angelinah Sigasa, who nurtured and shaped me into the woman I am today, consistently emphasized the importance of prioritizing education above all else. I am indebted to both of you for everything, even though you are not here to witness my achievements. Ngiyabonga kakhulu; sengathi umoya wenu ungaqhubeka uphumule ngokuthula.

Acknowledgements

Throughout my pursuit of this degree, I had the privilege of accompanying exceptional individuals and organizations who merit my greatest appreciation for supporting me, particularly during challenging circumstances.

I am profoundly grateful to my supervisor, Dr T.N. Suinyuy, and my co-supervisor, Dr A. Magadlela from the University of KwaZulu-Natal, for their unwavering support, patience, encouragement, insightful remarks, helpful recommendations, and vast knowledge, which have greatly contributed to the significance of my research.

I would also like to express my gratitude to my colleagues in the UKZN laboratory for creating a conducive work atmosphere and, most importantly, for providing unwavering support.

I would like to express my gratitude to Tshwane Mongwadi for accompanying me in collecting my samples on the field and carrying out the experiment in the lab. Additionally, I am thankful to Motsomane Nqobile for consistently providing support whenever I had difficulties in the laboratory or while analyzing my data.

I would also like to express my gratitude to Dr Zakheleni Dube from my institution and Dr Ed Harris from Harper Adams University for imparting their knowledge of statistics to me.

Thanks to Mpumalanga Tourism and Parks Agency (MTPA) for granting me a permit to conduct the study in the Botshabelo cultural village.

I express my gratitude to the Vice-Chancellor of the University of Mpumalanga, Professor Thoko Mayekiso, for the Vice-Chancellor Scholarship and The National Research Foundation through Dr T.N Suinyuy for providing financial support.

I am grateful to my friends and family for their constant affection and encouragement during my academic pursuits. Furthermore, I appreciate my kid's (Lethabo Kayden Masite) family for their never-ending belief; even when I was preoccupied and unable to devote my attention to my son, they stood by me and thank you so much.

Last but not least, I express my gratitude to my Almighty God for providing me with the strength to navigate through this academic journey.

List of Tables

Chapter 4

Table 1: Soil chemical properties from <i>E. lanatus</i> under rhizosphere and non-rhizosphere	soils
The outcomes are shown as mean \pm SE, n=10	62
Table 2: Bacteria extracted from E. lanatus Coralloid roots	64
Table 3: Bacteria extracted from E. lanatus Rhizosphere soils	66
Table 4: Bacteria extracted from E. lanatus non-rhizosphere soils	70
Table 5: Soil enzyme activities of <i>E. lanatus</i> in the rhizosphere and non-rhizosphere soils	. The
outcomes are shown as mean ± SE, n=10	73

List of Figures

Chapter 2
Figure 1: Picture depicting the distribution of cycads (Calonje et al., 2019)16
Chapter 3
Figure 1. Graphical representation of the design of data collection. The minimum distance
between two consecutive plots is 7 m
Figure 2. Population structure of <i>Encephalartos lanatus</i>
Figure 3. Distribution of life stages in relation to fire occurrence
Figure 4. Effects of fire on the cone phenology of <i>Encephalartos lanatus</i> . (a) Comparison of
the total cones between fire-prone areas and unburnt areas; (b) comparison of the state of cones
(damaged versus undamaged) between fire-prone and unburnt areas39
Chapter 4
Figure 1: Venn diagram depicting the similar and different bacteria found in the coralloid roots,
rhizosphere and non-rhizosphere soils of Encephalartos lanatus
Figure 2: Relationship between the soil traits and extracellular enzyme activities of E. lanatus
rhizosphere and non-rhizosphere soils. The following is a representation of soil attributes: A
= nitrate reductase, B = nitrogen concentration, C = phosphorus concentration, D = organic
carbon, E = exchangeable acidity, F = total cation exchange, G = pH, H = acid saturation, I =
acid phosphatase, $J = alkaline$ phosphatase, $K = \beta$ -glucosidase, $L = N$ -acetyl- β -D-
glucosaminidase. Principal component analysis (PCA)74

List of Abbreviations

MYA=Million years ago SA= South Africa SANBI= South African National Biodiversity Institute NBSAP= National Biodiversity Strategy and Action Plan MBSP= Mpumalanga Biodiversity Sector Plan CITES= Convention on International Trade in Endangered Species of Wild Fauna and Flora N₂= Dinitrogen PGPB= Plant Growth Promoting Bacteria NEMBA- National Environmental Management Biodiversity NT=Near threatened VU= Vulnerable LC= Least Concern EN= Endangered CR= Critically Endangered EX= Extinct in the Wild IUCN= International union for conservation of nature BNF= Biological nitrogen fixation PCR= Polymerase chain reaction BLAST= Basic local alignment search tool PCA= Principal component analysis NH₃= Ammonia

Ca= Calcium

Mg= magnesium

P= Phosphorus

K= Potassium

Cu= Cupper

TCP= Tricalcium phosphate

TAE= Tris-acetate-EDTA

NaOH= Sodium hydroxide

NR= Nitrate reductase

ISR= Induction of systematic resistance

IAA= Indole-3-acetic acid

EPS= Extracellular polymeric substances

T-DNA= Transferred DNA

Publication(s) related to the project research

- Sigasa, M.N., Yessoufou, K., Magadlela, A., Otang-Mbeng, W. and Suinyuy, T.N. 2023. Population structure of an African cycad: Fire may stimulate the coning phenology of *Encephalartos lanatus* (Zamiaceae) and also predispose its cones to damage. *Diversity*, 15(10): 1075. <u>Doi:10.3390/d15101075</u>
- 2. Sigasa, M.N., Magadlela, A., Otang-Mbeng, W. and Suinyuy, T.N. The impact of microbes and their associated extracellular enzymes on *Encephalartos lanatus* thriving under harsh environmental conditions in Middelburg, Mpumalanga (Prepared for the Journal: Symbiosis)

General overview of chapters in this dissertation

The dissertation comprises five chapters, organized as follows:

Chapter 1: It provides an overview of the urgent need to conserve cycads, highlighting the crucial ecosystem services they provide. It also emphasizes the importance of the study, outlining the aim, objectives, and research questions of the study.

Chapter 2: This chapter provides a comprehensive literature review on several aspects related to cycads. These include the description/ classification of cycad species; geographical distribution of cycads; importance of cycads regarding ethnobotany, ornamentals, and food; conservation status of cycads; South African biodiversity policy; functional role of cycads in the ecosystem; and soil enzyme activities.

Chapter 3: It focuses on the population structure, effect of fire on life stages and reproductive structure of *Encephalartos lanatus* cones in Botshabelo Nature Reserve.

Chapter 4: It focuses on measuring the average soil nutrients status of the soil, identifying bacteria in the coralloid roots as well as the rhizosphere and non-rhizosphere soils of *Encephalartos lanatus*, examines the enzyme activities linked with these bacteria and further looks into their impact on the elevation of soil nutrients levels in Botshabelo cultural village.

Chapter 5: Outline the highlights and future recommendations of the present study.

Abstract

Cycads are long-lived, slow-growing gymnosperms that were once widely distributed but today are limited to the tropical and subtropical regions of the world. Cycads are of conservation importance because of their unique ecology. First, they are the only gymnosperms that provide an important ecosystem service of nutrient cycling, such as nitrogen fixation, through their association with nitrogen-fixing bacteria present in specialized coralloid roots that are similar to root nodules in legumes. Second, they have unique life histories based on their growth. They are a group of dioecious gymnosperms that occur in various life stages within a population. Third, they are the most threatened plant group on Earth, with over 50 % of the more than 300 species facing a high risk of extinction. The extinction is well noted for the African Encephalartos species, which are threatened by habitat loss through transformation, frequent fires, over-exploitation for landscaping and medicinal purposes, reproduction failures and other natural courses like herbivory and poor dispersal, which all affect the population health and structure. There is little knowledge on the ecology of Encephalartos cycads, and their extinction will lead to a decline in ecosystem services, and also. information about the diversity of nitrogen-fixing bacteria and other associated microbes in the roots and soils of Encephalartos species, and knowledge of their contribution to soil nutrient improvement is limited. This study, therefore, aimed to investigate the effects of disturbances/threats to E. lanatus health and population structure. Additionally, the study investigates the associated roots and soil microbes and the effects of E. lanatus on soil nutrient status. Encephalartos lanatus in a protected area in Botshabelo, Mpumalanga, is prone to fire, herbivory, and habitat conversion, and therefore serves as a model species for the aim of the study. The effects of fire and herbivory on E. lanatus health and population structure were assessed by counting and measuring all plants (seedlings, juveniles, adults, coning) in burnt and unburnt plots in Botshabelo. The plants were sexed based on the presence of live cones, remnants of cones from a previous season, or seedlings under the adult plant. Cone damage was assessed by counting and recording cones that were completely or partially damaged by fire and/or herbivores. For soil nutrient status, soil samples were collected from the rhizosphere of a total of 20 adult E. lanatus plants (10 each from burnt and unburnt plots), and 20 control samples were collected 5 m away from each target plant, and analyzed for soil nutrients (nitrogen [N], phosphorus [P], potassium [K], calcium [Ca], magnesium [Mg], manganese [Mn], copper [Cu], zinc [Zn], pH, acid saturation, total cation exchange, exchangeable acidity, and organic carbon [C]), enzyme activities using β -(D)-glucosaminidase, β -glucosidase, and phosphatase (alkaline & acid).

Furthermore, the rhizosphere and non-rhizosphere soils, together with coralloid roots, were analyzed for N-fixing, N-cycling, and P-solubilizing bacteria and other associated microbes. The data obtained for the effect of fire and herbivory on population structure was analyzed using analysis of covariance (ANCOVA) and analysis of variance (ANOVA) in RStudio. A two-sample t-test in Statistix 10 software was used to analyse the differences in nutrient concentration and enzyme activities in the rhizosphere and non-rhizosphere soils. The coralloid roots, rhizosphere and non-rhizosphere soils were analysed for their microbial composition. The study revealed that the population follows a "J" structure with a greater (P < 0.01) number of adults compared to any other life stage, and E. lanatus populations that were affected by fire produced a higher number of cones and were more prone to baboon damage than the cones in the unburnt sections. Rhizosphere soils had a significantly higher concentration (P < 0.05) of Mg and Mn than non-rhizosphere soils. In addition, both the rhizosphere and non-rhizosphere soils had significantly similar concentrations (P > 0.05) of N, P, K, Ca, Cu, Zn, pH, acid saturation, total cation exchange, exchangeable acidity, and organic C. Specifically, ten bacteria families were identified in the E. lanatus rhizosphere, non-rhizosphere soils, and coralloid roots. The Burkholderiaceae and Rhizobiaceae were the most dominant microbial families in both soils. The enzymes β -(D)-glucosaminidase and alkaline phosphatase were higher in the rhizosphere than in the non-rhizosphere soils but not significant (P > 0.05). In contrast, acid phosphatase, nitrate reductase and beta-glucosidase were significantly higher (P < 0.05) in the rhizosphere than in the non-rhizosphere soils. In conclusion, the study provides evidence that E. lanatus face challenges in their natural habitat. However, E. lanatus have developed coping mechanisms to withstand the harsh environment and host N-fixing, Ncycling and P-solubilizing microbes that assist the plants to thrive in nutrient-poor conditions. Generally, the current findings show that the identified N-fixing and nutrient-cycling bacteria, and their associated enzymes in E. lanatus coralloid roots, rhizosphere, and non-rhizosphere soils account for soil nutrient status improvement in the *E. lanatus* nutrient-poor ecosystem.

Keywords: Coralloid roots; *Encephalartos lanatus*; fire; nitrogen-fixing bacteria; non-rhizosphere soils; rhizosphere; soil nutrient

Chapter 1

General Introduction

1.1 Background

Cycads are the oldest living gymnosperms that have persisted from the mid-Permian (~270 MYA) (Mankga et al., 2020), therefore labelled as living fossils (Nagalingum et al., 2011). Among the three families, cycads comprise 355 species in 10 genera (Vessey et al., 2005; Mankga et al., 2020). The genera of cycads include Zamia, Dioon, Microcycas, Cycas, Ceratozamia, Encephalartos, Stangeria, Bowenia, Lepidozamia and Macrozamia (Calonje et al., 2019). Cycads are the most threatened plant group, with over 60% of the plants threatened with extinction (Mankga and Yessoufou, 2017). Among the genera, the *Encephalartos* genus that is indigenous to Africa and consists of more than 60 species (Mankga et al., 2020) is the most threatened cycad group (Mankga and Yessoufou, 2017). Most importantly, South Africa is home to the largest number of *Encephalartos* cycad species, making it a regional centre of cycad diversity with more than 30 species (Donaldson, 2003; Yessoufou et al., 2017; Mankga et al., 2020). Encephalartos species in South Africa tend to grow in forest, savanna and grassland habitats (Donaldson, 2008; Suinyuy et al., 2013). The forest species such as E. villosus and grassland species such as E. friderici-guilielmi, E. ghellinckii and E. lanatus are habitat-restricted, while savanna species such as E. altensteinii and E. natalensis tend to be more tolerant and can occur in different habitats with forest, savanna and grassland characteristics (Donaldson, 1993, 2008). Grassland Encephalartos species are prone to fire (Donaldson, 1995) which has been identified as a threat to cycad survival (Mankga and Yessoufou, 2017) and may therefore impact the grassland cycads negatively. For example, fire has been shown to kill cycad pollinators (Terry et al., 2008; Thom et al., 2015), leaves, cycad adults and seedlings (Negrón-Ortiz and Gorchov, 2000). This may negatively impact cycad reproduction and disrupt photosynthesis, nutrient uptake, and the population structure. However, like in other plants, fires can also be beneficial to cycads. For example, cycads regenerate by producing new leaf flushes and cones after fire (Donaldson, 1995; Negrón-Ortiz and Gorchov, 2000; Liddle, 2004; Swart et al., 2019). Although studies have investigated the effects of fire on cycads (e.g. Donaldson, 1995; Swart et al., 2019), knowledge about their impact on population structure is limited and requires investigation.

Cycad habitats are characterized by nutrient-poor soils (Álvarez-Yépiz *et al.*, 2011), and they provide the ecosystem service of nutrient cycling to cope in these nutrient-poor habitats. For example, cycads possess three distinct types of roots: taproots, lateral roots and specialized roots known as coralloid roots (Yamada *et al.*, 2012; Zheng *et al.*, 2018). The primary function of the taproot is to facilitate the assimilation of nutrients. In contrast, the lateral root primarily

serves as a nutrient storage organ, while the coralloid roots house nitrogen (N) fixing bacteria for plant use (Zheng et al., 2018). These microbes are capable of breaking down the triple bond of atmospheric dinitrogen (N2) through a process called biological N2 fixation (BNF) and converting it into ammonia (NH₃) (Zuberer, 2021), a nutrient that cycads utilize for their survival and growth (Gutiérrez-García et al., 2018; Hashidoko et al., 2019; Chang et al., 2019; Suárez-Moo et al., 2019; Ndlovu et al., 2023; Motsomane et al., 2023). Despite the knowledge of the role of N-fixing bacteria in sustaining cycads, few studies have investigated the diversity of microbes present in the coralloid roots of cycads (Yamada et al., 2012; Gutiérrez-García et al., 2018; Chang et al., 2019; Suárez-Moo et al., 2019), and such studies on Encephalartos are limited (e.g., Ndlovu et al., 2023; Motsomane et al., 2023, 2024). Furthermore, soil microorganisms release extracellular enzymes that break down and convert complex molecules into readily available nutrients that may be utilized by plants and microbes (Zungu et al., 2020; Ndlovu et al., 2023). The enzymes involved in N cycling include urease, acetylglucosaminase and N-acetyl-β-D-glucosaminidase (Trotsenko et al., 2001; Lobakova et al., 2003; Gehringer et al., 2010). N-acetyl-β-D-glucosaminidase (Trotsenko et al., 2001; Lee et al., 2020) and β-Dglucosidase cycle carbon (Ndlovu et al., 2023). Phosphatases (alkaline and acid) are crucial for the cycling of phosphorus (Turner et al., 2002). Studies on cycad-microbe symbiosis have focused mostly on microbes present in the coralloid roots of cycads, with limited efforts on the investigation of extracellular enzymes released by these soil microorganisms.

Over 65 % of the world's cycads are currently facing a high risk of extinction on a global scale (Mankga and Yessoufou, 2017; Yessoufou *et al.*, 2017), and this extinction risk is highest in *Encephalartos* cycads, which is an African endemic (Mankga and Yessoufou, 2017). Out of 65 *Encephalartos* species in Africa, South Africa is home to 37 species (> 50 %), of which 73 % are threatened with extinction (Donaldson, 2008) as compared to the global 63 % (IUCN, 2013). Although all *Encephalartos* species are listed in Appendix 1 of the Convention on International Trade in Endangered Species (CITES) of Wild Fauna and Flora (Donaldson, 2008), South Africa is still facing the imminent threat of losing the majority of its cycad species. Regardless of the implementation of numerous conservation efforts and enforcement of restrictive legislation, the population of cycads in their native habitat continues to decline (Martínez-Domínguez *et al.*, 2020; Janse van Rensburg *et al.*, 2023) leading to the loss of the important ecosystem services they provide in their habitats (Donaldson, 2003; Ndlovu *et al.*, 2023).

Mankga and Yessoufou (2017) identified nine factors that are contributing to the high risk of extinction. Seven factors are directly associated with human actions. These factors include habitat loss, fire, grazing, deforestation, overcollection, medicinal usage and alien invasive plants. In addition, one threat relates to the biological aspect of cycads, particularly the lack of reproduction (reproduction failure). Also, climate change manifests as either flood or drought. In addition, cycads are considered to be slow-growing species (Watkinson and Powell, 1997), experience slow reproduction rates, and often reproduce infrequently with unusual recruitment (Raimondo and Donaldson, 2003).

Therefore, conserving cycads is crucial not only for their cultural significance (Mapitsa, 2023) but also for their role in supporting ecosystem function that is threatened by fire. These roles include cycling of nutrients (Ndlovu *et al.*, 2023), carbon sequestration (Ma *et al.*, 2009), serving as food and shelter for birds and animals (Donaldson, 2008), complex mutually beneficial interactions with insects (Toon *et al.*, 2020), and host arbuscular mycorrhizae that influence biogeochemical processes in their micro-habitat (Marler and Calonje, 2020).

1.2 Rationale of the study

Grassland cycads are prone to fire, suggesting that they are fire-adapted or may have evolved with fire. Previous studies showed that fire promotes the growth of leaves in the Australian cycad *Macrozamia riedlei* (Baird, 1977; Dolva and Scott, 1982) as well as affecting the timing of cone production in *Macrozamia communis* (Baird, 1977; Beaton, 1982; Pate, 1993). Fire also plays a crucial role in the process of seedling recruitment within the *Cycas armstrongii* population (Watkinson and Powell, 1997). This suggests that fire can be used as a management tool for fire-adapted cycads. However, it is important to investigate the impact of fire on ecology with an emphasis on the population structure of a cycad species before applying it as a management tool on a cycad such as *E. lanatus* that occurs in grasslands that burn regularly. Previous studies in South Africa have only investigated the impact of fire on coning in *E. cycadifolius* (Donaldson, 1995), leaves and adult *E. transvenosus* (Grobbelaar *et al.*, 1989). The *Encephalartos lanatus* population in Middelburg, South Africa, burns regularly and would serve as a model plant to investigate how fire affects its population structure.

Cycads grow in nutrient-deficient soils and have developed special adaptations to survive in harsh environments. Studies show that cycads have established a symbiotic relationship with cyanobionts, known for their ability to convert atmospheric N to plant usable NH₃ (Chang *et*

al., 2019). The diversity of microbes associated with the coralloid roots of Ceratozamia (Lobakova et al., 2003), Cycas (Costa et al., 1999; Cuddy et al., 2012), Dioon (Guitierrez et al., 2018; Suárez-Moo et al., 2019), Lepidozamia (Cuddy et al., 2012) and Macrozamia (Costa et al., 2004; Gehringer et al., 2010; Cuddy et al., 2012) cycads that grows in the Americas and Australia have been documented and identified. Furthermore, Marler and Calonje (2020) found increased concentrations of N, carbon (C), and phosphorus (P) in the rhizosphere soils of Cycas micronesica and Zamia integrifolia compared to the surrounding soil. This indicates that cycads play a significant role in soil nutrient contributions. Previous studies in the African cycads found that the coralloid roots of *Encephalartos* species and *Stangeria eriopus* in South Africa can fix N (Grobbelaar et al., 1986), which is attributed to the presence of cyanobacteria, predominantly dominated by *Nostoc* species (Grobbelaar et al., 1987). These studies solely focused on the association between Encephalartos species and N-fixing bacteria without examining their relationship with bacteria involved in N cycling, P solubilizing and C cycling. In addition, the studies did not look at the role of these *Encephalartos* species in enhancing soil nutrient levels and did not explore the role played by the activity of enzymes in the soil. All the plants used in these studies were from botanical garden collections, which do not reflect the natural habitats of the plants, and it was, therefore, difficult to determine if the microbes were from the plants' natural habitat or botanical garden. Botanical garden plants are often irrigated, sprayed with pesticides, and receive nutrient inputs through the application of synthetic fertilizers, which may influence the cyanobionts' composition.

Ndlovu et al. (2023) and Motsomane et al. (2024) examined N₂ fixation, P solubilizing and N cycling microbial diversity and associated soil enzyme activities in Encephalartos natalensis and E. villosus growing in their natural habitats. For both E. natalensis and E. villosus, they identified similar taxa of microbes in the rhizosphere, non-rhizosphere soils, and coralloid roots. These genera include Variovorax, Paenibacillus, Neobacillus, Bacillus, Lysinibacillus, Rhizobium, Pseudomonas, Paraburkholderia and Chitinophaga. Additionally, Ndlovu et al. (2023) in their study also found microbial genera such as Sphingomonas, Phyllobacterium, Olivibacter, Beijerinckia, Methylobacterium, Novosphingobium, Massilia and Gottfrieda. In contrast, a study by Motsomane et al. (2024) showed the presence of different microbial taxa, including Enterobacter, Peribacillus, Cupriavidue, Dyella, Stenotrophomonas, Burkholderia, Caulobacter, Hymenobacter, and Bradyrhizobium in E. villosus.

Regarding the activity of enzymes, Ndlovu *et al.* (2023) documented the enzymatic activity in both the rhizosphere and non-rhizosphere soils of *E. natalensis*. The results obtained in the

study showed that the activity of β -D-glucosaminidase and acid phosphatase enzymes was comparable in both the rhizosphere and non-rhizosphere soils. The authors also reported a higher nitrate reductase enzyme activity in the rhizosphere compared to the non-rhizosphere soils. In addition, they found a higher alkaline phosphatase activity in the non-rhizosphere compared to the rhizosphere soils (Ndlovu *et al.*, 2023). A different study carried out on *E. villosus* found that the β -D-glucosaminidase, nitrate reductase and phosphatases (acid and alkaline) enzyme activity in the rhizosphere and non-rhizosphere soils of Rhebu and Oceanview were not statistically significant (Motsomane *et al.*, 2024).

Both *E. natalensis* and *E. villosus* occur in disturbed savanna and scarp forest, respectively, and the diversity of microbes associated with cycads in the different habitats vary. This suggests that specific microbes may be associated with specific cycad species and habitat types. The target species in this study, *E. lanatus*, occurs in nutrient-poor grassland habitats that experience regular fires and grazing and may also have different microbial diversity. Therefore, knowledge of the diversity of nutrient-cycling microbes associated with the *E. lanatus* ecosystem and its contribution to soil nutrient improvement in nutrient-deficient grassland habitats is limited and requires investigation.

Among the 10 genera, *Encephalartos* is the only cycad with the highest risk of extinction (Mankga and Yessoufou, 2017). Successful cycad conservation efforts should include the processes and systems that sustain the plants *in situ* and the functioning of their ecosystem. The gap in knowledge on cyanobionts that function in nutrient cycling is, therefore, a barrier to the development of an effective conservation and management plan for *E. lanatus*. In addition, understanding *E. lanatus* cyanobionts-symbiotic interactions aligns with the mission statement of the Mpumalanga Biodiversity Sector Plan (MBSP) of 2015, which focuses on having an adequate representation of biodiversity in Mpumalanga being adaptively conserved, sustainably managed, and restored wherever applicable, while safeguarding all species and ecosystems (Lötter, 2015). Moreover, the information obtained from this study will enhance the knowledge of biodiversity and the enhancement of ecosystem services, which aligns with South Africa's National Biodiversity Strategy and Action Plan (NBSAP) 2015–2025.

1.3 Aim and Objectives

The study aims to investigate the ecology of the African cycad *E. lanatus* in Botshabelo Nature Reserve, Middelburg, in Mpumalanga Province.

The objectives of the study include the following:

- a) To investigate the effects of fire on the population structure of the African cycad *E. lanatus* Stapf & Burtt Davy (1926).
- b) To assess the rhizosphere and non-rhizosphere soil characteristics (nutrient concentration, total exchange acidity, total cations, and pH) of *E. lanatus*.
- c) To identify the N-fixing, P-solubilizing, and N-cycling bacteria present in the *E. lanatus* coralloid roots, rhizosphere, and non-rhizosphere, and assay their extracellular enzyme activities.

1.4 Research question(s)

- a) What is the abundance/population status of *E. lanatus* in the Botshabelo Cultural Village?
- b) How does fire affect the reproductive structures and life stages of *E. lanatus*?
- c) What is the contribution of *E. lanatus* to the enhancement of soil fertility?
- d) Which microbial species inhabit the coralloid roots, rhizosphere, and non-rhizospheric zone of the *E. lanatus* plant?

References

Álvarez-Yépiz, J.C., Dovčiak, M. and Búrquez, A. 2011. Persistence of a rare ancient cycad: Effects of environment and demography. *Biological Conservation*, 144(1): 122-130.

Baird, A.M., 1977. Regeneration after fire in King's Park, Perth, Western Australia. *Journal of Royal Society of Western Australia*, 60: 1-22.

Beaton, J.M., 1982. Fire and water: Aspects of Australian aboriginal management of cycads. *Archaeology in Oceania*, 17(1): 51-58.

Calonje, M., Stevenson, D.W. and Stanberg, L. 2019. The world list of cycads, online edition. *Recuperado el*, 10.

Chang, A.C.G., Chen, T., Li, N. and Duan, J. 2019. Perspectives on endosymbiosis in coralloid roots: association of cycads and cyanobacteria. *Frontiers in microbiology*, 10: 1888.

Costa, J.L., Romero, E.M. and Lindblad, P. 2004. Sequence-based data supports a single *Nostoc* strain in individual coralloid roots of cycads. *FEMS microbiology ecology*, 49(3): 481-487.

Costa, J.L., Paulsrud, P. and Lindblad, P. 1999. Cyanobiont diversity within coralloid roots of selected cycad species. *FEMS Microbiology Ecology*, 28(1): 85-91.

Cuddy, W.S., Neilan, Brett, A. and Gehringer, M.M. 2012. Comparative analysis of cyanobacteria in the rhizosphere and as endosymbionts of cycads in drought-affected soils. *FEMS Microbiology Ecology*, 80(1): 204-215.

Dolva, J.M. and Scott, J.K. 1982. The association between the mealybug, *Pseudococcus macrozamiae*, ants and the cycad *Macrozamia reidlei* in a fire-prone environment. *Journal of Royal Society of Western Australia*, 65: 33-36.

Donaldson, J.S. 2008. South African *Encephalartos* species. In *NDF workshop case studies:* Case study, 4: 3-6.

Donaldson, J.S., Hill, K.D., and Stevenson, D.W. 2003. Cycads of the world: An overview. In *Cycads: status survey and conservation action plan*. Edited by Donaldson, J.S. Switzerland: IUCN/SSC Cycad Specialist Group, 3-8.

Donaldson, J. 1995. The Winterberg Cycad. Veld & Flora, 81(2): 36-39.

Donaldson, J.S. 1993. Mast-seeding in the cycad genus *Encephalartos*: A test of the predator satiation hypothesis. *Oecologia*, 94(2): 262-271.

Gehringer, M.M., Pengelly, J.J., Cuddy, W.S., Fieker, C., Forster, P.I. and Neilan, B.A. 2010. Host selection of symbiotic cyanobacteria in 31 species of the Australian cycad genus *Macrozamia* (Zamiaceae). *Molecular Plant-Microbe Interactions*, 23(6): 811-822.

Grobbelaar, N., Meyer, J.J.M. and Burchmore, J. 1989. Coning and sex ratio of *Encephalartos transvenosus* at the Modjadji Nature Reserve. *South African Journal of Botany*, 55(1): 79-82.

Grobbelaar, N., Scott, W.E., Hattingh, W. and Marshall, J. 1987. The identification of the coralloid root endophytes of the southern African cycads and the ability of the isolates to fix dinitrogen. *South African Journal of Botany*, 53(2): 111-118.

Grobbelaar, N., Hattingh, W. and Marshall, J. 1986. The occurrence of coralloid roots on the South African species of the Cycadales and their ability to fix nitrogen symbiotically. *South African Journal of Botany*, 52(5): 467-471.

Gutiérrez-García, K., Bustos-Díaz, E.D., Corona-Gómez, J.A., Ramos-Aboites, H.E., Sélem-Mojica, N., Cruz-Morales, P., Pérez-Farrera, M.A., Barona-Gómez, F. and Cibrián-Jaramillo, A. 2018. Cycad coralloid roots contain bacterial communities including cyanobacteria and *Caulobacter spp.* that encode niche-specific biosynthetic gene clusters. *Genome Biology and Evolution*, 11(1): 319-334.

Hashidoko, Y., Nishizuka, H., Tanaka, M., Murata, K., Murai, Y. and Hashimoto, M. 2019. Isolation and characterization of 1-palmitoyl-2-linoleoyl-sn-glycerol as a hormogonium-inducing factor (HIF) from the coralloid roots of *Cycas revoluta* (Cycadaceae). *Scientific reports*, 9(1): 4751.

International Union of Conservation of Nature (IUCN) red list of threatened species. 2013. Available from: https://www.iucnredlist.org

Janse van Rensburg, P.D., Bezuidenhout, H. and Van den Berg, J. 2023. Impact of poaching on the population structure and insect associates of the endangered *Encephalartos eugene-maraisii* from South Africa. *Bothalia-African Biodiversity & Conservation*, 53(1): 1-33.

Lee, S.H., Kim, M.S., Kim, J.G. and Kim, S.O. 2020. Use of soil enzymes as indicators for contaminated soil monitoring and sustainable management. *Sustainability*, 12(19): 8209.

Liddle, D.T. 2004. *The Ecology of Cycas Armstrongii and Management of Fire in Australia's Tropical Savannas*. Doctoral thesis. Australia: Charles Darwin University.

Lobakova, E.S., Orazova, M.K. and Dobrovol'skaya, T.G. 2003. The Structure of Cyanobacterial Communities Formed during the Degradation of Apogeotropic Roots of Cycads. *Microbiology*, 72(5): 634-637.

Lötter, M.C. 2015. Technical Report for the Mpumalanga Biodiversity Sector Plan – MBSP. Mpumalanga Tourism & Parks Agency, Mbombela (Nelspruit).

Ma, Y., Jiang, H., Wang, B., Zhou, G., Yu, S., Peng, S., Hao, Y., Wei, X., Liu, J. and Yu, Z. 2009. Carbon storage of cycad and other gymnosperm ecosystems in China: implications to evolutionary trends. *Pol. J. Ecol*, 57(4): 635-646.

Mankga, L.T., Yessoufou, K. & Chitakira, M. 2020. On the origin and diversification history of the African genus *Encephalartos*. *South African Journal of Botany*, 130: 231-239.

Mankga, L.T. and Yessoufou, K. 2017. Factors driving the global decline of cycad diversity. *AoB Plants*, 9(4): plx022.

Mapitsa, C. 2023. Cycad regulation and community creation: South African stakeholder perspectives on conservation. *Journal of Ethnobiology*, 43(4): 308-316.

Marler, T.E. and Calonje, M. 2020. Two cycad species affect the carbon, nitrogen, and phosphorus content of soils. *Horticulturae*, 6(2): 24.

Martínez-Domínguez, L., Nicolalde-Morejón, F., Vergara-Silva, F. and Stevenson, D.W. 2020. Pollination of cycads in an urban environment. *Botany*, 98(6): 333-339.

Motsomane, N., Suinyuy, T.N., Pérez-Fernández, M.A. and Magadlela, A. 2024. Exploring the influence of ecological niches and hologenome dynamics on the growth of *Encephalartos villosus* in scarp forests. *Soil Systems*, 8(1): 21.

Motsomane, N., Suinyuy, T.N. and Magadlela, A. 2023. *Encephalartos villosus* relies on atmospheric nitrogen than soil-derived nitrogen to maintain growth in nutrient-deficient and acidic soils. Preprint available at Research Square [Doi:10.21203/rs.3.rs-2458246/v1]

Nagalingum, N.S., Marshall, C.R., Quental, T.B., Rai, H.S., Little, D.P. and Mathews, S. 2011. Recent synchronous radiation of a living fossil. *Science*, 334(6057): 796-799.

Ndlovu, S., Suinyuy, T.N., Pérez-Fernández, M.A. and Magadlela, A. 2023. *Encephalartos natalensis*, Their nutrient-cycling microbes and enzymes: a story of successful tradeoffs. *Plants*, 12(5): 1034.

Negrón-Ortiz, V. & Gorchov, D.L. 2000. Effects of fire season and postfire herbivory on the cycad *Zamia pumila* (Zamiaceae) in slash pine savanna, Everglades National Park, Florida. *International Journal of Plant Sciences*, 161(4): 659-669.

Pate, J., 1993. Biology of the S.W Australian cycad *Macrozamia riedlei* (Fisch. Ex Gaudich). In *The biology, structure, and systematics of the cycadales*. Edited by Stevenson, D.W. and Norstog, K.J. Milton: Palm and Cycad Society of Australia, 125-130.

Raimondo, D.C. and Donaldson, J.S. 2003. Responses of cycads with different life histories to the impact of plant collecting: Simulation models to determine important life history stages and population recovery times. *Biological Conservation*, 111(3): 345-358.

Suárez-Moo, P.D.J., Vovides, A.P., Griffith, M.P., Barona-Gómez, F. and Cibrián-Jaramillo, A. 2019. Unlocking a high bacterial diversity in the coralloid root microbiome from the cycad genus *Dioon. PLoS One*, 14(2): e0211271.

Suinyuy, T.N., Donaldson, J.S. and Johnson, S.D. 2013. Patterns of odour emission, thermogenesis and pollinator activity in cones of an African cycad: What mechanisms apply? *Annals of Botany*, 112(5): 891-902.

Swart, C., Rowswell, R., Donaldson, J. and Barker, N. 2019. Population structure and survival of the critically endangered cycad *Encephalartos latifrons* in South Africa. *South African Journal of Botany*, 127: 80-90.

Terry, I., Forster, P.I., Moore, C.J., Roemer, R.B. and Machin, P.J. 2008. Demographics, pollination syndrome and conservation status of *Macrozamia platyrhachis* (Zamiaceae), a geographically restricted Queensland cycad. *Australian Journal of Botany*, 56(4): 321-332.

Thom, M.D., Daniels, J.C., Kobziar, L.N. and Colburn, J.R. 2015. Can butterflies evade fire? Pupa location and heat tolerance in fire-prone habitats of Florida. *PLoS One*, 10(5): e0126755.

Toon, A., Terry, L.I., Tang, W., Walter, G.H. and Cook, L.G. 2020. Insect pollination of cycads. *Austral Ecology*, 45(8): 1033-1058.

Trotsenko, Y.A., Ivanova, E.G. and Doronina, N.V. 2001. Aerobic methylotrophic bacteria as phytosymbionts. *Microbiology*, 70: 623-632.

Turner, B.L., Baxter, R. and Whitton, B.A. 2002. Seasonal phosphatase activity in three characteristic soils of the English uplands polluted by long-term atmospheric nitrogen deposition. *Environmental Pollution*, 120(2): 313-317.

Vessey, J.K., Pawlowski, K. and Bergman, B. 2005. Root-based N 2-fixing symbioses: Legumes, actinorhizal plants, *Parasponia* sp. and cycads. *Plant and Soil*, 274: 51-78.

Watkinson, A.R. and Powell, J.C. 1997. The life history and population structure of *Cycas armstrongii* in monsoonal northern Australia. *Oecologia*, 111: 341-349.

Yamada, S., Ohkubo, S., Miyashita, H. and Setoguchi, H. 2012. Genetic diversity of symbiotic cyanobacteria in *Cycas revoluta* (Cycadaceae). *FEMS Microbiology Ecology*, 81(3): 696-706.

Yessoufou, K., Daru, B.H., Tafirei, R., Elansary, H.O. and Rampedi, I. 2017. Integrating biogeography, threat and evolutionary data to explore extinction crisis in the taxonomic group of cycads. *Ecology and Evolution*, 7(8): 2735-2746.

Zheng, Y., Chiang, T.Y., Huang, C.L. and Gong, X. 2018. Highly diverse endophytes in roots of *Cycas bifida* (Cycadaceae), an ancient but endangered gymnosperm. *Journal of Microbiology*, 56: 337-345.

Zuberer, D.A., 2021. 16- Biological dinitrogen (N2) fixation: Introduction and nonsymbiotic. In *Principles and applications of soil microbiology*. Edited by Gentry, T.J., Fuhrmann, J.J. and Zuberer, D.A. United States: Elsevier, 423-453.

Zungu, N.S., Egbewale, S.O., Olaniran, A.O., Pérez-Fernández, M. and Magadlela, A. 2020. Soil nutrition, microbial composition and associated soil enzyme activities in KwaZulu-Natal grasslands and savannah ecosystems soils. *Applied Soil Ecology*, 155: 103663.

Chapter 2

Literature Review

2.1 Description/ classification of cycad species

Cycads' origin dates back to around 300 million years ago (MYA) (Hendricks, 1987; Mankga et al., 2020a). They reached their highest level of diversity during the Jurassic period and maintained a constant level of diversity throughout the Cretaceous period (Condamine et al., 2015). The existing cycads are classified into three families, namely Zamiaceae, Cycadaceae and Stangeriaceae (Osborne et al., 2012), with a total of ten genera and more than 300 species (Mankga et al., 2020a). The family Cycadaceae consists exclusively of the genus Cycas, while Stangeriaceae consist of two genera, namely Stangeria and Bowenia (Donaldson, 2003). The Zamiaceae family is exceptionally diversified and has a wide distribution, consisting of seven genera (Dioon, Encephalartos, Lepidozamia, Ceratozamia, Macrozamia, Zamia, and Microcycas) (Donaldson, 2003).

Cycads are dioecious, generally exhibiting distinct variations in the size and shape of the cones between male and female individuals of the same species (Grobbelaar, 2004). Cycads have the ability to naturally reproduce through seeds and suckers (Demiray et al., 2017). For example, the germination of Cycas revoluta seeds can take anywhere from 3 to 9 months to begin, and once initiated, the germination process can continue for a year or longer (Benjelloun et al., 2020). Under optimal conditions, which include warm, moist conditions, well-drained soil, sufficient sunlight, water and nutrients, the cycad plant requires a minimum of 10-12 years to reach full maturity (Kaviani et al., 2014). In addition, cycads have underground (subterranean) or aboveground (Arborescent) stems. Some species, such as Lepidozamia hopei and Encephalartos transvenous, can grow to a height of 13-18 m and have a tree-like structure (Arborescent). Others, like Zamia pumila, are smaller shrubs with underground (subterranean) stems (Webb and Osborne, 1989). Arborescent plants often experience full development of their leaves and megasporophylls within around eight weeks (Marler et al., 2020). When it comes to male plants, a higher cone production rate is exhibited per plant per season (Grobbelaar et al., 1989). Cycads require 3-10 years to reach sexual maturity (Demiray et al., 2017). However, the majority of the fast-growing *Encephalartos* species found in South Africa, such as Encephalartos altensteinii, Encephalartos ferox, Encephalartos transvenous and Encephalartos natalensis, require approximately 10-15 years to reach the size at which they produce cones when cultivated from seeds in a garden setting (Grobbelaar, 2004). Cycad roots are typically shallow and fleshy, lacking the tendency to penetrate deep into the soil (Jones, 1993). Furthermore, cycads have a notable characteristic of having extremely slow growth rates (Raimondo and Donaldson, 2003), typically generating a single pair of new leaves yearly (Whitelock, 2002).

2.2 Geographical distribution of cycads

Cycads were previously abundant throughout a wide range of areas, but the remaining cycads are now limited to tropical and subtropical regions (Calonje et al., 2019). America, Africa, Australia and southern Asia are the four regions that constitute the epicentre of cycad diversity (Donaldson, 2003). The Cycas genus had the most rapid diversification and has a wide distribution (Yessoufou et al., 2017; Mankga et al., 2020b). According to fossil data, Asia is identified as the original location of the genus (Mankga et al., 2020b). The genus Cycas showed a southern distribution, extending from Asia to Australia, eastern Africa and the Pacific Islands (Hill, 2004). *Encephalartos* is a member of the Zamiaceae family, which consists of 65 species and is found exclusively in Africa (Whitelock, 2002; Donalson, 2003; Yessoufou et al., 2014; Condamine et al., 2015). Within South Africa, the genus is spread in a linear pattern along the coast of South Africa, stretching from the Eastern Cape to KwaZulu-Natal and then extending inland into the Mpumalanga and Limpopo Provinces (Donaldson, 2008). The Dioon genus consists of fourteen species, with thirteen species found in Mexico (Vovides, 1990; Prado et al., 2016) and one species found in Honduras (Prado et al., 2016). Bowenia is native to Australia and consists of two species, namely *Bowenia spectabilis* and *B. serrulata* (Whittaker, 2004; Hill et al., 2019). Stangeria is a monospecific genus that is indigenous to Africa (Whitelock, 2002). The genera Zamia, Ceratozamia, and Microcycas are found in America, while Lepidozamia and Macrozamia occur in Australia (Jones, 1993).

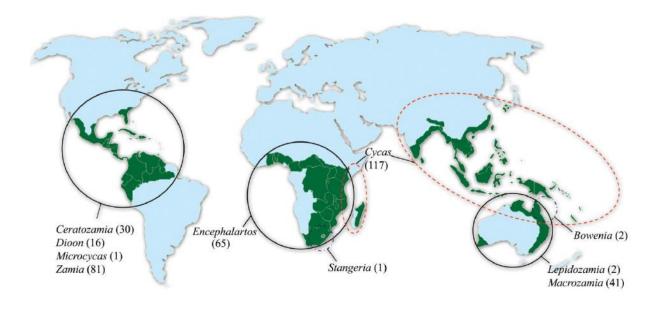


Figure 1: Picture depicting the distribution of cycads (Calonje et al., 2019).

2.3 Importance of cycads regarding ethnobotany, ornamentals, and food

Cycads have been used for ages by various cultural groups in tropical and subtropical regions as a food source, particularly during periods of famine (Donaldson, 2003; Bonta et al., 2019). Although these plants are toxic, they are nonetheless important due to the high starch content in their stems and seeds, which makes them a great source of nutrients (Radha and Singh, 2008). The utilization of *Dioon* species in Mexico contributed to the survival of numerous individuals during the prolonged drought (Martínez et al., 2020). Cycads are also used as ornamentals for special occasions, especially the leaves (Vovides et al., 2010; Bonta et al., 2019). Encephalartos transvenous leaves and cones are utilized as ornamental elements on tables during special events, while the stems are cultivated close to residences for decorative reasons (Ravele and Makhado, 2009). The utilization of plant-based materials for medicinal purposes is an old practice that was used by our forefathers and has gained popularity in recent years. A few cycad plant species are facing an extinction dilemma as a consequence of the widespread harvesting encouraged by this practice (Williams et al., 2013). It is believed that approximately 60% of the South African human population seeks the services of traditional healers, who predominantly utilize plant-based materials as medicinal remedies to treat a wide range of illnesses in their patients (van Wyk et al., 2009). Cycads are used as medicine to treat stomach problems, stroke, heart attacks (Ravele and Makhado, 2009), hypertension (Ndawonde et al., 2007) as well and breast cancer (Bamigboye et al., 2017). Roots, leaves, and bark are the most commonly utilized materials for medicinal reasons (Ndawonde *et al.*, 2007). The upper portion of the *Encephalartos transvenous* bark is collected based on the traditional belief that it possesses magical properties and has the ability to repel evil spirits (Bamigboye *et al.*, 2017).

2.4 Conservation status of cycads

Cycads worldwide are currently facing a conservation crisis, making them the most endangered plant group (Hoffman et al., 2010). They have been recognized as a key species for conservation efforts (Marler and Calonje, 2020). To effectively conserve threatened species, it is essential to have a thorough understanding of the environmental conditions and population dynamics that impact species survival and influence their susceptibility to extinction (Álvarez-Yepíz et al., 2019). The decline in cycad populations can be attributed to several factors, including habitat loss, overcollection, fire, reproduction failure, deforestation, grazing, medicinal usage, alien invasive plants and flood and drought occurrences. According to Raimondo et al. (2009), all the Encephalartos species are included in CITES Appendix I, and 78% of the South African species are categorized as threatened. Out of all the cycad species that are native to South Africa, three are categorized as Extinct in the wild (EX), twelve species are Critically Endangered (CR), four species are Endangered (EN), nine species are Vulnerable (VU), seven species that are Near Threatened (NT), and three species are Least Concern (LC) (Bland et al., 2017). The species investigated in this study (Encephalartos lanatus) is classified as NT based on the International Union for Conservation of Nature (IUCN) Red List (Donaldson, 2003).

2.5 South African Biodiversity Policy

Cycads are safeguarded by international, national, and provincial laws. The national legislations that govern biodiversity and offers safeguarding measures for diverse species encompassing cycads are [1] National Environmental Management: Biodiversity Act of 2004 (NEMBA). This Act is responsible for the regulation of the cycad trade, the implementation of Convention on International Trade in Endangered Species (CITES) of Wild Fauna and Flora, the establishment of a Scientific Authority of South African National Biodiversity Institute (SANBI), the administration of the authority to publish a list of endangered cycads, and the establishment of penalties for violation of the Act (DEA, 2013); [2] Threatened or Protected Species (TOPS) Regulations, 2007 administers the authorization system in accordance with the NEMBA legislation (Donaldson, 2008); [3] Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) Regulations 2020- when actions involving importing

or exporting listed species happen, this law applies since every cycad species is classified under Appendix I, which bans any trade involving plants that have been collected from the wild, and Appendix II, which permits trade only with a license (Osborne, 1990; Stiles, 1997; Donaldson, 2003); [4] National Environmental Management: Protected Areas Act 57 of 2003 (NEMPAA) - the purpose of this law is to establish specifically designated region for the conservation of cycads species, with the aim of safeguarding their protection and ensuring their long term existence (DEA, 2013); [5] National Environmental Management Act 107 of 1998 (NEMA) establishes the guidelines for the environmental rights of all South African people and outline the principles for safeguarding cycads in South Africa (DEA, 2013). The aforementioned rules and regulations are implemented by Provincial legislation that presently regulates the conservation of cycads. All the provincial regulations are enforced to regulate the trade and transportation of cycads among provinces. The authorities grant permits to individuals who wish to export cycads inside the province, as well as to researchers who intend to perform studies on cycad plants. These legislations incorporate [1] The Natal Conservation Ordinance No. 15 of 1974 (Osborne, 1990); [2] The Limpopo Environmental Management Act No 7 of 2003; [3] The Mpumalanga Nature Conservation Act No 10 of 1998; [4] Mpumalanga Tourism and Parks Agency; [5] The Ciskei Nature Conservation Act No 10 of 1987 and [6] Transkei Decree No 9 of 1992.

2.6 Functional role of cycads in the ecosystem

2.6.1 Food and shelter

Cycads are keystone species that play a key role in maintaining the ecosystem. Cycads provide food and shelter for birds and wild animals (Donaldson, 2008). They are also known for being poisonous, nonetheless, wild animals and insects have evolved a mechanism to neutralize the toxins (Schneider *et al.*, 2002). Therefore, the primary consumers of cycad leaves are predominantly Lepidopteran larvae, encompassing both butterflies and moths (Whitaker and Salzman, 2020). These larvae possess a natural resistance to the poisons found in cycad leaves and can store and utilize them as part of their survival mechanisms (Bayliss *et al.*, 2009). Staude (2001) reported sixteen species of moths belonging to six distinct genera that were observed feeding on the leaves of African cycads, and the most abundant genus among them was *Callioratis*. The female moth deposits her eggs on delicate, recently emerged cycad foliage, and the larvae then feed on all the tender leaves after hatching (Grobbelaar, 2004). Monkeys have developed specialized eating mechanisms that allow them to get the recently sprouted tender leaves, which have lower poisonous hydrogen cyanide compared to older leaves (Nowak

and Lee, 2011). Zanzibar red colobus monkeys consume the foliage of the arborescent cycads, displaying a preference for fresh, soft leaves rather than mature ones (Nowak and Lee, 2011). Porcupines are known to use *Encephalartos* stems as a source of nourishment and hydration (Goode, 1989).

2.6.2 Cycad's role in nitrogen (N₂) fixation

Due to a lack of nutrition in ancient soils 300 million years ago, cycads evolved a mechanism to host cyanobionts to survive in nutrient-poor environments (Chang et al., 2019). Given that cycads and cyanobacteria have existed since prehistoric times, it is possible that their symbiotic association and coevolution began millions of years ago (Chang et al., 2019). They have developed a specific root structure known as coralloid roots, which house symbiotic cyanobacteria capable of N₂ fixation for plants (Grobbelaar et al., 1987). The formation of coralloid roots occurred in cycads before being colonized by cyanobionts (Lindblad and Bergman, 1990; Costa et al., 1999). Pre-coralloid roots develop and generate papillose tissue (Ahern and Staff, 1994), which during maturation, undergoes degeneration of the papillose tissue sheath and is replaced by a thin outer layer that forms dispersed lenticels (Lindblad, 2009; Chang et al., 2019). The N-fixing microorganisms in the soil enter the coralloid roots using dermal breaks in the outer layer (Costa et al., 1999). Soon after the N-fixing microorganisms move to the inner layer's roots, the coralloid roots develop a swollen and branched structure with two equal divisions (dichotomously branched) (Chang et al., 2019). The infected roots exhibit an increased diameter, and the cyanobacterial zone is located at the junction between the apparent outer and inner cortex (Chang et al., 1988). The mutualistic relationship is controlled by regulatory genes (Ahern and Staff, 1994). The cycad secretes hormogonium-inducing substances, which stimulate the N-fixing microorganisms to transform into mobile filaments known as hormogonia (Lindblad, 2009; Chang et al., 2019). Hormogonia infiltrate the coralloid roots of cycads using chemotaxis, and the coralloid root of cycad generates hormogonium-repressing factors to facilitate the development of heterocyst in the microbes, which is necessary for N₂ fixation (Chang et al., 2019). Under conditions of insufficient soil N supply, such as dunes and rocky outcrops with a lot of salt content (Grove et al., 1980), cycads establish a symbiotic relationship with the N-fixing bacteria by producing a signal that triggers the formation of hormogonia, as mentioned earlier (Hashidoko et al., 2019). In the cycad species Cycas revoluta, this signal has been identified as 1-palmitoyl-2linoleoyl-sn-glycerol (Hashidoko et al., 2019).

According to Yamada et al. (2012), Nostoc is the predominant type of bacteria strain found in Cycadaceae, while Anabaena and Calonthrix species establish symbiotic relationships less commonly. A research study on coralloid roots that were sampled from cycads grown in a botanical garden among the genera Cycas, Zamia, and Encephalartos found that coralloid roots associated with one strain of Nostoc (Costa et al., 1999). Another study carried out in the natural habitat of cycads confirmed the presence of Nostoc strain in coralloid roots (Gehringer et al., 2010). However, a recent study identified bacterial species from the genera Nostoc, Burkholderia, Mesorhizobium, Bradyrhizobium, and Caulobacter present in coralloid roots of wild Dioon cycad populations (Gutiérrez-García et al., 2018). The following microbe genera were identified in E. natalensis coralloid roots: Lysinibacillus, Bacillus, Paenibacillus and Beijerinckia (Ndlovu et al., 2023). Motsomane et al. (2024) reported the presence of Lysinibacillus, Bacillus, Paenibacillus and Enterobacter in E. villosus coralloid roots growing in Oceanview, Eastern Cape, South Africa.

2.7 Soil enzyme activities

Soil microbes secrete extracellular enzymes that are crucial for breaking down organic matter and facilitating the global cycles of carbon (C), phosphate (P), and nitrogen (N). These enzymes also serve as indicators of soil health and fertility (Daunoras et al., 2024). Soil extracellular enzymes serve as catalysts and mediators in a variety of biochemical processes occurring in soil, including nutrient mineralization, cycling, decomposition, and the formation of soil organic matter (Sudhakaran and Ravanachandar, 2020). Glycosidase, specifically αgalactosidase, is an enzyme that catalyzes the hydrolysis of disaccharides, α-Dgalatopyranosides in soil (Zhang et al., 2020). N-acetyl-β-D-glucosaminidase and asparaginase accelerate the conversion of asparagine into aspartic acid and NH3 and break down chitooligosaccharides by hydrolysis (Hill et al., 1967; Mega et al., 1972; Parham and Deng, 2000). This has a comprehensive impact on the process of N mineralization and leads to an enhanced uptake of N by plants (Turner et al., 2002). β-glucosidase is an enzyme that plays a vital part in the carbon cycle by breaking down small carbohydrates, which serve as the main energy sources for soil microbes (Nannipieri et al., 2011). Nitrate reductases (NR) play an essential role in the nitrogen cycle by converting nitrate into nitrite (Sibevieh et al., 2021). Phosphomonoesterase plays a vital part in the biogeochemical cycling of P by acting as a catalyst for the hydrolysis of phosphate monoesters, leading to the formation of free phosphate, which is necessary for biological absorption (Caldwell, 2005). Phosphatases solubilize insoluble cation-bound P complexes that are not soluble, making them accessible for plant absorption (Yokoyama *et al.*, 2018; Turner and Wright, 2014).

Ndlovu *et al.* (2023) studied the enzyme activity in both the rhizosphere and non-rhizosphere soils of *E. natalensis*. The findings indicated that the activities of β -D-glucosaminidase and acid phosphatase enzymes were similar in both the rhizosphere and non-rhizosphere soils. The author also found elevated nitrate reductase enzyme activity in the rhizosphere relative to the non-rhizosphere. Furthermore, they observed elevated alkaline phosphatase activity in the non-rhizosphere relative to the rhizosphere. The enzyme activity of β -D-glucosaminidase, nitrate reductase and phosphatases (acid and alkaline) in the rhizosphere and non-rhizosphere soils of Rhebu and Oceanview were not statistically significant, according to the findings of a different study that was conducted on *E. villosus* (Motsomane *et al.*, 2024).

References

Ahern, C.P. and Staff, I.A. 1994. Symbiosis in cycads: The origin and development of coralloid roots in *Macrozamia communis* (Cycadaceae). *American Journal of Botany*, 81(12): 1559-1570.

Álvarez-Yépiz, J.C., Búrquez, A., Martínez-Yrízar, A. and Dovciak, M. 2019. A trait-based approach to the conservation of threatened plant species. *Oryx*, 53(3): 429-435.

Bamigboye, S.O., Tshisikhawe, P.M. and Taylor, P.J. 2017. Detecting threat to *Encephalartos transvenosus* (Limpopo cycad) through indigenous knowledge in Limpopo province, South Africa. *Indian Journal of Traditional Knowledge*, 16(2): 251-255.

Bayliss, J., Burrow, C., Martell, S. and Staude, H. 2009. An ecological study of the relationship between two living fossils in Malawi: the Mulanje Tiger Moth (*Callioratis grandis*) and the Mulanje cycad (*Encephalartos gratus*). *African Journal of Ecology*, 48(2): 472-480.

Benjelloun, J., Taoufyq, A., El Abidine Triqui, Z., Alami, Q.L., Layachi, R., Smouni, A., Bouzroud, S. and Guedira, A. 2020. Improvement of in vitro germination of *Cycas revoluta* zygotic embryos using gelrite as gelling agent. *Adv. Hort. Sci*, 34(3): 349-354.

Bland, L.M., Keith, D.A., Miller, R.M., Murray, N.J. and Rodríguez, J.P. 2017. Guidelines for the application of IUCN Red List of Ecosystems Categories and Criteria, version 1.1. *International Union for the Conservation of Nature, Gland, Switzerland*.

Bonta, M., Pulido-Silva, M.T., Diego-Vargas, T., Vite-Reyes, A., Vovides, A.P. and Cibrián-Jaramillo, A. 2019. Ethnobotany of Mexican and northern central American cycads (Zamiaceae). *Journal of Ethnobiology and Ethnomedicine*, 15: 1-34.

Caldwell, B.A. 2005. Enzyme activities as a component of soil biodiversity: A review. *Pedobiologia*, 49(6): 637-644.

Calonje, M., Stevenson, D.W. and Stanberg, L. 2019. The world list of cycads, online edition. *Recuperado el*, 10.

Chang, A.C.G., Chen, T., Li, N. & Duan, J. 2019. Perspectives on endosymbiosis in coralloid roots: association of cycads and cyanobacteria. *Frontiers in Microbiology*, 10: 1888.

Chang, D.C., Grobbelaar, N. and Coetzee, J. 1988. SEM observations on cyanobacteria-infected cycad coralloid roots. *South African Journal of Botany*, 54(5): 491-495.

Condamine, F.L., Nagalingum, N.S., Marshall, C.R. and Morlon, H. 2015. Origin and diversification of living cycads: A cautionary tale on the impact of the branching process prior in Bayesian molecular dating. *BMC Evolutionary Biology*, 15: 1-18.

Costa, J.L., Paulsrud, P. and Lindblad, P. 1999. Cyanobiont diversity within coralloid roots of selected cycad species. *FEMS Microbiology Ecology*, 28(1): 85-91.

Daunoras, J., Kačergius, A. and Gudiukaitė, R. 2024. Role of soil microbiota enzymes in soil health and activity changes depending on climate change and the type of soil ecosystem. *Biology*, 13(2): 85.

Demiray, H., Dereboylu, A.E., Bildik, S., Bülbül, K., Şenol, S.G. and Pirhan, A.F. 2017. In vitro seed germination of *Cycas revoluta* Thunb. *Bangladesh Journal of Botany*, 46(2): 559-564.

Department of Environmental Affairs. 2013. National strategy and action plan for the management of cycads.

Donaldson, J.S. 2008. South African *Encephalartos* species. In *NDF workshop case studies:* Case study, 4: 3-6.

Donaldson, J.S., Hill, K.D., and Stevenson, D.W. 2003. Cycads of the world: An overview. In *Cycads: Status survey and conservation action plan*. Edited by Donaldson, J.S. Switzerland: IUCN/SSC Cycad Specialist Group, 3-8.

Gehringer, M.M., Pengelly, J.J., Cuddy, W.S., Fieker, C., Forster, P.I. and Neilan, B.A. 2010. Host selection of symbiotic cyanobacteria in 31 species of the Australian cycad genus: *Macrozamia* (Zamiaceae). *Molecular Plant-Microbe Interactions*, 23(6): 811-822.

Goode, D. 1989. Cycads of Africa. Cape Town: Struik Group.

Grobbelaar, N. 2004. Cycads with special reference to the southern African species. Pretoria: author.

Grobbelaar, N., Meyer, J.J.M. and Burchmore, J. 1989. Coning and sex ratio of *Encephalartos transvenosus* at the Modjadji Nature Reserve. *South African Journal of Botany*, 55(1): 79-82.

Grobbelaar, N., Scott, W.E., Hattingh, W. and Marshall, J. 1987. The identification of the coralloid root endophytes of the southern African cycads and the ability of the isolates to fix dinitrogen. *South African Journal of Botany*, 53(2): 111-118.

Grove, T.S., O'connell, A.M. and Malajczuk, N. 1980. Effects of fire on the growth, nutrient content and rate of nitrogen fixation of the cycad *Macrozamia riedlei*. *Australian Journal of Botany*, 28(3): 271-281.

Gutiérrez-García, K., Bustos-Díaz, E.D., Corona-Gómez, J.A., Ramos-Aboites, H.E., Sélem-Mojica, N., Cruz-Morales, P., Pérez-Farrera, M.A., Barona-Gómez, F. and Cibrián-Jaramillo, A. 2018. Cycad coralloid roots contain bacterial communities including cyanobacteria and *Caulobacter spp.* that encode niche-specific biosynthetic gene clusters. *Genome Biology and Evolution*, 11(1): 319-334.

Hashidoko, Y., Nishizuka, H., Tanaka, M., Murata, K., Murai, Y. and Hashimoto, M. 2019. Isolation and characterization of 1-palmitoyl-2-linoleoyl-sn-glycerol as a hormogonium-inducing factor (HIF) from the coralloid roots of *Cycas revoluta* (Cycadaceae). *Scientific reports*, 9(1): 4751.

Hendricks, J.G. 1987. The Gondwanan Cycas. Encephalartos, 10: 24-25.

Hill, R.S., Hill, K.E., Carpenter, R.J. and Jordan, G.J. 2019. New macrofossils of the Australian cycad *Bowenia* and their significance in reconstructing the past morphological range of the genus. *International Journal of Plant Sciences*, 180(2): 128-140.

Hill, K.D. 2004. Character evolution, species recognition and classification concepts in the Cycadaceae. In *Cycad classification: concepts and recommendations*. Wallingford: CABI Publishing. 22-44.

Hill, J.M., Roberts, J., Loeb, E., Khan, A., MacLellan, A. and Hill, R.W. 1967. L-asparaginase therapy for leukemia and other malignant neoplasms: Remission in human leukemia. *Jama*, 202(9): 882-888.

Hoffmann, M., Hilton-Taylor, C., Angulo, A., Böhm, M., Brooks, T.M., Butchart, S.H., Carpenter, K.E., Chanson, J., Collen, B., Cox, N.A. and Darwall, W.R. 2010. The impact of conservation on the status of the world's vertebrates. *Science*, 330(6010): 1503-1509.

Jones, D. 1993. Cycads of the world: Ancient plants in today's landscape. Chatswood: Reed.

Kaviani, B., Mahtabi, H., Mehrvarz, S.S. and Ghaziani, M.V.F. 2014. Identification of male and female *Cycas revoluta* Thunb. before maturity using morphological and anatomical features.

Lindblad, P. 2009. Cyanobacteria in symbiosis with cycads. *Prokaryotic Symbionts in Plants*, 8: 225-233.

Lindblad, P. and Bergman, B. 1990. The cycad-cyanobacteria symbiosis. In *Handbook of symbiotic cyanobacteria*. Edited by Rai, A.N. Boca Raton: CRC Press, 137-159.

Mankga, L.T., Yessoufou, K. & Chitakira, M. 2020a. On the origin and diversification history of the African genus *Encephalartos*. *South African Journal of Botany*, 130: 231-239.

Mankga, L.T., Yessoufou, K., Mugwena, T. and Chitakira, M. 2020b. The cycad genus *Cycas* may have diversified from Indochina and occupied its current ranges through vicariance and dispersal events. *Frontiers in Ecology and Evolution*, 8: 44.

Marler, T.E. and Calonje, M. 2020. Two cycad species affect the carbon, nitrogen, and phosphorus content of soils. *Horticulturae*, 6(2): 24.

Marler, T.E., Griffith, M.P. and Krishnapillai, M.V. 2020. Height increment of *Cycas micronesica* informs conservation decisions. *Plant Signaling & Behavior*, 15(12): 1830237.

Martínez, E.T., Martínez, J.F. and Bonta, M. 2020. Toxic harvest: Chamal cycad (*Dioon edule*) food culture in Xi'Iuy indigenous communities of San Luis Potosi, Mexico. *Journal of Ethnobiology*, 40(4): 519-534.

Mega, T., Ikenaka, T. and Matsushima, Y. 1972. Studies on N-acetyl-β-D-glucosaminidase of *Aspergillus oryzae*: II. Substrate specificity of the enzyme. *The Journal of Biochemistry*, 71(1): 107-114.

Motsomane, N., Suinyuy, T.N., Pérez-Fernández, M.A. and Magadlela, A. 2024. Exploring the influence of ecological niches and hologenome dynamics on the growth of *Encephalartos villosus* in scarp forests. *Soil Systems*, 8(1): 21.

Nannipieri, P., Giagnoni, L., Landi, L. and Renella, G. 2011. Role of phosphatase enzymes in soil. In *Phosphorus in action: Biological processes in soil phosphorus cycling*. Edited by Bünemann, E., Oberson, A. and Frossard, E. Berlin: Springer, 26: 215-243.

Ndawonde, B.G., Zobolo, A.M., Dlamini, E.T. and Siebert, S.J. 2007. A survey of plants sold by traders at Zululand muthi markets, with a view to selecting popular plant species for propagation in communal gardens. *African Journal of Range and Forage Science*, 24(2): 103-107.

Ndlovu, S., Suinyuy, T.N., Pérez-Fernández, M.A. and Magadlela, A. 2023. *Encephalartos natalensis*, Their nutrient-cycling microbes and enzymes: a story of successful tradeoffs. *Plants*, 12(5): 1034.

Nowak, K. and Lee, P.C. 2011. Consumption of cycads *Encephalartos hildebrandtii* by Zanzibar red colobus *Procolobus kirkii*. *Journal of East African Natural History*, 100(1&2): 123-131.

Osborne, R., Calonje, M.A., Hill, K.D., Stanberg, L. and Stevenson, D.W. 2012. The world list of cycads. *Memoirs of the New York Botanical Garden*, 106: 480-510.

Osborne, R., 1990. A conservation strategy for the South African cycads. *South African Journal of Science*, 86(5): 220.

Parham, J.A. and Deng, S.P. 2000. Detection, quantification and characterization of β -glucosaminidase activity in soil. *Soil Biology and Biochemistry*, 32(8-9): 1183-1190.

Prado, A., Cervantes-Díaz, F., Perez-Zavala, F.G., González-Astorga, J., Bede, J.C. and Cibrián-Jaramillo, A. 2016. Transcriptome-derived microsatellite markers for *Dioon* (Zamiaceae) cycad species. *Applications in Plant Sciences*, 4(2): 1500087.

Radha, P. and Singh, R. 2008. Ethnobotany and conservation status of Indian *Cycas* species. *Encephalartos*, 93(1): 15-21.

Raimondo, D., Staden, L.V., Foden, W., Victor, J.E., Helme, N.A., Turner, R.C., Kamundi, D.A. and Manyama, P.A. 2009. *Red list of South African plants 2009*. South African National Biodiversity Institute.

Raimondo, D.C. and Donaldson, J.S. 2003. Responses of cycads with different life histories to the impact of plant collecting: simulation models to determine important life history stages and population recovery times. *Biological Conservation*, 111(3): 345-358.

Ravele, A.M. and Makhado, R.A. 2009. Exploitation of *Encephalartos transvenosus* outside and inside Mphaphuli cycads nature reserve, Limpopo Province, South Africa. *African Journal of Ecology*, 48(1): 105-110.

Schneider, D., Wink, M., Sporer, F. and Lounibos, P. 2002. Cycads: Their evolution, toxins, herbivores and insect pollinators. *Naturwissenschaften*, 89: 281-294.

Sibevieh, S., Salehghamari, E., Amoozegar, M.A., Zolfaghari, M.R., Soleimani, M., Nasrollahzadeh, Z. and Eftekhari Yazdi, S. 2021. Molecular screening of nitrate reductase enzyme in native halophilic bacteria of Iran. *Journal of Cell and Molecular Research*, 13(1): 19-26.

Staude, H. 2001. African cycads and moths: An intricate relationship of ancient origin. *Cycads of Africa*, 1: 307-311.

Stiles, D. 1997. Cycad conservation. Kenya Past and Present, 29(1): 21-25.

Sudhakaran, M. and Ravanachandar, A. 2020. Role of soil enzymes in agroecosystem. *Biotica Ressearch Today*, 2(6): 443-444.

Turner, B.L. and Wright, S.J. 2014. The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest. *Biogeochemistry*, 117: 115-130.

Turner, B.L., Baxter, R. and Whitton, B.A. 2002. Seasonal phosphatase activity in three characteristic soils of the English uplands polluted by long-term atmospheric nitrogen deposition. *Environmental Pollution*, 120(2): 313-317.

Van Wyk, B.E., van Oudtshoorn, B. and Gericke, N. 2009. *Medicinal Plants of South Africa*. Pretoria: Briza.

Vovides, A.P., Pérez-Farrera, M.A. and Iglesias, C. 2010. Cycad propagation by rural nurseries in Mexico as an alternative conservation strategy: 20 years on. *Kew Bulletin*, 65: 603-611.

Vovides, A.P. 1990. Spatial distribution, survival, and fecundity of *Dioon edule* (Zamiaceae) in a tropical deciduous forest in Veracruz, Mexico, with notes on its habitat. *American Journal of Botany*, 77(12): 1532-1543.

Webb, D.T. and Osborne, R. 1989. Cycads. In Biotechnology in agriculture and forestry: *Trees II*. Edited by Bajaj, Y.P. Berlin: Springer, 5: 591-613. Doi:10.1007/978-3-642-61535-1_31

Whitaker, M.R. and Salzman, S. 2020. Ecology and evolution of cycad-feeding Lepidoptera. *Ecology Letters*, 23(12): 1862-1877.

Whittaker W.G. 2004. The biology and systematics of Bowenia Hook ex. Hook f. (Stangeriaceae: Bowenioideae). Master's Dissertation, James Cook University.

Whitelock, L.M. 2002. *The cycads timber press*. Portland: Oregon.

Williams, V.L., Cousins, S.R. and Witkowski, E.T.F. 2013. From fragments to figures: Estimating the number of *Encephalartos* stems in a muthi market. *South African Journal of Botany*, 93: 242-246.

Yamada, S., Ohkubo, S., Miyashita, H. and Setoguchi, H. 2012. Genetic diversity of symbiotic cyanobacteria in *Cycas revoluta* (Cycadaceae). *FEMS Microbiology Ecology*, 81(3): 696-706.

Yessoufou, K., Daru, B.H., Tafirei, R., Elansary, H.O. and Rampedi, I. 2017. Integrating biogeography, threat and evolutionary data to explore extinction crisis in the taxonomic group of cycads. *Ecology and Evolution*, 7(8): 2735-2746.

Yessoufou, K., Bamigboye, S.O., Daru, B.H. and Van der Bank, M. 2014. Evidence of constant diversification punctuated by a mass extinction in the African cycads. *Ecology and Evolution*, 4(1): 50-58.

Yokoyama, D., Mori, T., Wagai, R., Hiradate, S. and Kitayama, K. 2018. Characteristics of phosphorus fractions in the soils derived from sedimentary and serpentinite rocks in lowland tropical rain forests, Borneo. *Soil Science and Plant Nutrition*, 64(2): 218-221.

Zhang, L., Chen, X., Xu, Y., Jin, M., Ye, X., Gao, H., Chu, W., Mao, J. and Thompson, M.L. 2020. Soil labile organic carbon fractions and soil enzyme activities after 10 years of continuous fertilization and wheat residue incorporation. *Scientific Reports*, 10(1): 11318.

Chapter 3

EFFECTS OF FIRE ON THE POPULATION STRUCTURE OF THE AFRICAN CYCAD ENCEPHALARTOS LANATUS STAPF & BURTT DAVY (1926)

This chapter is a paper already published in the journal *Diversity* **2023**, *15*, 1075.

Doi:10.3390/d15101075

Formatted for Diversity - MDPI

Population Structure of an African Cycad: Fire May Stimulate the Coning Phenology of Encephalartos lanatus (Zamiaceae) and Also Predispose Its Cones to Damage

Memory N. Sigasa ¹, Kowiyou Yessoufou ^{2,*}, Anathi Magadlela ³, Wilfred Otang-Mbeng ⁴ and Terence N. Suinyuy ^{4,*}

¹ School of Agricultural Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Mbombela 1200, South Africa; 201716267@ump.ac.za

² Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Johannesburg 2006, South Africa

³ School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu-Natal (Westville Campus), Durban 4000, South Africa; anathimagadlela@icloud.com or magadlelaA@ukzn.ac.za

⁴ School of Biology and Environmental Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Mbombela 1200, Wilfred.mbeng@ump.ac.za

^{*}Correspondence: kowiyouy@uj.ac.za (K.Y.); tsuinyuy@gmail.com or Terence.Suinyuy@ump.ac.za (T.N.S.)

Abstract

Cycads are the most threatened group in the plant kingdom. Fire is identified as one of the

major factors heightening cycad extinction risk. However, compared to South American

cycads, we know little about how fire negatively affects the demography of African cycads.

Here, we collected a snapshot of demographic data on the largest known population of South

Africa's cycad species, *Encephalartos lanatus*, in unburnt and regularly burnt habitats. We

fitted several statistical models to investigate the effects of fire on the population structure of

E. lanatus. First, we found that the population follows a 'J' structure, with more adults than

any other life stage. Contrary to popular belief, this 'J' structure may not necessarily imply that

the future of the population is at risk, given that E. lanatus is a long-lived species. Second, we

found that the abundance of adults explains 25% of the abundance of seedlings but does not

predict the abundance of suckers, perhaps suggesting the adults ensure preferential seedlings

rather than clonal recruitment. Third, irrespective of life stages, the subpopulation in fire-prone

habitats is, in terms of size, proportionately lower than the subpopulation in unburnt areas,

suggesting that fire may negatively affect the dynamic of the population. However, fire is not

linked to differences in sex ratio across the population; not only do fire-prone subpopulations

have more cones, but they also tend to have more damaged cones than unburnt populations. In

general, although we raised some limitations of the present study, we also inferred that fire may

shape the observed 'J' structure of the population of E. lanatus, but, contrary to traditional

belief, the 'J' structure is not enough to raise concern about the future of the population. A

population dynamics study is required to determine if the future of the population is at risk.

Keywords: African cycads; fire; population structure

31

3.1 Introduction

In the plant kingdom, cycads, with their unique evolutionary history (Nagalingum *et al.*, 2011; Yessoufou et al., 2014; Condamine et al., 2015) and unique shared morphological features between ferns and angiosperms (Norstog and Nicholls, 1997; Brenner et al., 2003), are the most threatened taxonomic group. Once widely distributed, particularly in the Mesozoic era (Hermsen et al., 2009), cycads now exhibit a patchy distribution in tropical and subtropical regions (Nagalingum et al., 2011). This restricted geography predisposes them to a high risk of extinction, whereby 70% of all cycad species are threatened with high extinction risk (Mankga and Yessoufou, 2017; Yessoufou et al., 2017). It is well-established that extinction risk is linked to ecological and biological factors (Sodhi et al., 2008; Yessoufou et al., 2012) as well as evolutionary history (Davies et al., 2011; Daru et al., 2013). Specifically, for cycads, nine threats were recently identified, including, in order of importance, habitat loss, overcollection, fire, reproduction failure, deforestation, medicinal usage, grazing, flood/drought, and alien invasive species (Mankga and Yessoufou et al., 2017). The question then arises: How does each of these nine factors heighten the extinction risk of cycads? Fire is the third-largest reported threat to cycads (Mankga and Yessoufou et al., 2017). Fire, through various aspects, e.g., frequency, intensity, duration, and timing, shapes the population structure of several long-lived species by influencing several demographic processes, e.g., survival, fecundity, and growth (Ahlgren and Kozlowsila, 1974; Bazzaz, 1984; Whelan, 1995). To survive the effects of fire, these species resprout (Pausas et al., 2018). However, since surface buds can easily be killed by the heat produced by fire, plants have to keep their buds away from fire heat if they are to survive (Pausas et al., 2018). Therefore, the ability of plants to resprout depends on the locations of their buds, e.g., above-ground (thick insulating barks; (Pausas, 2017)) or below-ground (roots, root crown, rhizomes, etc.; (Pausas et al., 2016)), using soil as a heat insulator (Auld and Bradstock, 1996). In summary, fire plays positive roles by stimulating reproduction, seed release and germination, and/or vegetative growth of several species (Gill, 1975, 1981; Hartnett and Richardson, 1989; Brewer and Platt, 1994; Spier and Snyder, 1998). Fire is required for the germination of the seeds of some savanna species (Christensen, 1977) and seedling recruitment (Menges, 1995).

However, existing studies of the effects of fire on cycads are old, and most of these studies focused on New World cycads. These studies reveal that fire stimulates leaf formations in the Australian cycad *Macrozamia riedlei* (Baird, 1977; Dolva and Scott, 1982), in *Cycas media*

(Ornduff, 1991), as well as coning phenology in *Macrozamia communis* (Baird, 1977; Beaton, 1982; Pate, 1993). Coning phenology and leaf production were also reported to be stimulated in the African cycad *Encephalartos transvenous* in South Africa (Grobbelaar *et al.*, 1989). Fire is also linked to seedling recruitment in the population of *Cycas armstrongii* (Watkinson and Powell, 1997). Furthermore, fire stimulates the fixation of specific nutrients by cycads. For example, Grove *et al.* (1980) reported that in the leaves of the cycad *Macrozamia riedlei*, there were significantly higher concentrations of nitrogen and phosphorus after fire. The same study reported significantly higher concentrations of phosphorus, potassium, and zinc in coralloid roots of the same cycad species after fire (Grove *et al.*, 1980). In total, 35 kg of nitrogen per hectare was fixed by *Macrozamia riedlei* in 5-7 years of prescribed fires (Grove *et al.*, 1980). In the absence of fire, higher concentrations of calcium, sodium, and chlorine in the leaves of *Macrozamia riedlei* were reported (Grove *et al.*, 1980). Cycads, in particular, are adapted to fire-prone ecosystems (Tang, 1990; Griffiths *et al.*, 2005; Preece *et al.*, 2007; Clarke *et al.*, 2013). How, then, could fire be listed among the forces that threaten the survival of cycads?

We set two hypotheses to explain how fire may predispose cycads to extinction. Our first hypothesis is that some important life stages for the population growth of a given species may be more vulnerable to fire effects, thus stressing out the population dynamics of the species. For example, 33-63% of seedling deaths in South Africa's population of *Encephalartos* latifrons were related to fire, while other life stages of the same species showed stronger resilience to fire (Swart et al., 2019). An early study reported fire-driven mortality of up to 50% of adults of Australia's Cycas armstrongii (Liddle, 2004). Our second hypothesis is that fire may mediate damage to cones (the cycad reproductive structures), thus affecting important demographic processes, e.g., fertility, which may eventually lead to population decline that heightens the extinction risk of cycads. Evidence supporting this hypothesis was provided for South America's cycads. For example, Fawcett and Norstog (1993) linked fire to damaged cones of the genus Zamia, leading to low fecundity (Beaton, 1982), which may eventually cause the collapse of its population (Griffiths et al., 2005). Furthermore, fire seems to mediate the herbivory of cycad seeds, leading to the mortality of some adult individuals of Zamia pumila (Negrón-Ortiz and Gorchov, 2000). For example, herbivory activities of the larvae of Seirarctia echo are boosted following fire, resulting in several plants of Z. pumila being defoliated (Negrón-Ortiz and Gorchov, 2000). This defoliation led to the deaths of some adults while promoting leaf production in other life stages (Negrón-Ortiz and Gorchov, 2000). Also, the boosted activities of the herbivore Seirarctia echo led to more damaged cones and the death

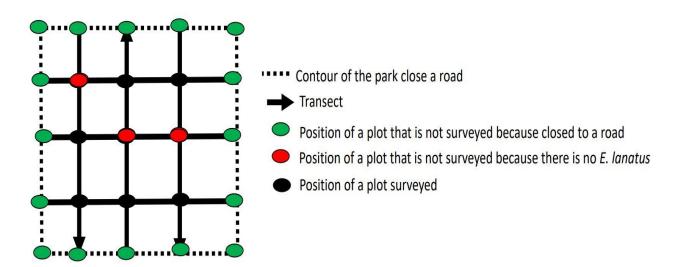
of some seeds of *Z. pumila*, thus resulting in indirect negative effects of fire on the reproduction of this cycad species (Negrón-Ortiz and Gorchov, 2000). However, in comparison with the South American cycads, we do not know much about how Africa's populations of cycads interact with fire. The cycad genus *Encephalartos*, with its 65 species, is endemic to Africa (Yessoufou *et al.*, 2014; Yessoufou *et al.*, 2017), with South Africa being its centre of diversity (Yessoufou *et al.*, 2017).

The aim of the present study is to investigate fire in relation to the demography of an African cycad population, *Encephalartos lanatus* Stapf & Burtt Davy (1926), in South Africa. We tested two hypotheses: (i) some important life stages for population growth of this species may be more vulnerable to fire; (ii) fire mediates damage to cones, thus affecting important demographic processes.

3.2 Materials and Methods

3.2.1 Locality and Study Species

The present study on *Encephalartos lanatus* was conducted from May 2021 to September 2022 in the Botshabelo Nature Reserve, Middelburg, where the largest stands of the natural population of *E. lanatus* occur. The reserve falls within the mesic Highveld grassland bioregion and is home to several small herbivores. The landscape is a fire-prone habitat that experiences annual fires, aiming to promote grass growth for the herbivores. Because of this regular burning, *E. lanatus* is exposed to frequent annual winter fires, which may affect the population structure and the fecundity of the plants.


Encephalartos lanatus is an endemic cycad to South Africa and occurs in the Highveld grasslands and sandstone outcrops around the catchment area of the Olifants River in Middelburg, the Witbank and Bronkhorstspruit districts of Mpumalanga, and the Gauteng provinces of South Africa (Giddy, 1984; Goode, 1989). In its native geography, fire occurs in winter, which is dry with temperatures ranging between -6 and 22°C, and summer temperatures vary from 9 to 32°C. The area is characterized by thunderstorms with summer rainfall of between 500 mm and 625 mm (Giddy, 1984).

Encephalartos lanatus is a medium- to fairly large-sized cycad that grows individually and in clumps with an erect or reclining stem of 1-3 m tall and 25 cm in diameter (Giddy, 1984; Goode, 1989). E. lanatus is a frost-hardy, fire-adapted, and drought-resistant plant. Its population size is estimated to be >10,000 mature individuals, and the species is classified as "near threatened" according to IUCN criteria (Osborne, 1995; Donaldson, 2003). The

immature leaves of *E. lanatus* are hairy (wool-like), greyish, and have a curled tip, while the grown leaves are greyish-green in colour and measure 60 to 80 cm long (Osborne *et al.*, 2012). The plants' cones in the winter and immature male and female cones are dense and woolly and turn yellow as they mature (Giddy, 1984).

3.2.2 Data Collection

During the years 2021 and 2022, we measured the demographic data of E. lanatus in the largest known natural population of the species. First, transects were defined following different directions: north-> south-> north. Second, along each transect, plots were set up such that two consecutive plots were separated by at least 7 m. Twenty plots were established in total. Next, plots close to roads or the edge of the reserve were not considered to avoid edge effects (green plots in Figure 1). Plots that fall in a position where there is no E. lanatus (red plots in Figure 1) were also avoided. Finally, only plots that were away from the roads or the reserve's edges and which fell at positions where E. lanatus is found were surveyed (black plots in Figure 1). Each of those plots was 30 m \times 20 m in the accessible yearly burnt and unburnt sections of the Botshabelo Nature Reserve. Individuals of E. lanatus were categorized as burnt based on signs of recent fires, which include scorched leaves, a black trunk/stem, and debris and soot lying around the plant. The unburnt individuals did not have any of the characteristics recorded in the burnt section, and there was no burn debris from the surrounding vegetation. In total, 20 plots (10 in the burnt and 10 in the unburnt sections) were set, which covered the entire accessible population.

Figure 1. Graphical representation of the design of data collection. The minimum distance between two consecutive plots is 7 m.

In each plot, we recorded the number of *E. lanatus* and the number of stems per individual plant. The plants were categorized into adults, juveniles, suckers (sprouts), and seedlings. Following Hall and Walter (2013), plants on which the longest leaf measured from petiole base to farthest leaflet tip was ≤ 0.5 m were classified as seedlings, while those with the longest leaf measuring >0.5 m and ≤ 1 m were grouped as juveniles, and plants with a leaf length of ≥ 1 m were grouped as adults. Adult plants were sexed whenever possible based on the type of cones they bore and on other indicators like old cone scales and stalks. Those adults for which the determination of sex was not possible were classified as "undetermined". Plants with the status of 'Undetermined sex' were not included in the analysis of sex ratio in this study. Adult plants, sprouts, and juveniles had their stem height measured with a measuring tape.

All cones on plants in the 20 plots were counted, sexed, and assessed for damage. Male cones were considered damaged if parts of the cones were removed or completely broken off from the plant, and also if they were partially burnt by fire or some sporophylls were removed and the remaining cones were on the plant. Female cones were considered to be damaged when immature ovules/seeds were completely or partially removed from the cones and if an immature cone was burnt or completely or partially broken off from the plant. All the collected data are presented in Table S1.

3.2.3 Data Analysis

All the analyses were conducted in R (see R scripts used as Supplemental Information).

Population structure (Tables S1 and S2).

To assess the distribution of life stages across the population, we fitted a simple ANOVA, using the proportion of individuals in each stage (log-response) as the response variable and life stages as the predictor (data in Table S1). To determine the structure of the population, we plotted a box plot with a trend line. We further analyzed the population structure by exploring whether the abundance of one life stage predicts that of another stage (data in Table S2). To this end, we fitted a negative binomial Generalized Linear Model since the response variable is count data (abundance); a negative binomial was preferred to account for overdispersion.

Effects of fire on population structure.

We investigated the effects of fire in four ways. First, we tested whether the proportion of each life stage varied between burnt and unburnt plots in the habitat (data in Table S2). This was performed by fitting an ANCOVA, using proportion as the response variable and life stages

and fire occurrence as the co-variates. Second, we tested the effects of fire on cone production (data in Table S2) by fitting a simple ANOVA, using the number of cones produced as the response variable and the fire occurrence (burnt and unburnt plots) as the predictor. Third, we tested whether fire predicts cone sex ratio distribution (data in Table S2) by fitting a simple ANOVA with the cone sex ratio as the response variable and fire occurrence as the predictor. Finally, we tested whether fire predicts the number of damaged cones (cone herbivory by baboons; data in Table S3). This was conducted by fitting a negative binomial Generalized Linear Model using the number of cones as the response variable and fire and states of the cones (damaged and undamaged) as predictors.

3.3 Results

3.3.1 Population Structure

First, we found that the population of *E. lanatus* follows a 'J' structure (Figure 2) with a significantly higher proportion of adults than any other life stage (ANOVA, DF = 3, F = 42.82, p < 0.001; Figure 2). In this structure, juveniles are the least represented in proportion. We further found no link between the abundance of seedlings and suckers, juveniles and suckers, adults and suckers, or between adults and juveniles (p > 0.05). However, we found that juveniles and adults explain 48% ($\beta = 0.09 \pm 0.025$, p < 0.001) and 25% ($\beta = 0.12 \pm 0.05$, p = 0.01) of the changes in the abundance of seedlings, respectively.

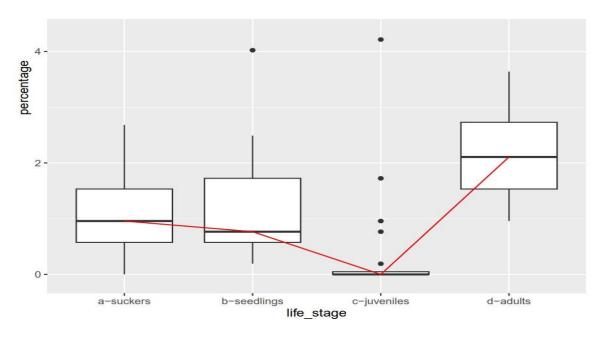


Figure 2. Population structure of *Encephalartos lanatus*

3.3.2 Effects of Fire on Population Structure

We found that irrespective of the life stages, the population in fire-prone habitats is proportionately lower than the population in unburnt areas (ANCOVA, DF = 1, F value = 3.603, p = 0.06; Figure 3), although this difference is only marginal, suggesting that fire may negatively affect the dynamic of the population.

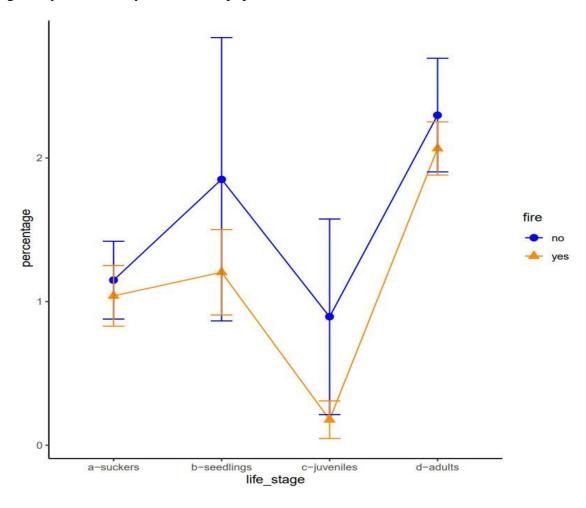
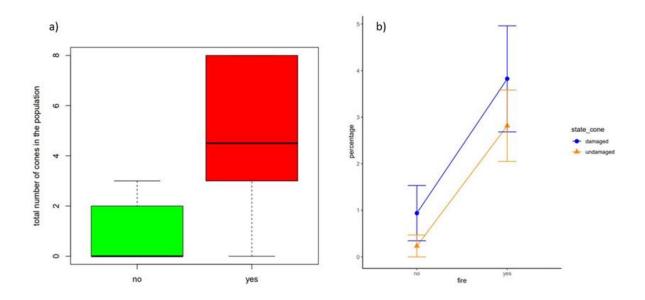



Figure 3. Distribution of life stages in relation to fire occurrence.

To understand the role of fire, we investigated whether fire affects the reproductive organs, i.e., the cones of the species. We found that fire is not linked to differences in sex ratio across the entire population (ANOVA, DF = 1, F = 0.013, p = 0.912). However, we found that fire-prone populations not only possess more cones (ANOVA, DF = 1, F = 13.38, p = 0.0018; Figure 4a), but they also tend to have more damaged cones than unburnt populations (negative GLM; β = 1.77 \pm 0.61, p = 0.0035; Figure 4b).

Figure 4. Effects of fire on the cone phenology of *Encephalartos lanatus*. (a) Comparison of the total cones between fire-prone areas and unburnt areas; (b) comparison of the state of cones (damaged versus undamaged) between fire-prone and unburnt areas.

3.4 Discussion

In the face of the ongoing biodiversity crisis (Ceballos et al., 2015), especially the cycad diversity crisis (Daru et al., 2013; Yessoufou et al., 2017), it is critically important to understand the dynamics of cycad populations. In the present study, we found that the population of E. lanatus follows a 'J' structure, suggesting that we have only a few seedlings and juveniles and a larger proportion of adults. This structure, a priori, is a concern for the future of the population of E. lanatus, which is the largest known population of this species in Africa. It is, a priori, a concern because this structure departs from the reverse J-shaped structure (see (Vovides, 1990) for cycad genus *Dioon*), i.e., the negative exponential growth model traditionally believed to characterize old-growth forests in an equilibrium state (Hough, 1932; Meyer and Stevenson, 1943; Meyer, 1952; Lorimer, 1980; Kimmins, 1987; Leak, 1996; Veríssimo et al., 1992; Dauber et al., 2005; Cancino and Gadow, 2002; Zimmerman and Kormos, 2012). From an ecological perspective, the reverse J-growth model implies that strong seedling recruitment is a prerequisite to ensuring positive population growth (FAO, 1994; Ashton and Macintosh, 2002; Bosire et al., 2008). Also, ecologically, it implies equal mortality rates across all life stages in a population. The 'J' structure that we found in our study site, therefore, implies a disproportionately higher mortality rate for early life stages (e.g., seedlings and juveniles).

However, the J-shaped trajectory that we found for *E. lanatus* may not necessarily predict negative growth for its population. The reason is that the traditional belief in the reverse J-growth trajectory as indicative of positive growth does not take into consideration the life history of the species at hand. Such consideration is critical since long- and short-lived species respond differently to perturbations ((Silvertown *et al.*, 1993); see also Gaoue and Yessoufou (2019)). This is because long-lived species, unlike short-lived ones, invest heavily in long-term survival strategies (Morris *et al.*, 2008). According to life history theory, the survival of reproductive adults drives long-term population growth for long-lived species (Silverton *et al.*, 1993; Schmidt *et al.*, 2011; Adler *et al.*, 2014; Gaoue and Yessoufou, 2019). As such, low proportions of early life stages, such as those we found in the present study for a long-lived species like *E. lanatus*, would have limited impacts on the long-term population dynamics of this cycad species (see (Gaoue and Yessoufou, 2019)).

In contrast, low seedling survival rates may be critical in determining the short-term growth trajectory (see (Gaoue, 2016), suggesting that, in the short term, the 'J' structure that we found in this study may be a red flag, which can be quickly dismissed because long-term growth matters most. Long-term growth helps to contribute to the total biodiversity of an ecosystem when it comes to supporting a broad variety of different organisms. Considering these alternative scenarios (the 'J' structure may or may not be a concern), there is a need for a population dynamics study to clarify whether the 'J' structure we found here should be considered a red flag for the largest known population of *E. lanatus*. Such a study should seek to understand which life stages, when lost or heavily perturbed, would severely impact the population dynamics of the long-lived species *E. lanatus*. See Gaoue and Yessoufou (2019) for comprehensive population dynamics.

Pending such research, we employed a basic approach for a preliminary stand on the question. We found that juveniles and adults explain 48% and 25% of the seedling subpopulations, respectively. This implies, perhaps, that the adult subpopulations are ensuring the persistence of a quarter (25%) of seedlings in the population, which is consistent with the life-history theory predictions that the survival of adults is critical for the positive growth of long-lived species. Surprisingly, adults did not predict suckers. This is surprising because adults generate suckers through vegetative or asexual reproduction. Our finding that adults predict seedlings but do not predict suckers may indicate that *E. lanatus* prefers sexual reproduction over vegetative reproduction strategies. However, a recent study demonstrated that when a sexual reproduction strategy is compromised, e.g., through intense fruit harvesting, tropical trees shift

from a sexual to a clonal reproduction strategy (Gaoue *et al.*, 2018). Our claim that sexual reproduction strategies may still be predominant in our population of *E. lanatus* over clonal or asexual reproduction would, therefore, imply that seedling recruitment in our population of *E. lanatus* may not yet be at risk.

We found that irrespective of the life stages, the fire-prone subpopulation is proportionately lower than the subpopulation in unburnt areas, suggesting that fire may negatively affect the dynamic of the population. This negative effect may be linked to perturbation of reproduction strategies (Mankga and Yessoufou, 2017) through, for example, less cone production in fireprone habitats, bias in sex ratio patterns, or substantial cone damage. For example, on bias in sex ratio patterns, Negrón-Ortiz and Gorchov (2000) reported an increase in the production of more female cones by Zamia pumila in fire-prone habitats. However, we found that fire-prone populations have more cones than not, suggesting that fire may stimulate cone phenology. Also, we found no correlation between fire and patterns of cone sex ratio across the population, suggesting that fire may not alter sex ratio patterns in a way that negatively affects the population of E. lanatus. Nevertheless, we found that fire-prone populations suffer a heavier burden of damaged cones than unburnt populations, meaning that the lower number of seedlings found in the population may be the result of more damaged cones. Negrón-Otiz and Gorchov (2000) reported that fire reduced the survival of seeds of Zamia pumila in America but did not kill seedlings. Similar evidence of the negative effects of fire was reported for other cycad genera. Swart et al. (2019) reported 33-63% of fire-driven seedling deaths in South Africa's population of *Encephalartos latifrons*, while Liddle (2004) reported a death rate of 50% for adults of Cycas armstrongii in Australia due to fire (Liddle, 2004), which at the same time stimulates seedling recruitment of the species (Watkinson and Powell, 1997).

The answer to our initial question of how fire could be listed among threatening forces to cycad survival is that fire mediates damage to cycad cones. However, based on field observations, cone damage in the population of *E. lanatus* that we study is caused by baboons and not directly by fire. Specifically, baboons prefer to attack cones in burnt habitats because it is easier for baboons to escape human attacks or other dangers in burnt habitats where visibility from a distance is higher than in unburnt habitats full of grasses, behind which humans can hide to surprise baboons (see (Eby *et al.*, 2014)). As a result of this baboon behaviour, there are more damaged cones in burnt plots than in unburnt ones.

However, there are some limitations to our investigations, which can be used to inform future studies. First, we did not explore what the net outcome of the fire effect was, that is, whether there was a net loss or gain of cones in the burnt plots when damaged by baboons. Also, we have taken a very simplistic approach to fire impacts, focusing on the dichotomy between burnt and unburnt populations. Within the life history of cycads in general, including E. lanatus, it is much more realistic to explore cycad population structures in terms of fire regimes rather than simply burnt and unburnt populations. As such, it is important to interrogate what fire regimes would likely promote population persistence, seed production, and seedling emergence, and what regimes might be detrimental in the long term in terms of population dynamics. Finally, one can interrogate the importance of the 'J' structure for the dynamics of a species, which can resprout after fire even if all above-ground biomass is removed in very high-intensity fires. As such, the interpretation of the structure as just one snapshot in time could be misleading. However, a very recent interesting study just demonstrated that, in heavily harvested ecosystems in an Amazon rainforest, a liana species, Banisteropsis caapi, boosts clonal growth to persist and ensure its survival in response to intense anthropogenic pressure, but this increased clonal growth did not prevent the population from declining (Coe and Gaoue, 2023). In the context of the present study, even though E. lanatus resprouts after fire, this is no guarantee of a positive growth of its population. In conclusion, fire has mixed effects on the population of E. lanatus: it stimulates cone production and, at the same time, creates a safe haven for baboons' attacks on the cones of E. lanatus. Therefore, a priori, keeping baboons away from the near-threatened species of E. lanatus (Donaldson, 2020) would be advisable to reduce the proportion of damaged cones. An important recommendation from this observation on the baboons is that the population, or part of the population, be fenced to exclude baboons so that one can test for the effect of baboons vs. fire on cone production. This could be a way of managing this threatened population by removing a key threat. Ecologically, baboons may help preserve E. lanatus populations by damaging their cones. Baboons may be controlling the population to ensure sustainable growth, similar to prey-predator interactions. To clarify whether the future of this population is not at risk despite the fire, a population dynamics study similar to that of Gaoue and Yessoufou (2019) is needed.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/artiicle/103390/d15101075/s1, Table S1: Number of individuals per life stage (called 'data2' in the R script); Table S2: All demographic data collected in this study (called 'data' in the R script); Table S3: Number of individuals with cone state (damaged/undamaged) in burnt versus unburnt habitats (called 'data3' in R scripts); R scripts used for data analyses are included as supplemental information.

Author Contributions: Conceptualization, M.N.S., K.Y., A.M., W.O.-M. and T.N.S.; methodology, M.N.S., K.Y. and T.N.S.; software, K.Y.; validation, K.Y. and T.N.S.; formal analysis, K.Y.; investigation, M.N.S., K.Y., A.M., W.O.-M. and T.N.S.; resources, M.N.S., K.Y. and T.N.S.; data curation, K.Y. and T.N.S.; writing-original draft preparation, M.N.S. and K.Y.; writing-review and editing, M.N.S., K.Y., A.M., W.O.-M. and T.N.S.; Visualization, K.Y.; Supervision, K.Y. and T.N.S.; project administration, K.Y and T.N.S.; funding acquisition, K.Y., A.M., W.O.-M. and T.N.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Vice Chancellor's Scholarship of the University of Mpumalanga to M.N.S., the National Research Foundation (Grant UID 129403) to T.N.S., and (Grant #SRUG22051210107) to K.Y.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: All data analyzed in this study are available with the paper as Supplemental Information.

Acknowledgments: We appreciate all the assistance received during data collection, and we thank the Mpumalanga Tourism and Parks Agency (MTPA) for granting us the permit to conduct research on *Encephalartos lanatus*. We also thank two anonymous reviewers who provided useful comments on the initial submission.

Conflicts of Interest: The authors declare no conflict of interest.

References

Adler, P.B., Salguero-Gómez, R., Compagnoni, A., Hsu, J.S., Ray-Mukherjee, J., Mbeau-Ache, C. and Franco, M. 2014. Functional traits explain variation in plant life history strategies. *Proceedings of the National Academy of Sciences*, 111(2): 740-745.

Ahlgren, C.E. and Kozlowsila, T.T. 1974. Fire and ecosystems. New York: Academic Press.

Ashton, E. and Macintosh, D. 2002. Preliminary assessment of the plant diversity and community ecology of the Sematan mangrove forest, Sarawak, Malaysia. *Forest Ecology and Management*, 166(1-3)111-129.

Auld, T.D. and Bradstock, R.A. 1996. Soil temperatures after the passage of a fire: Do they influence the germination of buried seeds? *Australian Journal of Ecology*, 21(1): 106-109.

Baird, A.M. 1977. Regeneration after fire in King's Park, Perth, Western Australia. *Journal of Royal Society of Western Australia*, 60: 1-22.

Bazzaz, F.A. 1984. Characteristics of populations in relation to disturbance in natural and manmodified ecosystems. In *Disturbance and ecosystems*. Edited by Mooney, H.A. and Godron, M. New York: Springer.

Beaton, J.M. 1982. Fire and water: Aspects of Australian aboriginal management. *Archaeology in Oceania*, 17(1): 51-58.

Bosire, J.O., Kairo, J.G., Kazungu, J., Koedam, N. and Guebas, F. 2008. Spatial and temporal regeneration dynamics in *Ceriops tagal* (Perr.) C.B. Rob. (Rhizophoraceae) mangrove forests in Kenya. *Western Indian Ocean Journal of Marine Science*, 7(1): 69-80.

Brenner, E.D., Stevenson, D.W. and Twigg, R.W. 2003. Cycads: Evolutionary innovations and the role of plant-derived neurotoxins. *Trends in Plant Science*, 8(9): 446-452.

Brewer, J.S. and Platt, W.J. 1994. Effects of fire season and herbivory on reproductive success in a clonal forb, *Pityopsis graminifolia*. *Journal of Ecology*, 82: 665-675.

Cancino, J. and Gadow, K.V. 2002. Stem number guide curves for uneven-aged forests development and limitations. In *Continuous Cover Forestry*. Edited by Gadow, K.V., Nagel, J. and Saborowwski, J. Dordrecht: Kluwer Academic Publishers, 4: 163-174.

Ceballos, G., Ehrlich, P.R., Barnosky, A.D., García, A., Pringle, R.M. and Palmer, T.M. 2015. Accelerated modern human-induced species losses: Entering the sixth mass extinction. *Science Advances*, 1(5): e1400253. Doi:10.1126/sciadv.1400253

Christensen, N.L. 1977. Fire and soil-plant nutrient relations in a pine-wiregrass savanna on the coastal plain of North Carolina. *Oecologia*, 31: 27-44.

Clarke, P.J., Lawes, M.J., Midgley, J.J., Lamont, B.B., Ojeda, F., Burrows, G.E., Enright, N.J. and Knox, K.J.E. 2013. Resprouting as a key functional trait: How buds, protection and resources drive persistence after fire. *New Phytologist*, 197(1): 19-35. Doi:10.1111/nph.12001

Coe, M.A. and Gaoue, O.G. 2023. Increased clonal growth in heavily harvested ecosystems failed to rescue ayahuasca lianas from decline in the Peruvian Amazon rainforest. *Journal of Applied Ecology*, 60(10): 2105-2117. Doi:10.1111/1365-2664.14488

Condamine, F.L., Nagalingum, N.S., Marshall, C.R. and Morlon, H. 2015. Origin and diversification of living cycads: a cautionary tale on the impact of the branching process prior in Bayesian molecular dating. *BMC Evolutionary Biology*, 15: 65. <u>Doi:10.1186/s12862-015-0347-8</u>

Daru, B.H., Yessoufou, K., Mankga, L.T. and Davies, T.J. 2013. A global trend towards the loss of evolutionarily unique species in Mangrove ecosystems. *PloS one*, 8(6): e66686.

Dauber, E., Fredericksen, T.S. and Peña, M. 2005. Sustainability of timber harvesting in Bolivian tropical forests. *Forest Ecology and Management*, 214(1-3): 294-304.

Davies, T.J., Smith, G.F., Bellstedt, D.U., Boatwright, J.S., Bytebier, B., Cowling, R.M., Forest, F., Harmon, L.J., Muasya, A.M., Schrire, B.D. and Steenkamp, Y. 2011. Extinction risk and diversification are linked in a plant biodiversity hotspot. *PLoS biology*, 9(5): e1000620.

Dolva, J.M. and Scott, J.K. 1982. The association between the mealybug, *Pseudococcus macrozamiae*, ants and the cycad *Macrozamia reidlei* in a fire-prone environment. *Journal of Royal Society of Western Australia*, 65: 33-36.

Donaldson, J.S. 2020. *Encephalartos lanatus* Stapf & Burtt Davy. National Assessment: Red list of South African plants version 2020.1.2009. Available from: http://redlist.sanbi.org/species=823-25

Donaldson, J.S. 2003. Regional overview: Africa. In *Status survey and conservation action plan, cycads: IUCN (The World Conservation Union)*. Edited by Donaldson, J.S. Gland: Cycad Specialist Group.

Eby, S.L., Anderson, T.M., Mayemba, E.P. and Ritchie, M.E. 2014. The effect of fire on habitat selection of mammalian herbivores: The role of body size and vegetation characteristics. *Journal of Animal Ecology*, 83(5): 1196-1205. Doi:10.1111/1365-2656.12221

Fawcett, P.K.S. and Norstog, K.J. 1993. *Zamia pumila* in South Florida: a preliminary report on its pollinators *R. slossoni*, a snout weevil and *P. zamiae*, a clavicorn beetle. In *The biology, structure, and systematics of the Cycadales. Proceedings of cycad*. Edited by Stevenson, D.W. and Knorstog, K.J. Milton: Palm and Cycad Society of Australia, 90: 109-120.

Food and Agriculture Organization of the United Nations. 1994. *Mangrove forest management guidelines; technical report FAO forestry*. Rome, Italy, 117: 169-191.

Gaoue, O.G. and Yessoufou, K. 2019. Strong seedling recruitment does not limit mangrove vulnerability to harvest. *Environmental Research Letters*, 14(6): 064019.

Gaoue, O.G., Gado, C., Natta, A.K. and Kouagou, M. 2018. Recurrent fruit harvesting reduces seedling density but increases the frequency of clonal reproduction in a tropical tree. *Biotropica*, 50(1): 69-73. <u>Doi:10.1111/btp.12486</u>

Gaoue, O.G. 2016. Transient dynamics reveal the importance of early life survival to the response of a tropical tree to harvest. *Journal of Applied Ecology*, 53(1): 112-119.

Giddy, C. 1984. Cycads of South Africa. Cape Town: Struik, C.

Gill, A.M. 1981. Fire adaptive traits of vascular plants. In *Fire regime and ecosystem: Proceedings of the conference, December 11-15, Honolulu, Hawaii; USDA Forest Service General Technical Report WO-26.* Edited by Mooney, H.A., Bonnicksen, J.M., Christensen, N.L. and Reiners, W.F. Washington: USDA Forest Service.

Gill, A.M. 1975. Fire and the Australian flora: A review. *Australian Forestry*, 38(1): 4-25.

Goode, D. 1989. Cycads of Africa. Cape Town: Struik Group.

Griffiths, A.D., Schult, H.J. and Gorman, J. 2005. Wild harvest of *Cycas arnhemica* (Cycadaceae): Impact on survival, recruitment and growth in Arnhem Land, northern Australia. *Australian Journal of Botany*, 53(8): 771-779. Doi:10.1071/bt04123

Grobbelaar, N.J., Meyer, J.M. and Burchmore, J. 1989. Coning and sex ratio of *Encephalartos transvenosus* at the Modjadji Nature Reserve. *South African Journal of Botany*, 55(1): 79-82.

Grove, T., O'connell, A. and Malajczuk, N. 1980. Effects of fire on the growth, nutrient content and rate of nitrogen fixation of the cycad *Macrozamia riedlei*. *Australian Journal of Botany*, 28(3): 271-281. Doi:10.1071/bt9800271

Hall, J.A. and Walter, G.H. 2013. Seed dispersal of the Australian cycad *Macrozamia miquelii* (Zamiaceae): Are cycads megafauna-dispersed "grove forming" plants?. *American Journal of Botany*, 100(6): 1127-1136.

Hartnett, D.C. and Richardson, D.R. 1989. Population biology of *Bonamia grandiflora* (Convolvulaceae): Effects of fire on plant and seed bank dynamics. *American Journal of Botany*, 76(3): 361-369.

Hermsen, E.J., Taylor, E.L. and Taylor, T.N. 2009. Morphology and ecology of the Antarcticycas plant. *Review of Palaeobotany and Palynology*, 153(1-2): 108-123. Doi:10.1016/j.revpalbo.2008.07.005

Hough, A.F. 1932. Some diameter distributions in forest stands of northwestern Pennsylvania. *Journal of Forestry*, 30(8): 933-943.

Kimmins, J.P. 1987. Forest ecology. New York: Macmillan.

Leak, W.A. 1996. Long-term structural change in uneven-aged northern hardwoods. *Forest Science*, 42(2): 160-165.

Liddle, D.T. 2004. *The Ecology of Cycas Armstrongii and Management of Fire in Australia's Tropical Savannas*. Doctoral thesis. Australia: Charles Darwin University.

Lorimer, C.G. 1980. Age structure and disturbance history of a southern Appalachian virgin forest. *Ecology*, 61(5): 1169-1184. <u>Doi:10.2307/1936836</u>

Mankga, L.T. and Yessoufou, K. 2017. Factors driving the global decline of cycad diversity. *AoB Plants*, 9(4): plx022. <u>Doi:10/.1093/aobpla/plx022</u>

Menges, E. 1995. Factors limiting fecundity and germination in small populations of *Silene regia* (Caryophyllaceae), a rare hummingbird-pollinated prairie forb. *American Midland Naturalist*, 133: 242-255.

Meyer, H.A. 1952. Structure, growth, and drain in balanced uneven-aged forests. *Journal of Forestry*, 50(2): 85-92.

Meyer, H.A. and Stevenson, D.D. 1943. The structure and growth of virgin beech-birch-maple-hemlock forests in northern pennsylvania. *Journal of Agricultural Research*, 67: 465-478.

Morris, W.F., Pfister, C.A., Tuljapurkar, S., Haridas, C.V., Boggs, C.L., Boyce, M.S., Bruna, E.M., Church, D.R., Coulson, T., Doak, D.F. and Forsyth, S. 2008. Longevity can buffer plant and animal populations against changing climatic variability. *Ecology*, 89(1): 19-25.

Nagalingum, N.S., Marshall, C.R., Quental, T.B., Rai, H.S., Little, D.P. and Mathews, S. 2011. Recent synchronous radiation of a living fossil. *Science*, 334(6057): 796-799. Doi:10.1126/science.1209926

Negrón-Ortiz, V. and Gorchov, D.L. 2000. Effects of fire season and postfire herbivory on the cycad *Zamia pumila* (Zamiaceae) in slash pine savanna, Everglades National Park, Florida. *International Journal of Plant Sciences*, 161(4): 659-669.

Norstog, K.J. and Nicholls, T.J. 1997. *The biology of the cycads*. Ithaca: Cornell University Press.

Ornduff, R. 1991. Size classes, reproductive behavior, and insect associates of *Cycas media* (Cycadaceae) in Australia. *Botanical Gazette*, 152(2): 203-207. Doi:10.1086/337880

Osborne, R., Calonje, M.A., Hill, K.D., Stanberg, L. and Stevenson, D.W. 2012. The world list of cycads. *Memoirs of the New York Botanical Garden*, 106: 480-510.

Osborne, R. 1995. The world cycad census and a proposed revision of the threatened species status for cycad taxa. *Biological Conservation*, 71(1): 1-12. <u>Doi:10.1016/0006-3207(95)91086-d</u>

Pate, J.S. 1993. Biology of the S.W Australian Cycad *Macrozamia riedlei* (Fisch. Ex Gaudich). In *the biology, structure, and systematics of the Cycadales*. Edited by Stevenson, D.W. and Norstog, K.J. Milton: Palm and Cycad Society of Australia, 125-130.

Pausas, J.G., Lamont, B.B., Paula, S., Appezzato-da-Glória, B. and Fidelis, A. 2018. Unearthing belowground bud banks in fire-prone ecosystems. *New Phytologist*, 217(4): 1435-1448.

Pausas, J.G. 2017. Bark thickness and fire regime: another twist. *New Phytologist*, 213(1): 13-15. Doi:10.1111/nph.14277

Pausas, J.G., Pratt, R.B., Keeley, J.E., Jacobsen, A.L., Ramirez, A.R., Vilagrosa, A., Paula, S., Kaneakua-Pia, I.N. and Davis, S.D. 2016. Towards understanding resprouting at the global scale. *New Phytologist*, 209(3): 945-954. Doi:10.1111/nph.13644

Preece, L.D., Duguid, A.W. and Albrecht, D.E. 2007. Environmental determinants of a restricted cycad in central Australia, *Macrozamia macdonnellii*. *Australian Journal of Botany*, 55(6): 601-607. Doi:10.1071/bt06122

Schmidt, I., Mandle, L., Ticktin, T. and Gaoue, O. 2011. What do matrix population models reveal about the sustainability of non-timber forest product harvest?. *Journal of Applied Ecology*, 48(4): 815-826.

Silvertown, J., Franco, M., Pisanty, I. and Mendoza, A. 1993. Comparative plant demography-relative importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials. *Journal of Ecology*, 81: 465-476.

Sodhi, N.S., Koh, L.P., Peh, K.S.H., Tan, H.T., Chazdon, R.L., Corlett, R.T., Lee, T.M., Colwell, R.K., Brook, B.W., Sekercioglu, C.H. and Bradshaw, C.J. 2008. Correlates of extinction proneness in tropical angiosperms. *Diversity and Distributions*, 14(1): 1-10. Doi:10.1111/j.1472-4642.2007.00398.x

Spier, L.P. and Snyder, J.R. 1998. Effects of wet-and dry-season fires on *Jacquemontia curtisii*, a south Florida pine forest endemic. *Natural Areas Journal*, 18(4): 350-357.

Swart, C., Rowswell, R., Donaldson, J. and Barker, N. 2019. Population structure and survival of the critically endangered cycad *Encephalartos latifrons* in South Africa. *South African Journal of Botany*, 127: 80-90. Doi:10.1016/j.sajb.2019.08.034

Tang, W. 1990. Reproduction in the cycad *Zamia pumila* in a fire-climax habitat: An eight-year study. *Bulletin of the Torrey Botanical Club*, 117: 368. Doi:10.2307/2996834

Veríssimo, A., Barreto, P., Mattos, M., Tarifa, R. and Uhl, C. 1992. Logging impacts and prospects for sustainable forest management in an old Amazonian frontier: The case of Paragominas. *Forest Ecology and Management*, 55(1-4): 169-199.

Vovides, A.P. 1990. Spatial distribution, survival, and fecundity of *Dioon edule* (Zamiaceae) in a tropical deciduous forest in Veracruz, Mexico, with notes on its habitat. *American Journal of Botany*, 77(12): 1532-1543.

Watkinson, A.R. and Powell, J.C. 1997. The life history and population structure of *Cycas armstrongii* in monsoonal northern Australia. *Oecologia*, 111: 341-349.

Whelan, R.J. 1995. *The ecology of fire*. United Kingdom: Cambridge University Press.

Yessoufou, K., Daru, B.H., Tafirei, R., Elansary, H.O. and Rampedi, I. 2017. Integrating biogeography, threat and evolutionary data to explore extinction crisis in the taxonomic group of cycads. *Ecology and Evolution*, 7(8): 2735-2746. Doi:10.1002/ece3.2660

Yessoufou, K., Bamigboye, S.O., Daru, B.H. and Van der Bank, M. 2014. Evidence of constant diversification punctuated by a mass extinction in the African cycads. *Ecology and Evolution*, 4(1): 50-58.

Yessoufou, K., Daru, B.H. and Davies, T.J. 2012. Phylogenetic patterns of extinction risk in the Eastern arc ecosystems, an African biodiversity hotspot. *PLoS one*, 7: e47082.

Zimmerman, B.L. and Kormos, C.F. 2012. Prospects for sustainable logging in tropical forests. *BioScience*, 62(5): 479-487.

Chapter 4

DIVERSITY OF MICROBES IN THE CORALLOID ROOTS, THEIR ACTIVITIES AND THE CONTRIBUTION OF *ENCEPHALARTOS LANATUS* TO SOIL NUTRIENT STATUS IN BOTSHABELO, MPUMALANGA, SOUTH AFRICA

Formatted for the journal Symbiosis

The impact of microbes and their associated extracellular enzymes on *Encephalartos*

lanatus thriving under harsh environmental conditions in Middelburg, Mpumalanga

Memory Sigasa¹, Anathi Magadlela^{2,4}, Wilfred Otang-Mbeng³ and Terence N. Suinyuy^{2,3*}

¹School of Agricultural Sciences, Faculty of Agriculture and Natural Sciences, University of

Mpumalanga, Mbombela 1200, South Africa

²School of Life Sciences, College of Agriculture, Engineering and Sciences, University of

KwaZulu-Natal (Westville Campus), Durban 4000, South Africa

³School of Biology and Environmental Sciences, Faculty of Agriculture and Natural Sciences,

University of Mpumalanga, Mbombela 1200, South Africa

⁴School of Biological and Agricultural Sciences, Faculty of Natural and Applied Sciences, Sol

Plaatje University, Kimberly 8301, South Africa

*Corresponding author: Terence.Suinyuy@ump.ac.za

52

Abstract

Plant development is usually dependent on the nutrition provided by minerals in the soil and the presence of microorganisms in the rhizosphere or root zone. Cycads developed coralloid roots that house N-fixing bacteria that interact with plants and play a crucial role in enhancing plant productivity and health. However, the diversity of microbes associated with cycads and knowledge of how they affect soil fertility, and the functioning of the ecosystem exist only for a few cycads. The study investigates the nutrient status of the soil and assays the soil enzyme activities of the Encephalartos lanatus rhizosphere and non-rhizosphere soils. The study further identified the nutrient-cycling microbes in the coralloid roots of E. lanatus, rhizosphere and non-rhizosphere soils. Rhizosphere soils had a significantly higher concentration of Mg and Mn than non-rhizosphere soils. In addition, both the rhizosphere and non-rhizosphere soils had significantly similar concentrations of N, P, K, Ca, Cu, Zn, pH, Acid saturation, total cation exchange, Exchangeable acidity and organic C. The N-acetyl-β-D-glucosaminidase and alkaline phosphatase were higher in the rhizosphere than in the non-rhizosphere soils, but not significantly. In contrast, acid phosphatase and nitrate reductase were significantly higher in the rhizosphere than in the non-rhizosphere soils. Specifically, ten bacteria families were identified in the E. lanatus rhizosphere, non-rhizosphere soils, and coralloid roots. However, Burkholderiaceae and Rhizobiaceae were the most dominant microbial families in both soils. The research addressed how cycads preserve the ecosystem by facilitating the cycling of P, N and C nutrients. Hence, their conservation must be given exceptional attention, owing to their crucial role in providing ecosystem services in habitats with insufficient nutrients to maintain plant growth.

Keywords: Coralloid roots; cycads; *Encephalartos lanatus*; enzymes; microbes; soil nutrients

4.1 Introduction

Cycads are gymnosperms of Permian origin that were dominant during the Mesozoic (Norstog and Nicholls, 1997). Extant cycads are today restricted to the tropics and subtropics. Encephalartos is one of the slow-growing cycads native to Africa and comprises 65 species (Griffiths et al., 2005; Yessoufou et al., 2014). According to Condamine et al. (2015), 37 Encephalartos species are endemic to South Africa. Consequently, South Africa is a significant hotspot for cycads. Cycads are unique plants because of their conservation status. They have a restricted distribution and are the most threatened plant group on Earth with over 70% of the over 300 extant cycad species threatened with extinction (Mankga and Yessoufou, 2017), mostly due to habitat loss, overcollection or poaching (for horticulture and medicinal purposes), fire and reproduction failure (Mankga and Yessoufou, 2017; Swart et al., 2019; Ndlovu et al., 2023). They have a unique evolutionary history (Nagalingum et al., 2011; Yessoufou et al., 2017) and life strategies (e.g. dioecious nature of plants, with male and female thermogenic cones that emit volatile odour and are insect-pollinated) (Terry et al., 2008). Finally, they are the only members of the gymnosperm family that produce coralloid roots, which host endophytic bacteria that fix nitrogen (N) that play a role in soil nutrient improvement (Ndlovu et al., 2023) and possibly help the plant to survive. Therefore, the conservation of cycads is of paramount significance because losing them would result in losing the vital evolutionary history and ecosystem services they offer, such as the cycling of nutrients (Ndlovu et al., 2023) and carbon (C) sequestration (Ma et al., 2009).

Cycads grow in nutrient-deficient environments (Gutiérrez-García *et al.*, 2018; Ndlovu *et al.*, 2023) and the lack of essential nutrients in the soil, particularly N and phosphorus (P), prevents plants from growing (Ågren *et al.*, 2012; Yoneyama *et al.*, 2012; Wang *et al.*, 2012; Bano and Iqbal, 2016; Matiwane *et al.*, 2019; Tariq *et al.*, 2022). For instance, P is present in the soil but not in a soluble form. As a result, the majority of the plants are not able to exploit it (Wang *et al.*, 2012; Magadlela *et al.*, 2014), because soils that are acidic and rich in cations bind it in a form that cannot be assimilated by plants (Wang *et al.*, 2012; Magadlela *et al.*, 2020; Zungu *et al.*, 2020).

Coralloid roots of cycads are host to N-fixing microorganisms like *Nostoc* (Lindblad, 2009; Gehringer *et al.*, 2010; Gutiérrez-García *et al.*, 2018; Chang *et al.*, 2019; Pecundo *et al.*, 2021). The N-fixing microbes have the ability to break down the atmospheric triple bonds utilizing the nitrogenase enzyme to convert atmospheric N into usable forms such as NH₃ and nitrate, which will promote plant development (Chang *et al.*, 2019).

Additionally, cycads benefit from the favourable impacts that bacteria have on them to survive and grow in adverse conditions (Pecundo *et al.*, 2021). Moreover, coralloid roots and their associated bacteria might have been a crucial primitive characteristic that allowed cycads to thrive and adjust to the changing environments over millions of years (Gehringer *et al.*, 2010; Gutiérrez-García *et al.*, 2018; Zheng and Gong, 2019; Motsomane *et al.*, 2023a; Ndlovu *et al.*, 2023). According to Ndlovu *et al.* (2023), these microorganisms can cycle N, fix N, and solubilize P. In addition, soil microorganisms secrete extracellular enzymes that hydrolyze and transform polymeric compounds into easily accessible nutrients for use by flora and microbes (Zungu *et al.*, 2020; Ndlovu *et al.*, 2023). These extracellular enzymes also control how nutrients like N, C and phosphate are mineralized and cycled on land (Zungu *et al.*, 2020; Khalid *et al.*, 2021; Ndlovu *et al.*, 2023).

Several studies have evaluated microbes linked with cycads' coralloid roots, rhizosphere, and non-rhizosphere soils. Gutiérrez-García *et al.* (2018) and Suárez-Moo *et al.* (2019) reported similar microbes in the coralloid roots such as *Nostoc, Rhizobium, Burkholderia* and *Bradyrhizobium* for the *Dioon* genus. An earlier study revealed that coralloid roots of 33 *Encephalartos* spp and *Stangeria eriopus* in South Africa could fix N (Grobbelaar *et al.*, 1986), which was due to the presence of the cyanobacteria dominated by *Nostoc* species (Grobbelaar *et al.*, 1987). Costa *et al.* (1999) further showed that coralloid roots of *E. natalensis* and *E. villosus* host similar cyanobionts, but each species had a diversity of cyanobionts, suggesting that the cyanobionts in the same cycads may have different functions.

Nonetheless, all these studies are confined to the correlation between *Encephalartos* species and nitrogen-fixing bacteria, without investigating their relationship with N-cycling, P-cycling and N-fixing bacteria. Furthermore, the studies did not investigate the role of these *Encephalartos* species in the enhancement of soil nutrient levels, nor did they evaluate the enzyme activities in their rhizosphere and non-rhizosphere soils. The plants that were utilized in the research projects were obtained from botanical garden collections, which do not properly represent the plants' natural habitats; consequently, it was challenging to ascertain whether the microorganisms were from the plants' natural environment or botanical gardens. The plants that are grown in botanical gardens are usually supplied with water, sprayed for pests and diseases, and given nutritional inputs in the form of fertilizers, all of which have the potential to influence the composition of the microorganisms that are present in the soils.

The most recent studies in the South African cycads *Encephalartos* species by Motsomane *et al.* (2023a, 2023b, 2024) and Ndlovu *et al.* (2023) investigated microbes associated with coralloid roots, rhizosphere and non-rhizosphere soil, and assayed soil enzyme activities of *E. natalensis* and *E. villosus* rhizosphere and non-rhizosphere soils in their natural habitats. Ndlovu *et al.* (2023) found microbes in the coralloid roots of the following genera: *Beijerinckia, Bacillus, Lysinibacillus* and *Paenibacillus* thus identified as microorganisms capable of both solubilizing P and fixing N. Ndlovu *et al.* (2023) also identified several species from the *Bacillus, Paraburkholderia* and *Caballeronia* genera as involved in cycling N. Additionally, the *Caballeronia* genus was found to be capable of P solubilization in the rhizosphere. In non-rhizosphere soils, *Phyllobacterium*, *Olivibacter, Sphingomonas* and *Bacillus* were identified as N cycling, while *Methylobacterium* and *Paraburkholderia* were identified as being involved in both P solubilization and N₂ fixation.

Motsomane *et al.* (2023a) also reported microbes in the coralloid roots, rhizosphere, and non-rhizosphere soils of *E. villosus* plants. According to Motsomane *et al.* (2023b) findings, *Lysinibacillus* and *Peribacillus* were identified as bacteria capable of solubilizing P. *Rhizobium*, *Paenibacillus* and *Enterobacter*, on the other hand were found to be N fixing microbes, and *Stenotrophomonas* is involved in N cycling in the coralloid roots (Motsomane *et al.*, 2023a). *Pseudomonas*, *paraburkholderia*, *Caballeronia* and *Burkholderia* have been identified as P-solubilizing bacteria in the rhizosphere. *Variovorax* and *Caulobacter* are involved in N-cycling (Motsomane *et al.*, 2023b). *Cupriavidus* was identified as an N-fixing bacteria. *Paraburkholderia* and *Burkholderia* were identified by the authors as N-fixing bacteria in the non-rhizosphere. In addition, *Dyella* was reported as a N-cycling bacteria. Moreover, *Variovorax* and *Paraburkholderia* were identified as microorganisms that have the ability to solubilize P and fix N. This is evidence that cycads house comparable microbial species.

Both *E. natalensis* and *E. villosus* are disturbed savanna and scarp forest cycads, respectively, but other South African cycads, such as *E. lanatus*, occur in grassland habitats that are deficient in nutrients. Similar to the disturbed savanna and scarp forest cycads, the grassland cycad *E. lanatus* may flourish in nutrient-poor soils because of their ability to develop symbiotic associations with N-fixing and other nutrient-cycling bacteria that may occur in the grassland. However, knowledge of the diversity of nutrient-cycling microbes associated with the *E.*

lanatus ecosystem and its contribution to soil nutrient improvement in nutrient-deficient grassland habitats is limited and requires investigation.

The grassland cycad in question, *E. lanatus* is indigenous to South Africa and found exclusively within the provinces of Gauteng and Mpumalanga (Sigasa *et al.*, 2023). According to Bösenberg (2022), *E. lanatus* has been reclassified as "vulnerable" based on the criteria B1ab(v)+ 2ab(v) of the International Union for Conservation of Nature (IUCN) Red List. This requires that adequate conservation measures are developed for *E. lanatus* populations in the wild to prevent them from being endangered or threatened with extinction, which may lead to a decline in important ecosystem services. On the other hand, the lack of information regarding cyanobionts that play a role in the cycling of nutrients is a significant challenge in the way of the establishment of efficient conservation and management strategies for *E. lanatus* plants.

Additionally, understanding how E. lanatus and cyanobionts interact through symbiosis coordinates with Mpumalanga's goal statement. The objective of the Mpumalanga Biodiversity Sector Plan (MBSP) of 2015 is to provide for the protection of all the species and ecosystems that are found within the province. This is accomplished through the implementation of strategies such as adaptive conservation, sustainable management, and restoration when they are required (Lötter, 2015). More importantly, the research data that is gathered from this study will contribute to the enhancement of knowledge regarding biodiversity and the improvement of ecosystem services, which is in alignment with South Africa's National Biodiversity Strategy and Action Plan (NBSAP) 2015–2025. An investigation of the role of microorganisms on E. lanatus will provide insights into the impact of the mutually beneficial relationship between microbes and E. lanatus on soil nutrient enrichment. The purpose of this study was to identify the microbes inhabiting the rhizosphere, non-rhizosphere soils and the coralloid roots of E. lanatus. Thereafter, the nutritional status of the soil was correlated with the enzyme activity of *E. lanatus* from both the rhizosphere and non-rhizosphere soils. Our main hypothesis is that the rhizosphere, non-rhizosphere soils and coralloid roots contain a diversity of microbes besides N-fixing bacteria.

4.2 Materials and Methods

4.2.1 Sites for collecting soil samples

The study was conducted in the Botshabelo Nature Reserve located in the Botshabelo Cultural Village, Middelburg District in Mpumalanga Province (coordinates are omitted due to cycads conservation concerns). The reserve lies within the mesic highveld grassland bioregion, which

experiences rainfall in summer. In Botshabelo, which is in the northern region of Middelburg, the annual rainfall ranges from 700 mm to 725 mm. The underlying geology in the area is rocky, and the dominant vegetation is *Eragrostis lehmanniana*, *Eragrostis bergiana*, *Enneapogon brachystachyus*, *Chloris virgate* and *Cynodon inompletus* grass species. The area experiences an average annual winter temperature that is approximately 15.5°C, while the average summer temperature is around 27.2°C. The area is disrupted by the presence of baboons that feed on *Encephalartos lanatus* plants and leave droppings and urine in the soil.

4.2.2 Soil sampling

Sampling was done as in previous studies by Marler and Krishnapillai (2018) and Marler and Calonje (2020) on Cycas in Guam. Sampling areas were selected randomly, and soil samples were collected on two sides of the *Encephalartos lanatus* plants. The targeted soil samples were labelled as rhizosphere soils and collected from under the canopy of *Encephalartos* lanatus, between the stem and drip line of the leaves, whereas the control soil samples were collected 5 meters away from the canopy of *Encephalartos lanatus* plants and labelled as nonrhizosphere soils. Soil from the rhizosphere and non-rhizosphere of *Encephalartos lanatus* was collected in four main compass directions: North, South, East and West. In the rhizosphere, the soil was collected around the plants at depths of 0-10 cm and 10-20 cm. To prevent harm to the subterranean stem, soil from the rhizosphere was collected at a distance of 50 cm from the plant and at the point where the leaves' canopy drip. Both the rhizosphere and the nonrhizosphere soils had 10 replicates. Before sampling, various measurements were taken, including the number of leaves, crown diameter, leaf length, stem diameter, plant height, juvenile, and seedlings. These measurements were recorded using a tape measure. The soil was sampled using a 15 cm wide hand auger and transferred into clear self-sealing plastic bags. It was then loosened and left to air dry in two of the containers that are kept at the University of Mpumalanga's farm (Mbombela Campus), South Africa. Once dried, the soil was taken to the University of Mpumalanga's laboratory and passed through a 2mm sieve to remove any plant debris.

4.2.3 Analysis of Soil Properties

Twenty subsamples of soils from both rhizosphere and non-rhizosphere were sent to the Department of Agriculture and Rural Development Analytical Services (Cedara) for the analysis of N, P, potassium (K), zinc (Zn), magnesium (Mg), manganese (Mn), calcium (Ca), copper (Cu), pH, acid saturation, total cation exchange, exchange acidity, and organic C. The

total N concentration in the soil was measured by an Automated Dumas dry combustion technique utilizing a LECO TruSpec CN (LECO Corporation, Michigan, USA; Matejovic, 1996). To quantify P, K, Zn, Mn, and Cu, an atomic absorption technique was utilized. This entailed using the ambic-2 extraction solution comprising 0.25 M NH₄CO₃, 0.01 M Na₂EDTA, 0.01 M NH₄F, and 0.05g L⁻¹ Superfloc (N100), with the pH adjusted to 8 using concentrated NH₃ solution. Subsequently, 25 ml of the solution was mixed with 2.5 ml of soil, and the mixture was agitated utilizing a multiple stirrer set at 400 rpm for ten minutes. The extracts were then filtered with the Whatman no. 1 paper. To measure the concentration of Ca and Mg in the soil, a similar procedure was implemented, but 25 ml of 1 M KCl solution was used as a substitute for the ambic-2 solution. In addition, 20 ml of 0.0365 M SrCl₂ was mixed with 5 ml of the filtrate. Next, determine the extractable acidity by titrating 10 ml of the filtrate with 0.005 M NaOH after diluting 10 ml of deionized water with two to four drops of phenolphthalein. The organic C was quantified using mid-infrared spectroscopy. The pH of the soil was measured through the utilization of 10 millilitres of soil solution with 25 millilitres of 1 M KCl solution, then used a multiple stirrer to mix at 400 rpm for five minutes. A gel-filled combination was used to determine the suspension of the pH while agitating. For a comprehensive explanation of the techniques, refer to Manson et al. (2020).

4.2.4 Collection and sterilization of coralloid roots

Coralloid roots were randomly collected from *E. lanatus* mature plants in Botshabelo Cultural Village in Middelburg, Mpumalanga Province. The coralloid roots were rinsed with distilled water, then disinfected with 70% (v/v) ethanol for 30 seconds, and soaked in 3.5% (v/v) sodium hypochlorite solution for three minutes. Afterwards, the roots were washed with distilled water ten times and stored inside 100 ml centrifuge tubes filled with 15% glycerol and preserved at 4°C before sequencing and extraction of bacteria.

4.2.5 Extraction, sequencing, and amplification of bacteria from E. lanatus rhizosphere, non-rhizosphere soils and coralloid roots

Soil serial dilutions were conducted to extract bacteria from soil subsamples (rhizosphere and non-rhizosphere soils), and coralloid roots were submerged in 15% glycerol and squashed with sterile tips to extract the bacteria. A hundred microliters of dilution and 10 µl of coralloid root suspension were inoculated in clean Petri dishes that contained nutrient agar. There were three types of nutrient agar (media). The first one is tricalcium phosphate (TCP), which was used to inoculate phosphate-solubilizing bacteria. The second one was Simmons citrate agar, which was used to inoculate N-cycling bacteria. The last nutrient agar is called Jensen's, which was

used to inoculate nitrogen-fixing bacteria. Each selective medium dish was replicated three times and incubated for 3-7 days at 30°C. Pure colonies of bacteria were obtained through subculturing.

After bacterial extraction, a Polymerase chain reaction (PCR) was used to amplify a small segment of pure bacterial colonies utilizing the 16S rRNA gene primers 63F (5' CAGGCCTAACACATGCAAGTC 3') and 1387R (5'-GGGCGGTGTGTACAAGGC 3') following the procedure outlined by Magadlela *et al.* (2017). The PCR amplification was carried out utilizing an EmeraldAmpGT Master Mix under the following conditions: Initial denaturation at 94°C for five minutes, followed by thirty cycles of denaturation at 94°C for 30 seconds, 30 seconds of annealing at 55°C, 2 minutes of extension at 72°C and the final elongation was performed at 72°C for 10 minutes. The outcomes were seen in 1% (w/v) agarose gel electrophoresis conducted at 100 V for 60 minutes utilizing a Tris-acetate-EDTA (TAE) buffer under ultraviolet light. The amplified products were then sent to Inqaba Biotechnical Industries (Pty) Ltd (Pretoria) in South Africa for sequencing. The obtained DNA sequences from Inqaba were subjected to Nucleotide BLAST (NCBI) to find related bacteria in the GenBank database. https://:www.ncbi.nih.gov.

4.2.6 Enzyme activities

The enzyme activities of alkaline phosphatase, acid phosphatase, beta-glucosidase and N- β -D-acetyl-glucosaminidase were measured utilizing the fluorescence-based technique shown by Motsomane *et al.* (2023a) and Ndlovu *et al.* (2023) and the results were expressed as nmol h⁻¹g⁻¹. Ten grams of soil and hundred millilitres of autoclaved water were placed inside jars wrapped with foil and homogenized in a shaker at a constant speed for 2 hours and kept overnight at 4°C. Before putting in the substrates, the supernatants were put onto black 96-well microplates. The sample run comprised 200 μ l soil aliquot plus 50 μ l substrate, which were close to reference standards (200 μ l soil aliquot + 50 μ l standard), quench standard (200 μ l soil aliquot + 50 μ l Buffer), negative controls (200 μ l buffer 50 μ l) and blanks (250 μ l buffer). After two hours of incubation at room temperature, 0.5M NaOH was used to stop the reaction. The fluorescent absorbance was then quantified at 450 nm on a Glomax Multi Plus microplate reader. Before measuring acid phosphatase enzyme activity, the buffer and standard were adjusted to a pH of 5.

The nitrate reductase activity was determined using a modified approach developed by Bruckner *et al.* (1995) and expressed as µmol h⁻¹g⁻¹. An Erlenmeyer flask coated with foil was

filled with 1 ml of 25 mM KNO₃, 4 ml of 0.9 mM 2,4-dinitrophenol, and 5 ml of autoclaved water. Afterwards, five grams of soil were added to the solution, and the flask was swirled and placed in an incubator for 24 hours at 30 °C. After incubation, 10 ml of 4 M KCl was added to the mixture and swirled thoroughly, then filtered with Whatman number 1 filter paper into a new wrapped flask. To initiate the enzymatic reaction, 2 ml of the infiltrate was added to NH₄Cl buffer that had a pH of 8.5 and 0.8 ml of colour reagent containing 1% of Sulfanilamide, 1 N HCl and 0.02% N-(1-naphthyl) ethylenediamine dihydrochloride (NEDD). The solution was then incubated for half an hour at 30 °C. To measure the absorbance at 520 nm, an Agilent Cary 60 UV-Vis spectrophotometer was used.

4.2.7 Statistical analysis

The data on soil properties and enzyme activities in the rhizosphere and non-rhizosphere were subjected to a two-sample t-test to test for significant differences through Statistix 10 software, and the Shapiro-Wilk test was used to determine the normality of the residual distribution. The data which were not normally distributed ($p \le 0.05$) were transformed with Log10(X + 1) and arcsine $\sqrt{(X \div 100)}$ for % variables. The homogeneity of variance assumption was tested using the F-test. Principal component analysis (PCA) was used to look into the relationship between soil nutrients and the corresponding enzyme activities in both the rhizosphere and non-rhizosphere soils of *E. lanatus*. The PCA was carried out utilizing RStudio software (version 3.6.0) with the assistance of the gg plot statistics package and the pr comp function.

4.3 Results

4.3.1 Soil properties

Certain measured variables, as determined by the Shapiro-Wilk normality test, did not follow a normal distribution and were transformed accordingly. In general, the rhizosphere had a higher concentration of macronutrients than the non-rhizosphere soils. The differences were, however, not statistically significant. Mg was the only element to exhibit a statistically significant difference (Table 1). The concentration of micronutrients, such as Mn, was significantly higher in the rhizosphere compared to the non-rhizosphere soils. Rhizosphere soils had a higher concentration of Cu than non-rhizosphere soils, but the difference was not statistically significant. Furthermore, the concentration of Zn was higher in the non-rhizosphere soils, while there was no significant difference when compared to the rhizosphere soils. The level of total cation exchange, exchangeable acidity and acid saturation were higher in the rhizosphere, while the pH level was higher in the non-rhizosphere soils. Nevertheless, the differences were not significant (Table 1). Conversely, the organic C content was higher in the

rhizosphere soils compared to the non-rhizosphere soils, but again, the differences were not significant (Table 1).

Table 1: Soil properties from *E. lanatus* under rhizosphere and non-rhizosphere soils. The outcomes are shown as mean \pm SE, n=10

	Rhizosphere	Non-rhizosphere
Primary nutrients		
Nitrogen	156.68±27.80 ^a	124.88±20.58 a
Phosphorus	13.81±2.94 a	8.92±2.29 a
Potassium	1.13±0.01 ^a	1.12 ± 0.01^{a}
Secondary nutrients		
Calcium	0.66±0.14 a	0.51±0.11 a
Magnesium	1.29 ± 0.12^{a}	1.08 ± 0.02^{b}
Manganese	16.96±5.19 ^a	10.58±1.94 ^b
Copper	1.15±0.23 a	0.89±0.19 a
Zinc	0.86±0.13 a	0.89±0.18 a
pH (KCL)	3.84±0.03 ^a	3.92±0.05 a
Acid saturation (%)	65.10±4.68 a	65.00±6.86 a
Total cation exchange	3.09±0.31 a	2.42±0.22 a
(cmol/kg)		
Exchangeable acidity	1.98±0.24 a	1.62±0.27 ^a
(cmol/kg)		
Organic Carbon (%)	3.52±0.33 a	3.21±0.28 a
	Nitrogen Phosphorus Potassium Secondary nutrients Calcium Magnesium Manganese Copper Zinc pH (KCL) Acid saturation (%) Total cation exchange (cmol/kg) Exchangeable acidity (cmol/kg)	Primary nutrients Nitrogen 156.68±27.80a Phosphorus 13.81±2.94a Potassium 1.13±0.01a Secondary nutrients Calcium 0.66±0.14a Magnesium 1.29±0.12a Manganese 16.96±5.19a Copper 1.15±0.23a Zinc 0.86±0.13a pH (KCL) 3.84±0.03a Acid saturation (%) 65.10±4.68a Total cation exchange 3.09±0.31a (cmol/kg) Exchangeable acidity 1.98±0.24a (cmol/kg)

Column means with different letters indicate significant differences in soil chemical properties (two-sample t-test, $P \le 0.05$)

4.3.2 Identification of E. lanatus microbes from coralloid roots, rhizosphere and non-rhizosphere soils

4.3.2.2 Molecular identification of the isolated bacteria in coralloid roots

Five microbial strains were extracted from the coralloid roots of *E. lanatus* (Table 2). The bacteria responsible for solubilizing P were *Actinoallomurus sp.* and *Pseudomonas putida*. The microbes responsible for N cycling were identified as *Paraburkholderia sp.* and *Burkholderia sp.*, whereas one strain of *Bacillus licheniformis* was identified as an N-fixing bacteria. Regarding the microbial activities, it was observed that 20% of microbes were engaged in N₂ fixation, 40% were involved in P solubilization, and the other 40% were associated with N cycling.

 Table 2: Bacteria extracted from E. lanatus coralloid roots

Family	Scientific name	Accession number	Similarity (%)	Function (s)	Reference(s)
Pseudomonadaceae	Pseudomonas putida	OK037572.1	99.21	P-solubilizing	Costa-Gutierrez et al. 2022
Thermomonosporaceae	Actinoallomurus sp.	KX533973.1	99.15		
Burkholderiaceae	Burkholderia sp.	MK559018.1	99.82	N-fixing	Ndlovu et al. 2013
	Paraburkholderia sp.	MG182888.1	99.40	P-solubilizing	Wilhelm et al. 2020
Bacillaceae	Bacillus licheniformis	MK418575.1	84.08	P-solubilizing	Won et al. 2019; Rojas et al. 2001
				N-fixing	Won et al. 2019

4.3.2.3 Molecular identification of the isolated bacteria in rhizosphere soils

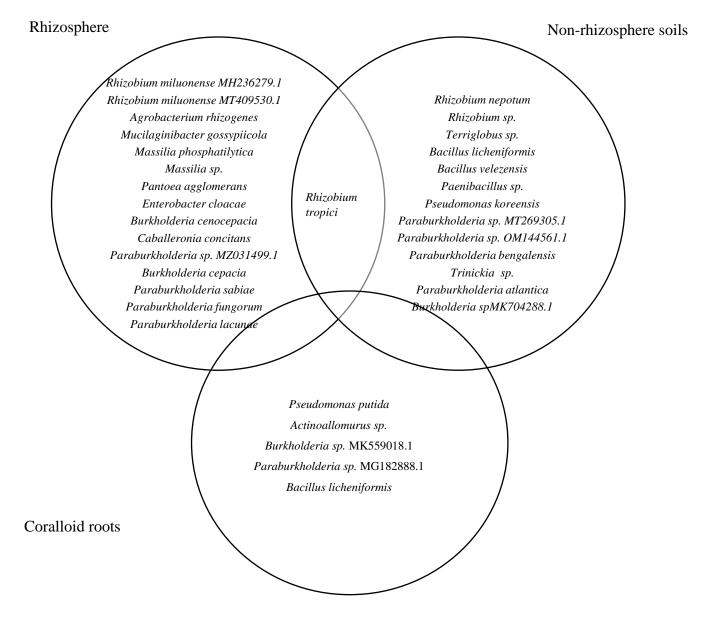
A total of sixteen microbial strains were extracted from the rhizosphere soils of *E. lanatus*, as indicated by Table 3. The bacteria responsible for solubilizing P were *Enterobacter cloacae*, *Burkholderia cenocepacia*, *Massilia phosphatilytica*, *Paraburkholderia sp.*, *Burkholderia cepacian*, *Massilia sp.*, *Paraburkholderia sabiae* and *Paraburkholderia fungorum*. The bacteria involved in N cycling were identified as *Caballeronia concitans* and *Pantoea agglomerans*. The microorganisms responsible for N₂ fixation were identified as *Mucilaginibacter gossypiicola*, *Rhizobium tropici*, *Rhizobium miluonense*, *Agrobacterium rhizogenes* and *Paraburkholderia lacunae*. Within the rhizosphere, a significant portion of 37.5% of the microbial community showed a role in N₂ fixation, whereas 50% of the microbes were engaged in P solubilization. Additionally, a smaller portion of 12.5% of the bacterial population was shown to be associated with N cycle processes.

 Table 3: Bacteria extracted from E. lanatus rhizosphere soils

Family	Scientific name	Accession number	Similarity (%)	Function(s)	Reference(s)
Rhizobiaceae	Rhizobium miluonense	MH236279.1	99.90	N-fixing	Rouhrazi et al. 2016
	Rhizobium tropici	MT539147.1	99.12	N-fixing	Rouhrazi et al. 2016
	Rhizobium miluonense	MT409530.1	97.43	N-fixing	Rouhrazi et al. 2016
	Agrobacterium rhizogenes	MN712240.1	96.28	Induce hairy root system	Sawada <i>et al.</i> , 1993
Sphingobacteriaceae	Mucilaginibacter gossypiicola	NR_116406.1	94.48	Growth Promoter	Vasconcelos et al. 2022
Oxalobacteriaceae	Massilia phosphatilytica	MK519185.1	98.61	P-solubilizing	Li et al. 2019
	Massilia sp.	MH031738.1	96.46	P-solubilizing	Wan et al. 2020

Enterobacteriaceae	Pantoea agglomerans	MN758864.1	96.79	P-solubilizing	Lorenzi <i>et al.</i> 2022; Saadouli <i>et al.</i> 2021
				N-fixing	Lorenzi et al. 2022
	Enterobacter cloacae	KY660471.1	94.88	N-fixing	Ji <i>et al.</i> 2020; Zhang <i>et al.</i> 2022
				P-solubilizing	Ji et al. 2020
Burkholderiaceae	Burkholderia cenocepacia	OR098458.1	97.80	P-solubilizing	You et al. 2020
	Caballeronia concitans	NR_145603.1	97.51	N-fixing	Maquia et al. 2020
	Paraburkholderia sp.	MZ031499.1	95.25	N-fixing P-solubilizing	Wilhelm et al. 2020

Burkholderia cepacia	MN691351.1	97.92	N-fixing	Menard et al. 2007
			P-solubilizing	Wan et al. 2020
Paraburkholderia sabiae	MK139731.1	98.12	N-fixing	Hug <i>et al.</i> 2023; Ndlovu <i>et al.</i> 2023
Paraburkholderia fungorum	CP099647.1	99.34	N-fixing P-solubilizing	Raihan et al. 2022
Paraburkholderia lacunae	NR_165707.1	99.40	N-fixing	Beukes et al. 2021


4.3.2.4 Molecular identification of the bacteria isolated in non-rhizosphere soils

A total of fourteen microbial strains were extracted from the non-rhizosphere soils of *E. lanatus*, as shown in Table 4. The bacteria responsible for solubilizing P were identified as *Rhizobium tropici, Bacillus licheniformis, Trinickia* sp., *Paraburkholderia* sp. and *Bacillus velezensis*. The bacteria involved in N cycling were identified as *Paraburkholderia sp., Paraburkholderia bengalensis, Burkholderia* sp. and *Paraburkholderia atlantica*. The microorganisms responsible for N₂ fixation were identified as *Paenibacillus sp., Paraburkholderia caledonica, Paraburkholderia sp., Rhizobium sp., Rhizobium tropici, Rhizobium nepotum* and *Terriglobus roseus* (Table 4). The proportion of P-solubilizing bacteria in the non-rhizosphere soils was found to be 42.9%. The overall number of N-fixing bacteria accounted for 42.9%, while those involved in N cycling accounted for 28.6%. Based on the Simpson's Diversity Index, it was observed that rhizosphere soils displayed greater (D=0.98) species diversity in comparison to non-rhizosphere soils (D=0.37).

 Table 4: Bacteria extracted from E. lanatus non-rhizosphere soils

Family	Scientific name	Accession number	Similarity (%)	Function(s)	Reference(s)
Rhizobiaceae	Rhizobium tropici	MT539147.1	99.65	N-fixing	Rouhrazi <i>et al</i> . 2016
	Rhizobium nepotum	MT533807.1	99.14	N-fixing	Ghorpade and Gupta 2018
	Rhizobium sp.	MT269297.1	98.95	N-fixing	Ndlovu et al. 2013
Acidobacteriaceae	Terriglobus sp.	KX555420.1	85.61		
Bacillaceae	Bacillus licheniformis	ON954648.1	99.67	P-solubilizing	Won et al. 2019; Rojas et al.
					2001
				N-fixing	Won et al. 2019
	Bacillus velezensis	MH040972.1	98.15	P-solubilizing	Shi <i>et al</i> . 2022
				N-fixing	Shi <i>et al</i> . 2022
Paenibacillaceae	Paenibacillus sp.	KY229692.1	94.09	P-solubilizing	Khan <i>et al.</i> 2020
				N-fixing	
Pseudomonadaceae	Pseudomonas koreensis	MT409540.1	96.81	P-solubilizing	Gu et al. 2020

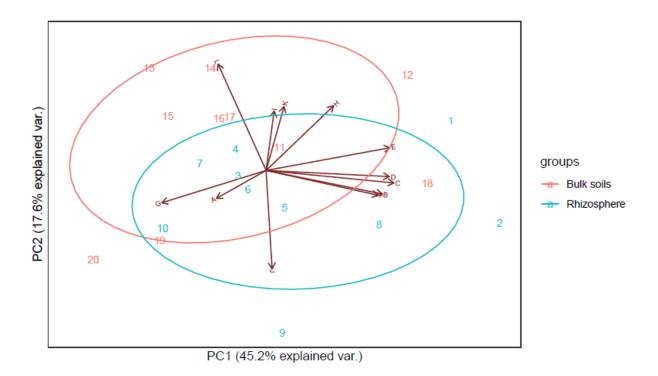
Burkholderiaceae	Paraburkholderia sp.	MT269305.1	99.66	P-solubilizing	Wilhelm et al. 2020
	Paraburkholderia sp.	OM144561.1	97.67	P-solubilizing	Wilhelm et al. 2020
	Paraburkholderia bengalensis	MT912698.2	97.51	N-fixing	Nag et al. 2022
	Trinickia sp.	LC661717.1	99.83	P-solubilizing	Damo <i>et al</i> . 2022
	Paraburkholderia atlantica	MK690530.1	96.31	N-fixing	Paulitsch et al. 2020
	Burkholderia sp	MK704288.1	97.39	N-fixing	Mattos et al. 2005

Figure 1: Venn diagram depicting the similar and different bacteria found in the coralloid roots, rhizosphere and non-rhizosphere soils of *Encephalartos lanatus*.

4.3.3 Soil extracellular enzyme activities

The enzyme activities of acid phosphatase, alkaline phosphatase, nitrate reductase and β -(D)-glucosaminidase were found to be the highest in the rhizosphere soils, whereas the non-rhizosphere soils exhibited the lowest enzyme activities (Table 5). In contrast, the activity of β -glucosidase was the highest in non-rhizosphere soils, as shown in Table 5. The activities of acid phosphatase, β -glucosidase and nitrate reductase enzymes exhibited significant differences in both the rhizosphere and non-rhizosphere soils. However, there was no

significant difference was observed in alkaline phosphatase and β -(D)-glucosaminidase activities (Table 5) in both soil samples.


Table 5: Soil enzyme activities of *E. lanatus* in the rhizosphere and non-rhizosphere soils. The outcomes are shown as mean \pm SE, n=10

Enzyme Activity	Rhizosphere	Non-rhizosphere
Acid Phosphatase (nmolh ⁻¹ g ⁻¹)	0.49±0.03 ^a	0.40±0.04 b
Alkaline phosphatase (nmolh ⁻¹ g ⁻¹)	0.52±0.03 a	0.46±0.24 a
Nitrate reductase (µmolh ⁻¹ g ⁻¹)	3.61±0.08 a	$3.32\pm0.20^{\ b}$
<i>N</i> -acetyl-β-D-glucosaminidase (nmolh ⁻¹ g ⁻¹)	0.44±0.03 a	0.43±0.03 ^a
β -glucosidase (nmolh ⁻¹ g ⁻¹)	0.49±0.03 a	0.51 ± 0.03^{b}

Column means with different letters indicate significant differences (two-sample t-test, $P \le 0.05$)

4.3.4 Relationships between soil characteristics of E. lanatus in both the rhizosphere and non-rhizosphere soils

The two principal component analyses (PCA) accounted for 62.8% of the variation in soil characteristics and their corresponding enzymes. PC1 accounted for 45.2% of the overall variation, while PC2 accounted for 17.6% of the total variation. The clusters revealed that the soil characteristics and enzymes were comparable in both the rhizosphere and the non-rhizosphere soils. There was a negative correlation observed between the concentration of P in the soil and the activity of both acid and alkaline phosphatases. The enzymes nitrate reductase and N-acetyl- β -D-glucosaminidase also revealed a negative relationship with N concentration. The nitrate reductase exhibited a positive correlation with soil pH. Acid phosphatase was positively correlated with β -glucosidase. The levels of N and P were positively correlated to organic C and total cation exchange.

Figure 2: Relationship between the soil traits and extracellular enzyme activities of *E. lanatus* rhizosphere and non-rhizosphere soils. The following is a representation of soil attributes: A = nitrate reductase, B = nitrogen concentration, C = phosphorus concentration, D = organic carbon, E = exchangeable acidity, F = total cation exchange, G = pH, H = acid saturation, I = acid phosphatase, J = alkaline phosphatase, K = β-glucosidase, L = N-acetyl-β-D-glucosaminidase. Principal component analysis (PCA).

4.4 Discussion

The presence of nutrients in the soil can be found in varying amounts and has a crucial role in the development of plants. However, several nutrient elements have relatively low solubility, making them inaccessible to plants (Rafique *et al.*, 2022). Hence, it is important to investigate the biological, physical and chemical properties of the soil to understand if soil can preserve and restore ecological processes (Mir *et al.*, 2023).

The present study focused on determining the characteristics of the soil samples, as well as isolating bacteria from coralloid roots and soils and subsequently evaluating their enzyme activities. The results showed that the rhizosphere and the non-rhizosphere had significant similarities in terms of the concentration of N, P, K, Ca, Cu, Zn, pH, acid saturation, total cation exchange, exchangeable acidity, and organic C. These results are in contradiction to previous studies in *E. natalensis* (Ndlovu *et al.*, 2023) and *C. micronesica* (Marler and Krishnapillai, 2018), where the concentrations of macro and micronutrients were greater in the rhizosphere

than in the surrounding soils. Therefore, it is reasonable to propose that this phenomenon could be associated with the disruption caused by fire, given the historical susceptibility of Botshabelo Cultural Village to fire incidents. Botshabelo is a natural reserve that is subject to fires that burn regularly, and these fires are utilized as a management tool to conserve the ecosystem. (Bayne *et al.*, 2019). The soils and coralloid roots for this study were collected immediately following the fire in the area, as the grass remains were still visible on the ground and the *E. lanatus* trunks were scorched.

Other variables, like pH, can also account for the observed differences. The pH observed in the soils from the current study is extremely acidic, while the soils studied by Ndlovu *et al.* (2023) were slightly acidic, which may have created an environment that was better suited for *E. natalensis* plant growth. In the research work by Ndlovu *et al.* (2023), the soil pH was 5.75 in the rhizosphere and 5.14 in the non-rhizosphere soil. In the current study, the soil pH was 3.84 and 3.92 in the rhizosphere and non-rhizosphere soils.

This study also presents results indicating a higher concentration of Mn in the rhizosphere soils of *E. lanatus* compared to the studies conducted by Maler and Calonje (2020) on *C. micronesica* and Ndlovu *et al.* (2023) on *E. natalensis*. Huang *et al.* (2016) conducted a study on sugarcane plantlets, testing the effect of Mn on strongly acidic soils. Their results provided evidence supporting the assertion that the accumulation of Mn in the soil is attributed to the presence of acidic soils with a pH of 4.48 (Huang *et al.*, 2016). Based on the findings of this research, it is plausible to suggest that the enhanced presence of Mn in the rhizosphere may have been influenced by fire events, leading to an excessive buildup of this element due to the combined effects of temperature and soil acidity. Moreover, this result provides evidence supporting the notion that pH and Mn have a substantial impact on hindering the uptake of other nutrients (P and Ca) in the soil by plants (Alejandro *et al.*, 2020).

The concentration of Mg was discovered to be significantly higher in the rhizosphere as compared to the non-rhizosphere soils. One possible explanation for the sustained elevation in Mg levels is the lack of impact from the blaze. According to Agbeshie *et al.* (2022), previous studies have reported that certain elements are prone to wildfire, resulting in a reduction in Mg and P levels due to the processes of volatilization and oxidation. The study by Agbeshie *et al.* (2022) reported that fire either enhances or has no effect on the concentration of P, K, Ca and Mg, while typically decreasing the concentration of S and N. However, the study yielded distinct results. The study revealed a high concentration of N in the rhizosphere compared to

the non-rhizosphere soils, which lacks statistical significance. In a similar vein, Chungu *et al.* (2019) also reported a high concentration of total N in burned sites, which accelerated the growth of *Eucalyptus grandis* plants in comparison to unburned sites.

Nevertheless, the bioavailability of nutrients in the soil can be enhanced by the presence of microbes. Microbes play a crucial role in preserving soil health and facilitating the cycling of nutrients (Khoshru *et al.*, 2023). The capacity of soil-dwelling microbes and their associated extracellular enzyme activities to transform minerals from an insoluble state to a soluble form, facilitating plant uptake, has been well-documented (Rafique *et al.*, 2022). Several recent studies have documented the prevalence of *Acidobacteria* and *Alphaproteobacteria* microbes in acidic soils (Msimbira and Smith, 2020). These microbes have been found to play a significant role in aiding plants to withstand various environmental challenges, notably drought and inadequate nutrient levels (Msimbira and Smith, 2020).

However, in this study, a total of ten microbial families, consisting of fifteen genera, were successfully isolated from the coralloid roots, rhizosphere and non-rhizosphere soils. The genera referred to in this context are *Bacillus*, *Mucilaginibacter*, *Rhizobium*, *Agrobacterium*, *Paraburkholderia*, *Paenibacillus*, *Terriglobus*, *Actinoallomurus*, *Pseudomonas*, *Enterobacter*, *Burkholderia*, *Massilia*, *Trinickia*, *Caballeronia* and *Pantoea*. All the different microorganisms present in the soil samples and coralloid roots of *E. lanatus* are significant in terms of safeguarding and promoting its growth and development. The Burkholderiaceae and Rhizobiaceae bacteria families were found to be the ones with the greatest abundance in both soil samples.

Ichikawa et al. (2023) and Madhaiyan et al. (2021) have demonstrated that Paraburkholderia exhibits a significant influence on enhancing plant growth by engaging in N₂ fixation and the solubilization of insoluble P. The genera Paenibacillus, Rhizobium, Enterobacter, and Pseudomonas are well known for their ability to produce Indole-3-acetic acid and siderophore, not to mention their capacity for P solubilization and N₂ fixation (Motsomane et al., 2023b). Previous studies have established a correlation between these genera and Dioon cycad (Gutiérrez-García et al., 2018). Massilia shares certain characteristics with Paenibacillus, Rhizobium, Enterobacter and Pseudomonas, with the exception of its inability to fix N (Ofek et al., 2012). Additionally, it has been observed that the stimulation of plant development can be attributed to the formation of auxins and gibberellins, as noted by Ran et al. (2023). According to Damo et al. (2022), it has been confirmed that the bacteria belonging to the genera

Trinickia, Burkholderia, Paraburkholderia, Pseudomonas, Enterobacter and *Pantoea* possess the ability to solubilize P and render it accessible for absorption by plants.

Grady et al. (2016) reported that Paenibacillus exhibits the ability to endure fluctuations in soil pH while also regulating phytopathogens through the induction of systematic resistance (ISR). Bacillus and Agrobacterium have been identified as significant contributors to the process of P solubilization, as noted by Li et al. (2021). Shah et al. (2021) identified Bacillus, Enterobacter, Burkholderia, Agrobacterium, Paenibacillus, Rhizobium and Pseudomonas as microorganisms that possess the ability to solubilize P. The solubilization process transforms insoluble P into a soluble form within the soil, making it accessible for plant uptake and utilization. As stated by Shah et al. (2021), Pseudomonas, Bacillus, Enterobacter, Burkholderia and Rhizobium have been identified as producers of indole-3-acetic acid (IAA), while Pseudomonas and Burkholderia generate cytokinins. Additionally, Mumtaz et al. (2017) found that these bacteria are capable of solubilizing Zn. Bacillus is a ubiquitous bacteria that can thrive in a variety of environments (Kashyap et al., 2019). Noteworthy attributes of Bacillus include fixing atmospheric N and solubilising various minerals such as K, P and Zn (Ahmad et al., 2017). Additionally, it is involved in the generation of phytohormones and siderophores (Ahmad et al., 2017; Mumtaz et al., 2017; Saxena et al., 2020).

According to Vasconcelos et al. (2022), Mucilaginibacter bacteria produce extracellular polymeric substances (EPS), which play a vital role in the precipitation of metals and the enhancement of plant growth under polluted and unfavourable environmental conditions. Actinoallomurus is known to generate isoflavonoids, Type I polyketide synthase and nonribosomal peptide synthetase genes (Pozzi et al., 2011). Isoflavonoids are derived from flavonoids, which are secondary metabolites and have been found to possess diverse biological activities and play significant roles in plant physiology. For instance, it regulates cellular proliferation, offers defence against both biotic and abiotic stressors also attracts insects for plant pollination (Dias et al., 2021). Agrobacterium is one of the soil-detrimental bacteria that induce gall development by entering plant tissues and attaching itself to the cell wall, thus producing excessive amounts of auxin and cytokinin due to the transferred DNA (T-DNA) (Finer et al., 2016). On the other hand, Agrobacterium rhizogenes is known to induce hairy roots by passing on a portion of their plasmid to a plant host, which able the plasmid to alter the plant's genome expressing genes that help the plant survive in adverse conditions (Sawada et al., 1993; Satuti et al., 2000). Terriglobus are chemo-organoheterotrophic (Pascual et al., 2015).

As noted by Ekenler and Tabatabai (2004), soil microbes are responsible for the secretion of extracellular enzymes. These enzymes have been recognised as significant mediators and facilitators in numerous biochemical processes (Błońska *et al.*, 2017; Ndabankulu *et al.*, 2022; Santos *et al.*, 2022). The significance of these processes lies in their role in preserving soil quality and facilitating the effective operation of ecosystems, as evidenced by the findings of Błońska *et al.* (2017), Ndabankulu *et al.* (2022) and Santos *et al.* (2022). The processes encompass the cycling of vital elements, including P, N, and C, as outlined by Ndlovu *et al.* (2023). Also, the process of nutrient mineralization is linked to the decomposition and renewal of soil organic matter, alongside the breakdown of xenobiotics (Błońska *et al.*, 2017; Sudhakaran and Ravanachandar, 2020). The enzymes acid and alkaline phosphatase play a crucial role in the process of P mineralization and cycling within soil ecosystems (Ndlovu *et al.*, 2023). In addition, the production of P is enhanced by the enzymatic action of phosphatase, which catalyses the hydrolysis of phosphoric acid monoester, resulting in the formation of phosphate ions (Ndlovu *et al.*, 2023).

Acid and alkaline phosphatase are essential for the process of P cycling (Ndlovu *et al.*, 2023). The study revealed that there is a significantly higher concentration of acid phosphatase in the rhizosphere compared to the surrounding non-rhizosphere soils. Furthermore, the alkaline phosphatase levels were higher in the rhizosphere in comparison to the non-rhizosphere soils. Nevertheless, the results were not significantly different.

The enzyme *N*-acetyl-β-D-glucosaminidase is known to have a significant impact on both the N cycle (Acosta-Martínez *et al.*, 2019; Ullah *et al.*, 2019) and the C cycle (Acosta-Martínez *et al.*, 2019; Ndlovu *et al.*, 2023). Furthermore, it has been noted that *N*-acetyl-β-D-glucosaminidase is responsible for facilitating the transformation of asparagine into aspartic acid and NH₃ alongside its role in the hydrolysis of chito-oligosaccharides (Hill *et al.*, 1967; Mega *et al.*, 1972; Parham and Deng, 2000) along with the hydrolysis of chitin, resulting in the release of amino sugars. According to Acosta-Martínez *et al.* (2019), amino sugars serve as significant contributors to the mineralization of N in the soil. The level of *N*-acetyl-β-D-glucosaminidase enzyme was higher in the rhizosphere than in the non-rhizosphere soils, but the difference was not statistically significant.

β-glucosidases are a group of enzymes that play an essential role in C cycling by facilitating the breakdown of low-molecular-weight carbohydrates (Nannipieri *et al.*, 2011; Ullah *et al.*, 2019). The enzymatic function of glucosidase provides an important understanding of the

mechanism involved in the breakdown of cellulose, which is commonly acknowledged as the primary polysaccharide found in natural environments (Acosta-Martínez *et al.*, 2019). β -glucosidase does this by liberating saccharides glycosides and catalysing the breakdown of cellulose, cellotetraose into cellobiose, which can further undergo further conversion into glucose (Zungu *et al.*, 2020). The concentration of β -glucosidase was higher in the non-rhizosphere soils compared to the rhizosphere soils. Nitrate reductase is an enzyme essential for the fixation of nitrate (Krywult and Bielec, 2013). The results showed that the activity of nitrate reductase was significantly higher in the rhizosphere as compared to the non-rhizosphere, and Ndlovu *et al.* (2023) reported similar results.

The PCA analysis showed a negative association between enzymes and their corresponding nutrients. For example, the acid and alkaline phosphatase showed a negative correlation with the concentration of P. *N*-acetyl-β-D-glucosaminidase and nitrate reductase had a negative correlation with N. Nevertheless, the elevated levels of acid phosphate, nitrate reductase and β-glucosidase enzymes indicate that the cycling of P, N and C was occurring in the Botshabelo Nature Reserve, which has nutrient-deficient soils, facilitating the absorption of nutrients by the *E. lanatus* and neighbouring plants, hence promoting their growth. The negative association could be attributed to the acidic pH levels in the soils. According to Wang *et al.* (2012), Magadlela *et al.* (2020), Zungu *et al.* (2020), Ndabankulu *et al.* (2022) and Berza *et al.* (2022) acidic soils contain a high level of cations such as iron and aluminium establishing a bind with P, rendering it inaccessible for plant absorption. This elucidates the relationship between soil P and total cations in the principal component analysis (PCA). The findings of the present study, conducted in extremely acidic soils, indicate that the activity of acid phosphatase was the highest in the rhizosphere.

In addition, the levels of alkaline phosphatase were high in the rhizosphere compared to the non-rhizosphere soils but were non-significant. Thus, the study of Turner (2010) provides evidence for this conclusion that acid phosphatase enzyme is prevalent in soil with a pH below 4 since they reported a high level of acid phosphatase in acidic soils. The acidity of the soil has an important impact on the amount of organic C it contains. This is because soil acidity controls the availability of nutrients, the breakdown of organic matter and other soil processes (Wibowo and Kasno, 2021). Nevertheless, organic C, N and P were revealed to be negatively correlated with pH. This indicates that a lower soil pH promotes the buildup of organic matter and the encouragement of microbial activity in decomposing the organic materials (Wibowo and Kasno, 2021).

4.5 Conclusions

Botshabelo, situated in the Mpumalanga Province (Middelburg), is a cultural site that is susceptible to both positive and negative impacts on the soil's properties caused by fire. The fire has modified the natural dynamics of cycad-microorganism interactions, where the rhizosphere soils are richer in microorganisms, enzyme activities and accessibility of nutrients to plants. However, cycads and associated microbes preserve the ecosystem by facilitating the cycling of nutrients. Therefore, their protection requires exceptional consideration due to their significant contribution to ecosystem services in environments with inadequate nutrient levels for sustaining plant development.

Author contributions

M.S. and T.N.S collected samples from the field. M.S. carried out all the research experiments, analyzed the results and wrote the paper. T.N.S and A.M. funded the study. W. M, T.N.S. and A.M. proofread the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

The study was financed by the Vice Chancellor's Scholarship of the University of Mpumalanga to M.S., The National Research Foundation (Grant UID 129403) to T.N.S., and (Grant 138091) to A.M.

Institutional Review Board Statement

Not applicable

Data Availability Statement

Data and materials are accessible upon request.

Acknowledgements

We warmly acknowledge the assistance we received from the University of KwaZulu-Natal for allowing us to carry out the experiments (extraction of bacteria and assay enzyme activities). We also thank the University of Mpumalanga for helping us with data collection. Furthermore, we appreciate the Mpumalanga Tourism and Parks Agency (MTPA) for granting a permit to conduct research on *E. lanatus* plants.

Conflict of Interest

The authors declare that they have no competing interests.

References

Acosta-Martínez, V., Pérez-Guzmán, L. and Johnson, J.M. 2019. Simultaneous determination of β -glucosidase, β -glucosaminidase, acid phosphomonoesterase, and arylsulfatase activities in a soil sample for a biogeochemical cycling index. *Applied Soil Ecology*, 142: 72-80.

Agbeshie, A.A., Abugre, S., Atta-Darkwa, T. and Awuah, R. 2022. A review of the effects of forest fire on soil properties. *Journal of Forestry Research*, 33(5): 1419-1441.

Ågren, G.I., Wetterstedt, J.M. and Billberger, M.F. 2012. Nutrient limitation on terrestrial plant growth—modeling the interaction between nitrogen and phosphorus. *New Phytologist*, 194(4): 953-960.

Ahmad, Z., Wu, J., Chen, L. and Dong, W. 2017. Isolated *Bacillus subtilis* strain 330-2 and its antagonistic genes were identified by removing the PCR. *Scientific Reports*, 7(1): 1777.

Alejandro, S., Höller, S., Meier, B. and Peiter, E. 2020. Manganese in plants: From acquisition to subcellular allocation. *Frontiers in Plant Science*, 11: 517877.

Bano, S.A. and Iqbal, S.M. 2016. Biological nitrogen fixation to improve plant growth and productivity. *Int. J. Agric. Innov. Res*, 4: 597-599.

Bayne, K.M., Clifford, V.R., Baillie, B.R. and Pearce, H.G. 2019. Fire as a land management tool: Rural sector perceptions of burn-off practice in New Zealand. *Rangeland Ecology & Management*, 72(3): 523-532.

Berza, B., Sekar, J., Vaiyapuri, P., Pagano, M.C. and Assefa, F. 2022. Evaluation of inorganic phosphate solubilizing efficiency and multiple plant growth promoting properties of endophytic bacteria isolated from root nodules *Erythrina brucei*. *BMC microbiology*, 22(1): 276.

Beukes, C.W., Venter, S.N. and Steenkamp, E.T. 2021. The history and distribution of nodulating *Paraburkholderia*, a potential inoculum for Fynbos forage species. *Grass and Forage Science*, 76(1): 10-32.

Błońska, E., Lasota, J. and Zwydak, M. 2017. The relationship between soil properties, enzyme activity and land use. *Lesne Prace Badawcze*, 78(1): 39.

Bösenberg, J.D. 2022. *Encephalartos lanatus*. The IUCN Red List of Threatened Species 2022: e.T41933A51048427. Available from: https://www.iucnredlist.org/

Bruckner, A., Wright, J., Kampichler, C., Bauer, R. and Kandeler, E. 1995. A method of preparing mesocosms for assessing complex biotic processes in soils. *Biology and Fertility of Soils*, 19: 257-262.

Chang, A.C.G., Chen, T., Li, N. and Duan, J. 2019. Perspectives on endosymbiosis in coralloid roots: Association of cycads and *cyanobacteria*. *Frontiers in Microbiology*, 10: 1888.

Chungu, D., Ng'andwe, P., Mubanga, H. and Chileshe, F. 2019. Fire alters the availability of soil nutrients and accelerates growth of Eucalyptus grandis in Zambia. *Journal of Forestry Research*, 31: 1637-1645.

Condamine, F.L., Nagalingum, N.S., Marshall, C.R. and Morlon, H. 2015. Origin and diversification of living cycads: a cautionary tale on the impact of the branching process prior in Bayesian molecular dating. *BMC Evolutionary Biology*, 15: 1-18.

Costa, J.L., Paulsrud, P. and Lindblad, P. 1999. Cyanobiont diversity within coralloid roots of selected cycad species. *FEMS Microbiology Ecology*, 28(1): 85-91.

Costa-Gutierrez, S.B., Adler, C., Espinosa-Urgel, M. and de Cristóbal, R.E. 2022. *Pseudomonas putida* and its close relatives: Mixing and mastering the perfect tune for plants. *Applied Microbiology and Biotechnology*, 106(9): 3351-3367.

Damo, J.L.C., Ramirez, M.D.A., Agake, S.I., Pedro, M., Brown, M., Sekimoto, H., Yokoyama, T., Sugihara, S., Okazaki, S. and Ohkama-Ohtsu, N. 2022. Isolation and characterization of phosphate-solubilizing bacteria from Paddy field soils in Japan. *Microbes and Environments*, 37(2): ME21085.

Dias, M.C., Pinto, D.C. and Silva, A.M. 2021. Plant flavonoids: Chemical characteristics and biological activity. *Molecules*, 26(17): 5377.

Ekenler, M. and Tabatabai, M.A. 2004. β-glucosaminidase activity as an index of nitrogen mineralization in soils. *Communications in Soil Science and Plant Analysis*, 35(7-8): 1081-1094.

Finer, K.R., Fox, L. and Finer, J.J. 2016. Isolation and characterization of agrobacterium strains from soil: A laboratory capstone experience. *Journal of Microbiology & Biology Education*, 17(3): 444-450.

Gehringer, M.M., Pengelly, J.J., Cuddy, W.S., Fieker, C., Forster, P.I. and Neilan, B.A. 2010. Host selection of symbiotic cyanobacteria in 31 species of the Australian cycad genus: *Macrozamia* (Zamiaceae). *Molecular Plant-Microbe Interactions*, 23(6): 811-822.

Ghorpade, V.M. and Gupta, S.G. 2018. Effect of pesticides on the growth of *Rhizobium nepotum*. *Journal of All Subjects*, 8(3): 1-4.

Grady, E.N., MacDonald, J., Liu, L., Richman, A. and Yuan, Z.C. 2016. Current knowledge and perspectives of *Paenibacillus*: A review. *Microbial Cell Factories*, 15: 1-18.

Griffiths, A.D., Schult, H.J. and Gorman, J. 2005. Wild harvest of *Cycas arnhemica* (Cycadaceae): Impact on survival, recruitment and growth in Arnhem Land, northern Australia. *Australian Journal of Botany*, 53(8): 771-779.

Grobbelaar, N., Scott, W.E., Hattingh, W. and Marshall, J. 1987. The identification of the coralloid root endophytes of the southern African cycads and the ability of the isolates to fix dinitrogen. *South African Journal of Botany*, 53(2): 111-118.

Grobbelaar, N., Hattingh, W. and Marshall, J. 1986. The occurrence of coralloid roots on the South African species of the Cycadales and their ability to fix nitrogen symbiotically. *South African Journal of Botany*, 52(5): 467-471.

Gu, Y., Ma, Y.N., Wang, J., Xia, Z. and Wei, H.L. 2020. Genomic insights into a plant growth-promoting *Pseudomonas koreensis* strain with cyclic lipopeptide-mediated antifungal activity. *MicrobiologyOpen*, 9(9): e1092.

Gutiérrez-García, K., Bustos-Díaz, E.D., Corona-Gómez, J.A., Ramos-Aboites, H.E., Sélem-Mojica, N., Cruz-Morales, P., Pérez-Farrera, M.A., Barona-Gómez, F. and Cibrián-Jaramillo, A. 2018. Cycad coralloid roots contain bacterial communities including cyanobacteria and *Caulobacter spp.* that encode niche-specific biosynthetic gene clusters. *Genome Biology and Evolution*, 11(1): 319-334.

Hill, J.M., Roberts, J., Loeb, E., Khan, A., MacLellan, A. and Hill, R.W. 1967. L-asparaginase therapy for leukemia and other malignant neoplasms: Remission in human leukemia. *Jama*, 202(9): 882-888.

Huang, Y.L., Yang, S., Long, G.X., Zhao, Z.K., Li, X.F. and Gu, M.H. 2016. Manganese toxicity in sugarcane plantlets grown on acidic soils of southern China. *PLoS One*, 11(3): e0148956.

Hug, S., Heiniger, B., Bolli, K., Paszti, S., Eberl, L., Ahrens, C.H. and Pessi, G. 2023. *Paraburkholderia sabiae* uses one type vi secretion system (T6SS-1) as a powerful weapon against notorious plant pathogens. *Microbiology Spectrum*, 11(4): e01622-23.

Ichikawa, S., Abe, R., Fujimoto, H., Higashi, K., Zang, L., Nakayama, H., Matsuoka, I. and Shimada, Y. 2023. *Paraburkholderia sabiae* administration alters zebrafish anxiety-like behavior via gut microbial taurine metabolism. *Frontiers in Microbiology*, 14: 1079187.

Ji, C., Liu, Z., Hao, L., Song, X., Wang, C., Liu, Y., Li, H., Li, C., Gao, Q. and Liu, X. 2020. Effects of *Enterobacter cloacae* HG-1 on the nitrogen-fixing community structure of wheat rhizosphere soil and on salt tolerance. *Frontiers in Plant Science*, 11: 1094.

Kashyap, B.K., Solanki, M.K., Pandey, A.K., Prabha, S., Kumar, P. and Kumari, B. 2019. *Bacillus* as plant growth-promoting rhizobacteria (PGPR): A promising green agriculture technology. In *Plant health under biotic stress*. Edited by Ansari, R. and Mahmood, I. India: Springer Nature Singapore Pte Ltd, 2: 219-236.

Khalid, M., Du, B., Tan, H., Liu, X., Su, L., Ali, M., Liu, C., Sun, N. and Hui, N. 2021. Phosphorus elevation erodes ectomycorrhizal community diversity and induces divergence of saprophytic community composition between vegetation types. *Science of the Total Environment*, 793: 148502.

Khan, M.S., Gao, J., Chen, X., Zhang, M., Yang, F., Du, Y., Moe, T.S., Munir, I., Xue, J. and Zhang, X. 2020. Isolation and characterization of plant growth-promoting endophytic bacteria *Paenibacillus polymyxa* SK1 from *Lilium lancifolium*. *BioMed Research International*, 2020(1): 8650957.

Khoshru, B., Mitra, D., Nosratabad, A.F., Reyhanitabar, A., Mandal, L., Farda, B., Djebaili, R., Pellegrini, M., Guerra-Sierra, B.E., Senapati, A. and Panneerselvam, P. 2023. Enhancing manganese availability for plants through microbial potential: A sustainable approach for improving soil health and food security. *Bacteria*, 2(3): 129-141.

Krywult, M. and Bielec, D. 2013. Method of measurement of nitrate reductase activity in field conditions. *Journal of Ecological Engineering*, 14(1): 7-11.

Li, X.L., Zhao, X.Q., Dong, X.Y., Ma, J.F. and Shen, R.F. 2021. Secretion of gluconic acid from *Nguyenibacter* sp. L1 is responsible for the solubilization of aluminium phosphate. *Frontiers in Microbiology*, 12: 784025.

Li, H.Z., Bi, Q.F., Yang, K., Zheng, B.X., Pu, Q. and Cui, L. 2019. D2O-isotope-labeling approach to probing phosphate-solubilizing bacteria in complex soil communities by single-cell Raman spectroscopy. *Analytical Chemistry*, 91(3): 2239-2246.

Lindblad, P. 2009. Cyanobacteria in symbiosis with cycads. *Prokaryotic symbionts in plants*, 8: 225-233.

Lorenzi, A.S., Bonatelli, M.L., Chia, M.A., Peressim, L. and Quecine, M.C. 2022. Opposite sides of *Pantoea agglomerans* and its associated commercial outlook. *Microorganisms*, 10(10): 2072.

Lötter, M.C. 2015. Technical Report for the Mpumalanga Biodiversity Sector Plan – MBSP. Mpumalanga Tourism & Parks Agency, Mbombela (Nelspruit).

Ma, Y., Jiang, H., Wang, B., Zhou, G., Yu, S., Peng, S., Hao, Y., Wei, X., Liu, J. and Yu, Z. 2009. Carbon storage of cycad and other gymnosperm ecosystems in China: implications to evolutionary trends. *Pol. J. Ecol*, 57(4): 635-646.

Madhaiyan, M., Selvakumar, G., Alex, T.H., Cai, L. and Ji, L. 2021. Plant growth promoting abilities of novel *Burkholderia*-related genera and their interactions with some economically important tree species. *Frontiers in Sustainable Food Systems*, 5: 618305.

Magadlela, A., Makhaye, N. and Pérez-Fernández, M. 2020. Symbionts in *Mucuna pruriens* stimulate plant performance through nitrogen fixation and improved phosphorus acquisition. *Journal of Plant Ecology*, 14(2): 310-322.

Magadlela, A., Beukes, C., Venter, F., Steenkamp, E. and Valentine, A. 2017. Does P deficiency affect nodule bacterial composition and N source utilization in a legume from nutrient-poor Mediterranean-type ecosystems? *Soil Biology and Biochemistry*, 104: 164-174.

Magadlela, A., Kleinert, A., Dreyer, L.L. and Valentine, A.J. 2014. Low-phosphorus conditions affect the nitrogen nutrition and associated carbon costs of two legume tree species from a Mediterranean-type ecosystem. *Australian Journal of Botany*, 62(1): 1-9.

Mankga, L.T. and Yessoufou, K. 2017. Factors driving the global decline of cycad diversity. *AoB Plants*, 9(4): plx022.

Manson, A.D., Bainbridge, S.H. and Thibaud, G.R. 2020. Methods used for the analysis of soils and plant material by Analytical Services at Cedara. *KwaZulu-Natal Department of Agriculture and Rural Development*.

Maquia, I.S., Fareleira, P., Videira e Castro, I., Brito, D.R., Soares, R., Chaúque, A., Ferreira-Pinto, M.M., Lumini, E., Berruti, A., Ribeiro, N.S. and Marques, I. 2020. Mining the microbiome of key species from African savanna woodlands: Potential for soil health improvement and plant growth promotion. *Microorganisms*, 8(9): 1291.

Marler, T.E. and Calonje, M. 2020. Two cycad species affect the carbon, nitrogen, and phosphorus content of soils. *Horticulturae*, 6(2): 24.

Marler, T.E. and Krishnapillai, M.V. 2018. *Cycas micronesica* trees alter local soil traits. *Forests*, 9(9): 565.

Matiwane, S.E., Aremu, A.O., Valentine, A.J. and Magadlela, A. 2019. The nutritional status of KwaZulu-Natal soils affects microbe symbiosis, nitrogen utilization and growth of *Vigna radiata* (L.) R. Walczak. *South African Journal of Botany*, 126: 115-120.

Mattos, K.A., Todeschini, A.R., Heise, N., Jones, C., Previato, J.O. and Mendonça-Previato, L. 2005. Nitrogen-fixing bacterium *Burkholderia brasiliensis* produces a novel yersiniose Acontaining O-polysaccharide. *Glycobiology*, 15(3): 313-321.

Mega, T., Ikenaka, T. and Matsushima, Y. 1972. Studies on N-acetyl-β-D-glucosaminidase of *Aspergillus oryzae*: II. Substrate specificity of the enzyme. *The Journal of Biochemistry*, 71(1): 107-114.

Menard, A., Monnez, C., Estrada de los Santos, P., Segonds, C., Caballero-Mellado, J., LiPuma, J.J., Chabanon, G. and Cournoyer, B. 2007. Selection of nitrogen-fixing deficient *Burkholderia vietnamiensis* strains by cystic fibrosis patients: involvement of nif gene deletions and auxotrophic mutations. *Environmental Microbiology*, 9(5): 1176-1185.

Mir, Y.H., Ganie, M.A., Shah, T.I., Bangroo, S.A., Mir, S.A., Shah, A.M., Wani, F.J., Qin, A. and Rahman, S.U. 2023. Soil microbial and enzyme activities in different land use systems of the Northwestern Himalayas. *PeerJ*, 11: e15993.

Motsomane, N., Suinyuy, T.N., Pérez-Fernández, M.A. and Magadlela, A. 2024. Exploring the influence of ecological niches and hologenome dynamics on the growth of *Encephalartos villosus* in scarp forests. *Soil Systems*, 8(1): 21.

Motsomane, N., Suinyuy, T.N. and Magadlela, A. 2023a. *Encephalartos villosus* relies on atmospheric nitrogen than soil derived nitrogen to maintain growth in nutrient-deficient and acidic soils. Preprint available at Research Square [Doi:10.21203/rs.3.rs-2458246/v1]

Motsomane, N., Suinyuy, T.N., Pérez-Fernández, M.A. and Magadlela, A. 2023b. How the right evolved partners in Cycads and Legumes drive enhanced growth in a harsh environment. *Symbiosis*, 90(3): 345-353.

Msimbira, L.A. and Smith, D.L. 2020. The roles of plant growth-promoting microbes in enhancing plant tolerance to acidity and alkalinity stresses. *Frontiers in Sustainable Food Systems*, 4: 106.

Mumtaz, M.Z., Ahmad, M., Jamil, M. and Hussain, T. 2017. Zinc solubilizing *Bacillus spp*. potential candidates for biofortification in maize. *Microbiological Research*, 202: 51-60.

Nag, P., Mondal, N., Sarkar, J. and Das, S. 2022. *Paraburkholderia bengalensis sp.* nov. isolated from roots of *Oryza sativa*, IR64. *Archives of Microbiology*, 204(6): 347.

Nagalingum, N.S., Marshall, C.R., Quental, T.B., Rai, H.S., Little, D.P. and Mathews, S. 2011. Recent synchronous radiation of a living fossil. *Science*, 334(6057): 796-799.

Nannipieri, P., Giagnoni, L., Landi, L. and Renella, G. 2011. Role of phosphatase enzymes in soil. In *Phosphorus in action: Biological processes in soil phosphorus cycling*. Edited by Bünemann, E., Oberson, A. and Frossard, E. Berlin: Springer, 26: 215-243.

Ndabankulu, K., Egbewale, S.O., Tsvuura, Z. and Magadlela, A. 2022. Soil microbes and associated extracellular enzymes largely impact nutrient bioavailability in acidic and nutrient-poor grassland ecosystem soils. *Scientific Reports*, 12(1): 12601.

Ndlovu, J., Richardson, D.M., Wilson, J.R. and Le Roux, J.J. 2013. Co-invasion of South African ecosystems by an Australian legume and its rhizobial symbionts. *Journal of Biogeography*, 40(7): 1240-1251.

Ndlovu, S., Suinyuy, T.N., Pérez-Fernández, M.A. and Magadlela, A. 2023. *Encephalartos natalensis*, Their Nutrient-Cycling Microbes and Enzymes: A Story of Successful Trade-Offs. *Plants*, 12(5): 1034.

Norstog, K.J. and Nicholls, T.J. 1997. *The biology of the cycads*. London: Cornell University Press.

Ofek, M., Hadar, Y. and Minz, D. 2012. Ecology of root colonizing *Massilia* (Oxalobacteraceae). *PloS one*, 7(7): e40117.

Parham, J.A. and Deng, S.P. 2000. Detection, quantification and characterization of β -glucosaminidase activity in soil. *Soil Biology and Biochemistry*, 32(8-9): 1183-1190.

Pascual, J., Wüst, P.K., Geppert, A., Foesel, B.U., Huber, K.J. and Overmann, J. 2015. *Terriglobus albidus* sp. nov., a member of the family Acidobacteriaceae isolated from Namibian semiarid savannah soil. *International Journal of Systematic and Evolutionary Microbiology*, 65(10): 3297-3304.

Paulitsch, F., Dall'Agnol, R.F., Delamuta, J.R.M., Ribeiro, R.A., da Silva Batista, J.S. and Hungria, M. 2020. *Paraburkholderia atlantica sp.* nov. and *Paraburkholderia franconis sp.* nov., two new nitrogen-fixing nodulating species isolated from Atlantic forest soils in Brazil. *Archives of Microbiology*, 202: 1369-1380.

Pecundo, M.H., Chang, A.C.G., Chen, T., dela Cruz, T.E.E., Ren, H. and Li, N. 2021. Full-length 16S rRNA and ITS gene sequencing revealed rich microbial flora in roots of *Cycas* spp. in China. *Evolutionary Bioinformatics*, 17: 1176934321989713.

Pozzi, R., Simone, M., Mazzetti, C., Maffioli, S., Monciardini, P., Cavaletti, L., Bamonte, R., Sosio, M. and Donadio, S. 2011. The genus *Actinoallomurus* and some of its metabolites. *The Journal of Antibiotics*, 64(1): 133-139.

Rafique, E., Mumtaz, M.Z., Ullah, I., Rehman, A., Qureshi, K.A., Kamran, M., Rehman, M.U., Jaremko, M. and Alenezi, M.A. 2022. Potential of mineral-solubilizing bacteria for physiology and growth promotion of *Chenopodium quinoa* Willd. *Frontiers in Plant Science*, 13: 1004833.

Raihan, M.R.H., Rahman, M., Mahmud, N.U., Adak, M.K., Islam, T., Fujita, M. and Hasanuzzaman, M. 2022. Application of rhizobacteria, *Paraburkholderia fungorum* and *Delftia sp.* confer cadmium tolerance in rapeseed (*Brassica campestris*) through modulating antioxidant defense and glyoxalase systems. *Plants*, 11(20): 2738.

Ran, T., Li, J., Liao, H., Zhao, Y., Yang, G. and Long, J. 2023. Effects of biochar amendment on bacterial communities and their function predictions in a microplastic-contaminated *Capsicum annuum* L. soil. *Environmental Technology & Innovation*, 31: 103174.

Rojas, A., Holguin, G., Glick, B.R. and Bashan, Y. 2001. Synergism between *Phyllobacterium sp.*(N2-fixer) and *Bacillus licheniformis* (P-solubilizer), both from a semiarid mangrove rhizosphere. *FEMS Microbiology Ecology*, 35(2): 181-187.

Rouhrazi, K., Khodakaramian, G. and Velazquez, E. 2016. Phylogenetic diversity of rhizobial species and symbiovars nodulating *Phaseolus vulgaris* in Iran. *FEMS Microbiology Letters*, 363(5): fnw024.

Saadouli, I., Mosbah, A., Ferjani, R., Stathopoulou, P., Galiatsatos, I., Asimakis, E., Marasco, R., Daffonchio, D., Tsiamis, G. and Ouzari, H.I. 2021. The impact of the inoculation of phosphate-solubilizing bacteria *Pantoea agglomerans* on phosphorus availability and bacterial community dynamics of a semi-arid soil. *Microorganisms*, 9(8): 1661.

Santos, H.L., Silva, G.F.D., Carnietto, M.R.A., Oliveira, L.C., Nogueira, C.H.D. and Silva, M.D.A. 2022. *Bacillus velezensis* associated with organomineral fertilizer and reduced phosphate doses improves soil microbial—chemical properties and biomass of sugarcane. *Agronomy*, 12(11): 2701.

Satuti, N.H., Moriguchi, K., Sato, M., Kataoka, M., Maeda, Y., Tanaka, N. and Yoshida, K. 2000. Genome structure of Ri plasmid (3). Sequencing analysis of the vir region of pRi1724 in Japanese *Agrobacterium rhizogenes*. In *Nucleic acids symposium series*, 44(1): 95-96.

Sawada, H., Ieki, H., Oyaizu, H. and Matsumoto, S. 1993. Proposal for rejection of *Agrobacterium tumefaciens* and revised descriptions for the genus *Agrobacterium* and for *Agrobacterium radiobacter* and *Agrobacterium rhizogenes*. *International Journal of Systematic and Evolutionary Microbiology*, 43(4): 694-702.

Saxena, A.K., Kumar, M., Chakdar, H., Anuroopa, N. and Bagyaraj, D.J. 2020. *Bacillus* species in soil as a natural resource for plant health and nutrition. *Journal of Applied Microbiology*, 128(6): 1583-1594.

Shah, A., Nazari, M., Antar, M., Msimbira, L.A., Naamala, J., Lyu, D., Rabileh, M., Zajonc, J. and Smith, D.L. 2021. PGPR in agriculture: A sustainable approach to increasing climate change resilience. *Frontiers in Sustainable Food Systems*, 5: 667546.

Shi, H., Lu, L., Ye, J. and Shi, L. 2022. Effects of two *Bacillus velezensis* microbial inoculants on the growth and rhizosphere soil environment of *Prunus davidiana*. *International Journal of Molecular Sciences*, 23(21): 13639.

Sigasa, M.N., Yessoufou, K., Magadlela, A., Otang-Mbeng, W. and Suinyuy, T.N. 2023. Population structure of an African cycad: Fire may stimulate the coning phenology of

Encephalartos lanatus (Zamiaceae) and also predispose its cones to damage. Diversity, 15(10): 1075.

Suárez-Moo, P.D.J., Vovides, A.P., Griffith, M.P., Barona-Gómez, F. and Cibrián-Jaramillo, A. 2019. Unlocking a high bacterial diversity in the coralloid root microbiome from the cycad genus *Dioon. PLoS One*, 14(2): e0211271.

Sudhakaran, M. and Ravanachandar, A. 2020. Role of soil enzymes in agroecosystem. *Biotica Research Today*, 2(6): 443-444.

Swart, C., Rowswell, R., Donaldson, J. and Barker, N. 2019. Population structure and survival of the critically endangered cycad *Encephalartos latifrons* in South Africa. *South African Journal of Botany*, 127: 80-90.

Tariq, M.R., Shaheen, F., Mustafa, S., Sajid, A.L.I., Fatima, A., Shafiq, M., Safdar, W., Sheas, M.N., Hameed, A. and Nasir, M.A. 2022. Phosphate-solubilizing microorganisms isolated from medicinal plants improve growth of mint. *PeerJ*, 10: e13782.

Terry, I., Forster, P.I., Moore, C.J., Roemer, R.B. and Machin, P.J. 2008. Demographics, pollination syndrome and conservation status of *Macrozamia platyrhachis* (Zamiaceae), a geographically restricted Queensland cycad. *Australian Journal of Botany*, 56(4): 321-332.

Turner, B.L. 2010. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils. *Applied and Environmental Microbiology*, 76(19): 6485-6493.

Ullah, S., Ai, C., Huang, S., Zhang, J., Jia, L., Ma, J., Zhou, W. and He, P. 2019. The responses of extracellular enzyme activities and microbial community composition under nitrogen addition in an upland soil. *PLoS One*, 14(9): e0223026.

Vasconcelos, A.L., Andreote, F.D., Defalco, T., Delbaje, E., Barrientos, L., Dias, A.C., Gabriel, F.A., Bernardino, A.F. and Núñez-Montero, K. 2022. *Mucilaginibacter sp.* strain metal (loid) and antibiotic resistance isolated from estuarine soil contaminated mine tailing from the Fundão dam. *Genes*, 13(2): 174.

Wan, W., Qin, Y., Wu, H., Zuo, W., He, H., Tan, J., Wang, Y. and He, D. 2020. Isolation and characterization of phosphorus-solubilizing bacteria with multiple phosphorus sources utilizing capability and their potential for lead immobilization in soil. *Frontiers in Microbiology*, 11: 752.

Wang, Y., Shi, Y., Li, B., Shan, C., Ibrahim, M., Jabeen, A., Xie, G. and Sun, G. 2012. Phosphate solubilization of *Paenibacillus polymyxa* and *Paenibacillus macerans* from mycorrhizal and non-mycorrhizal cucumber plants. *African Journal of Microbiology Research*, 6(21): 4567-4573.

Wibowo, H. and Kasno, A. 2021. Soil organic carbon and total nitrogen dynamics in paddy soils on the Java Island, Indonesia. *Earth and Environmental Science* 648(1): 012192.

Wilhelm, R.C., Murphy, S.J., Feriancek, N.M., Karasz, D.C., DeRito, C.M., Newman, J.D. and Buckley, D.H. 2020. *Paraburkholderia madseniana sp.* nov., a phenolic acid-degrading bacterium isolated from acidic forest soil. *International Journal of Systematic and Evolutionary Microbiology*, 70(3): 2137-2146.

Won, S.J., Kwon, J.H., Kim, D.H. and Ahn, Y.S. 2019. The effect of *Bacillus licheniformis* MH48 on control of foliar fungal diseases and growth promotion of *Camellia oleifera* seedlings in the coastal reclaimed land of Korea. *Pathogens*, 8(1): 6.

Yessoufou, K., Daru, B.H., Tafirei, R., Elansary, H.O. and Rampedi, I. 2017. Integrating biogeography, threat and evolutionary data to explore extinction crisis in the taxonomic group of cycads. *Ecology and Evolution*, 7(8): 2735-2746.

Yessoufou, K., Bamigboye, S.O., Daru, B.H. and Van der Bank, M. 2014. Evidence of constant diversification punctuated by a mass extinction in the African cycads. *Ecology and Evolution*, 4(1): 50-58.

Yoneyama, K., Xie, X., Kim, H.I., Kisugi, T., Nomura, T., Sekimoto, H., Yokota, T. and Yoneyama, K. 2012. How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? *Planta*, 235: 1197-1207.

You, M., Fang, S., MacDonald, J., Xu, J. and Yuan, Z.C. 2020. Isolation and characterization of *Burkholderia cenocepacia* CR318, a phosphate-solubilizing bacterium promoting corn growth. *Microbiological Research*, 233: 126395.

Zhang, X., Tong, J., Dong, M., Akhtar, K. and He, B. 2022. Isolation, identification and characterization of nitrogen fixing endophytic bacteria and their effects on cassava production. *PeerJ*, 10: e12677.

Zheng, Y. and Gong, X. 2019. Niche differentiation rather than biogeography shapes the diversity and composition of microbiome of *Cycas panzhihuaensis*. *Microbiome*, 7(1): 1-19.

Zungu, N.S., Egbewale, S.O., Olaniran, A.O., Pérez-Fernández, M. and Magadlela, A. 2020. Soil nutrition, microbial composition and associated soil enzyme activities in KwaZulu-Natal grasslands and savannah ecosystems soils. *Applied Soil Ecology*, 155: 103663.

Chapter 5

General Conclusions and Recommendations

5.1 General conclusions

Cycads represent a lineage of gymnosperm plants that have existed for an extensive period. Given their evolutionary history, they have evolved to be able to survive and even benefit from fire, which has both positive and negative effects on their population and reproductive structure. Cycads play an essential role in ecosystem services (Ndlovu *et al.*, 2023; Motsomane *et al.*, 2024) and are recognized as one of the most endangered groups of plants that have managed to survive extinction (Donaldson, 2011; Álvarez-Yepíz *et al.*, 2019). They are found in environments such as dunes, rocky outcrops, and areas prone to recurrent fires, which are not conducive to plant growth (Álvarez-Yepíz *et al.*, 2014). Their ability to thrive in these ecosystems is thought to be significantly associated with their ability to form symbiotic relationships with BNF cyanobacteria (Zheng *et al.*, 2018; Zheng and Gong, 2019).

The results of the study showed that several factors may hinder the development or growth of *E. lanatus* plants. These factors include damage of plant reproductive and vegetative structures by baboon, irregular fires that burn the plants and the and nutrient-deficient soils. Nevertheless, *E. lanatus* has evolved mechanisms that allow the plant to persist in challenging conditions by harbouring microbes for survival. The presence of these microbes, together with their extracellular enzymes, renders insoluble nutrients accessible for *E. lanatus* utilization. Conversely, fire facilitates the regeneration and cone production of *E. lanatus*.

5.2 Recommendations for future work

Having a greater understanding of cycad reproduction is of paramount importance for conservation groups (Calonje *et al.*, 2011). This knowledge may aid in developing strategies to enhance the reproductive success of cycads by providing them with the necessary resources and optimal conditions. In the future, it will be important to carry out a study on pollination syndrome and the impact of fire on pollinators in order to gain significant knowledge regarding the reproduction of cycads and population dynamics. Additionally, it will also be advisable to assess the optimal nutrient levels for cycad growth. This investigation may reveal that what we currently perceive as low or high nutrient concentrations may be suitable for cycad growth. Consequently, the plants may not rely on the microbes present in the soil or coralloid roots but rather utilize the nutrients already available in the soil to enhance their growth.

References

Álvarez-Yépiz, J.C., Búrquez, A., Martínez-Yrízar, A. and Dovciak, M. 2019. A trait-based approach to the conservation of threatened plant species. *Oryx*, 53(3): 429-435.

Álvarez-Yépiz, J.C., Cueva, A., Dovčiak, M., Teece, M. and Yepez, E.A. 2014. Ontogenetic resource-use strategies in a rare long-lived cycad along environmental gradients. *Conservation Physiology*, 2(1): cou034.

Calonje, M., Kay, J. and Griffith, M.P. 2011. Propagation of cycad collections from seed: Applied reproductive biology for conservation. *Sibbaldia: The International Journal of Botanic Garden Horticulture*, (9): 79-96.

Donaldson, J.S. 2011. An overview of cycad conservation based on the 2010 global cycad assessment and its implications for the IUCN/SSC cycad action plan. *Journal of Fairylake Botanical Garden*, 10: 47.

Motsomane, N., Suinyuy, T.N., Pérez-Fernández, M.A. and Magadlela, A. 2024. Exploring the influence of ecological niches and hologenome dynamics on the growth of *Encephalartos villosus* in scarp forests. *Soil Systems*, 8(1): 21.

Ndlovu, S., Suinyuy, T.N., Pérez-Fernández, M.A. and Magadlela, A. 2023. *Encephalartos natalensis*, Their Nutrient-Cycling Microbes and Enzymes: A Story of Successful Trade-Offs. *Plants*, 12(5): 1034.

Zheng, Y. and Gong, X. 2019. Niche differentiation rather than biogeography shapes the diversity and composition of microbiome of *Cycas panzhihuaensis*. *Microbiome*, 7(1): 1-19.

Zheng, Y., Chiang, T.Y., Huang, C.L. and Gong, X. 2018. Highly diverse endophytes in roots of *Cycas bifida* (Cycadaceae), an ancient but endangered gymnosperm. *Journal of Microbiology*, 56: 337-345.