Nutraceutical properties of wild fruit plants in Mpumalanga

Sinorita Chauke

230013937

orcid.org/ 0000-0001-5751-6882

A dissertation submitted in fulfilment of the requirements for the Master of Science degree

Supervisor: Prof Wilfred Otang Mbeng

Co-supervisor(s): Dr Tshepiso Ndhlovu

Dr Bongisiwe Shelembe

School of Biology and Environmental Sciences Faculty of Agriculture and Natural Sciences

2025

DECLARATION

I declare that this dissertation titled "Nutraceutical properties of wild fruit plants in Mpumalanga" was carried out at the University of Mpumalanga under the joint supervision of Prof. Wilfred Otang Mbeng, Dr. Tshepiso Ndhlovu, and Dr. Bongisiwe Shelembe. The dissertation presented here results from my original research efforts and has not been offered for any degree or diploma at any other institution. Any references to work conducted by others or materials obtained from external sources have been appropriately cited and referenced.

STUDENT:	
Ms. S Chauke	05/04/2025 Date
SUPERVISOR:	
9A.7	05/04/2025
Prof. W Otang-Mbeng	Date
CO-SUPERVISORS:	
	05/04/2025
Dr. T Ndhlovu	Date
Belo	07/04/2025
Dr. B.G Shelembe	Date

DEDICATION

To the unwavering resilience, unshakable strength, and unstoppable determination within me, this dissertation is a testament to the challenges I have overcome and the growth I have embraced. I dedicate this work to the dreamer who dared to begin and the achiever who saw it through. Here's to believing in myself, always!!

ACKNOWLEDGMENTS

- I am deeply grateful to the Almighty God for His unwavering faithfulness and fulfilment of His promises in my life. In moments of challenge, fear, and doubt, I found strength and comfort in the scripture from Isaiah 55:9: "For as the heavens are higher than the earth, so are my ways higher than your ways, and my thoughts than your thoughts." Completing this Master of Science degree is a true testament that His plans for me were bigger than I had imagined.
- O I would like to express my heartfelt appreciation to my supervisors, Dr. Tshepiso Ndhlovu, Dr. Bongisiwe Shelembe, and Prof. Wilfred Otang-Mbeng for their unwavering support, invaluable guidance, and encouragement throughout this journey. Your mentorship has not only shaped my academic growth but also inspired me to strive for excellence. I am deeply grateful for your patience, dedication, and belief in my abilities, which have been a constant source of motivation.
- Special thanks to Valentine from the University of KwaZulu-Natal, Department of Chemistry, for her invaluable assistance with the elemental analysis of plant samples.
- To Dr. Luambo Ramarumo, your kindness and willingness to help have not gone unnoticed. Thank you.
- To my father, Daniel Chauke, I cannot thank you enough for your steadfast support throughout my academic career. Your help with plant collection and permit applications has been indispensable.
- To my mother, Loyce Mnisi, your constant phone calls and prayers have been a source of strength and comfort. I am forever grateful.
- My deepest gratitude to Ms. Kgaugelo Malesa for making me feel welcome at the University of Mpumalanga. Your kindness and friendship made the challenges in the lab more bearable.
- Thank you to Ms. Sandra Motsatsi Mokhwanatsi for your emotional support, prayers, and the cherished sisterhood we have built during this academic journey.
- To Dr. Caroline Tambudzani Machaba, thank you for stepping in as an older sister in academia, I appreciate your consistent words of encouragement and constant reminders to always pray and trust in God throughout the process.

- To Ms. Karabo Dinkwanyane, thank you for being more than a friend—a true sister who has always been there with a listening ear, wise advice, and unwavering support. Despite the physical distance between us, your WhatsApp messages never failed to uplift my spirit, leaving me encouraged and strengthened every time.
- To Ms. Wonderful Mathonsi and Ms. Priestage Mosibudi Mathekgana, thank you for standing by me and supporting my dreams. You were always there when I needed someone to talk to, prayer partners in times of need, and a source of emotional strength through every challenge. I am deeply grateful for your prayers and unwavering presence. May God bless you both abundantly.
- Lastly, I am immensely thankful to the National Research Foundation, the Water Research Council, and the University of Mpumalanga for providing the financial support and facilities that made this research possible.

ABSTRACT

Nutraceuticals have emerged as reliable substances for managing health conditions by providing both nutrition and phytotherapy. Wild fruit plants, with a long history of use by local communities for nutritional and medicinal purposes, represent promising candidates for nutraceutical development. This study aimed to explore the nutraceutical properties of wild fruit plants harvested from Bushbuckridge local municipality, Mpumalanga Province, South Africa. A comprehensive literature survey on wild fruit plants in Mpumalanga Province identified five key studies documenting a total of 83 wild fruit plant species from 61 genera and 31 families. The review highlighted research gaps, including the need to explore under-documented regions and variations in the cultural use of these plants across different ethnic groups. Based on their medicinal and nutritional uses, frequency of citation, and research gaps, six wild fruit plants were selected for further investigation: Carissa spinarum L., Diospyros mespiliformis Hochst. ex A.DC., Euclea crispa (Thunb.) Gürke, Ficus thonningii Blume, Strychnos spinosa Lam., and Strychnos madagascariensis Poir. The antimicrobial activity of the leaves of these plant species were tested against the bacterial skin pathogens Klebsiella pneumoniae and Pseudomonas aeruginosa. Using disc diffusion, the hexane extracts of *D. mespiliformis* and *E. crispa* had an inhibition zone of 28 mm against P. aeruginosa. The microdilution assay also revealed that the methanol extract of *D. mespiliformis* exhibited the strongest activity against both pathogens, with a minimum inhibitory concentration (MIC) ranging from 0.781 to 1.563 mg/mL. The antioxidant potential of the plant leaves was determined using 2,2diphenyl-1-picryhydrazyl (DPPH) and Ferric Reducing Antioxidant Power (FRAP) assays. The methanol extract of *E. crispa* demonstrated potent antioxidant activity, with a half-maximal inhibitory concentration (IC₅₀) of 1.42 µg/mL, comparable to standard ascorbic acid. Other species, including C. spinarum and S. spinosa, also showed promising antioxidant activity, highlighting their potential to mitigate oxidative stress-related conditions. The nutritional and mineral compositions of F. thonningii fruits and the pulp, peel, and seeds of *D. mespiliformis* and *S. spinosa* were analysed. The proximate analysis of the fruits revealed significant protein and fibre content. The elemental analysis of the leaves and fruit showed a wide range of minerals present in the leaves and fruit. Notably, S. spinosa peels contained 44.21% fibre, while its leaves were rich in manganese (1,728 mg/kg). Elemental analysis identified essential

minerals like calcium, iron, and magnesium, but also detected heavy metals, such as arsenic, cadmium, and chromium, in the fruits, posing potential toxicity risks. The study demonstrates that wild fruit plants possess significant nutraceutical potential due to their antimicrobial, antioxidant, and nutritional properties. These findings validate their traditional uses and underscore their potential role in addressing food insecurity, managing health disorders, and developing nutraceutical products.

DEFINITIONS OF KEY CONCEPTS

Antibacterial activity- the ability of a substance to suppress the growth or destroy bacteria, helping to prevent or treat bacterial infections (Pancu et al., 2021).

Antioxidant activity- the ability of a substance to inhibit oxidation by neutralising free radicals or reactive oxygen species, thereby reducing oxidative stress and preventing cellular damage (Adeshina et al., 2011).

Bioaccumulation- is the buildup of pollutants in organisms from both dietary sources (trophic transfer) and the abiotic environment (such as air, water, and soil). This process occurs when toxins are absorbed by species faster than they can be eliminated (Nnaji et al., 2023).

Carcinogenic risk- the potential for harmful compounds in the plant to cause cancer, based on the presence of toxins or carcinogenic substances.

Conservation status- describes the information on the preservation and protection of the plant species, including any threats to their survival.

Drug resistance- refers to the reduced effectiveness of a specific drug in preventing or treating a condition (Magiorakos et al., 2012).

Diseases treated – details the specific ailments or health conditions that the plants are known to address.

Elemental analysis- refers to the identification and quantification of minerals and trace elements in the plant, assessing its nutritional and therapeutic potential.

Ferric reducing power- the ability of a substance to reduce ferric ions (Fe³⁺) to ferrous ions (Fe²⁺), indicating its potential as an antioxidant (Berker et al., 2007).

Free radical scavenging activity- the ability of substances to neutralise free radicals which cause oxidative stress and associated health risks as well as cellular damage (Adeshina et al., 2011).

Half-maximal inhibitory concentration- a quantitative measure of the concentration of a substance required to produce 50% of its maximum antioxidant effect in a given system (Qureshi et al., 2015).

Medicinal plants- plants are used to maintain health and treat specific ailments, serving diverse purposes in both conventional medicine and traditional healing systems (Smith-Hall et al., 2012)

Medicinal uses- an exploration of how these plants are utilised for therapeutic purposes, including the treatment of specific diseases or health conditions.

Methods of preparation – describes the various ways the plants are processed or prepared for medicinal or nutritional use.

Minimum inhibitory concentration - indicates the lowest concentration of a substance required to suppress the growth of specific bacterial strains (Ryu et al., 2024).

Non-carcinogenic Risk/Target Hazardous Quotient- a measure of the health risks from non-carcinogenic substances in the plant, with the target hazardous quotient indicating the likelihood of adverse effects.

Nutraceuticals- are bioactive substances derived from food sources, including plants, that provide health benefits beyond basic nutrition, contributing to the prevention and treatment of diseases (Aronson, 2017).

Nutritional uses - focuses on the dietary value of the plants, highlighting their role in nutrition, such as their vitamins, minerals, or other beneficial compounds.

Oxidative stress - an imbalance where the production of reactive oxygen species (ROS) exceeds the body's antioxidant defences, resulting in disrupted redox signaling, impaired cellular control, and potential molecular damage (Vo et al., 2024).

Plant parts used - specifies which parts of the plant (e.g., roots, leaves, fruits, bark) are utilized for medicinal or nutritional purposes.

Proximate components- the basic nutritional constituents of the plant, including moisture, protein, fat, carbohydrates, fiber, and ash, that determine its overall nutritional value.

Skin diseases - are a broad category of medical conditions that affect the skin, resulting in symptoms such as inflammation, irritation, infection, or abnormal growths, ranging from mild to severe (Saodat et al., 2024).

Wild plant species- are plants that grow naturally in their native habitats without cultivation or human intervention (Radeva et al., 2023).

PUBLICATIONS

Publication: Chauke, S., Shelembe, B.G., Otang-Mbeng, W. and Ndhlovu, P.T., 2024. Ethnobotanical appraisal of wild fruit species used in Mpumalanga Province, South Africa: A systematic review. South African Journal of Botany, 171: 602-633.

Publication: Chauke, S., Tshitshi, L., Matlala, M.E., Otang-Mbeng, W., Shelembe, B.G., Ndhlovu, P.T., 2025. Antioxidative and antibacterial activity of indigenous edible wild fruit species from Bushbuckridge Local Municipality, South Africa. Journal of Herbmed Pharmacology, 14(2): 230-240.

Publication under review: Chauke, S., Matlala, M.E, Otang-Mbeng, W., Shelembe, B.G., Ndhlovu, P.T., 2025. Nutritional, mineral compositions, and metal bioaccumulation profiles of *Diospyros mespiliformis* Hochst. Ex A. DC., *Ficus thonningii* Blume, and *Strychnos spinosa* Lam.: Implications for food security. Measurement: Food.

CONFERENCE OUTPUTS

Chauke S, Tshitshi L, Matlala ME, Otang-Mbeng W, Shelembe BG, Ndhlovu PT., 2024. Antibacterial activity of the leaves of six indigenous wild fruit species against bacterial pathogens of the skin. University of Mpumalanga Research and Innovation Day. Mbombela, South Africa (27th November 2024) (Poster presentation).

LIST OF TABLES

Table 2. 1 Cosmeceuticals developed from plant species by South African companies (Gebashe et al., 2022)
Table 2. 2 Ethnobotanical knowledge of wild fruit plant species in Mpumalanga Province, South Africa. The scientific names were verified using The World Flora Online (www.worldfloraonline.org) and conservation statuses were verified using the South African Red data list (redlist.sanbi.org)
Table 2. 3 An inventory of wild fruit plants in different regions of the Mpumalanga Province, South Africa84
Table 2. 4 Edible wild fruit plant species cited in all five ethnobotanical studies 93
Table 3.1 Extraction yield of six wild edible fruit species leaves using various solvents
Table 3.2 Antibacterial activity of plant extracts against <i>Klebsiella pneumoniae</i> and <i>Pseudomonas aeruginosa</i> assessed through disc diffusion and broth microdilution assays
Table 3.3 Half-maximal inhibitory concentration (IC ₅₀) of acetone, hexane, and methanol extracts of the leaves of six wild edible fruit species
Table 4.1 Dates of collection of the samples that were collected and analysed for nutritional and elemental content
Table 4.2 Certified and found values of certified reference material (strawberry leaves)
Table 4.3 The oral toxicity reference dose (RfD) of toxic minerals (Adeagbo et al. 2024).2024).
Table 4.4 Nutritional composition of wild fruits harvested from the Mpumalanga Province. 207
Table 4.5 Elemental analysis of the fruit and leaf samples of selected plant species and the soil samples from their respective sites.
Table 4.6 Correlation coefficients (r) and significance (p) levels between elementa composition, proximate components, and soil samples of <i>Diospyros mespiliformis</i> fruit
Table 4.7 Bioaccumulation factors of toxic and microminerals in the leaves and fruit o wild fruits. 213
Table 4.8 Health risk assessment of toxic elements detected in the edible parts (Pulp of wild fruit plants
Table D. 1 Correlation coefficients (<i>r</i>) and significance (<i>p</i>) levels between elemental composition, proximate components of <i>Ficus thonningii</i> fruit and
respective soil samples from the collection site

LIST OF FIGURES

Figure 1. 1 Different sources of nutraceuticals (Kaur et al., 2019)	2
Figure 2. 1 Physical manifestation of different skin conditions on the human ski (Raina et al., 2023)	
Figure 2. 2 Scanning electron microscopy image of <i>K. pneumoniae</i> (Kareem an Alsammak, 2017)	
Figure 2. 3 Scanning electron microscopy image of <i>P. aeruginosa</i> (Tyavambiza 2018)	
Figure 2. 4 Various skin conditions resulting from oxidative stress (Baek and Lee 2016)	
Figure 2. 5 Nutraceutical antioxidants from various plant sources (Kelsey et al., 2010	9
Figure 2. 6 Flow diagram indicating the literature search and selection process 5 Figure 2. 7 Growth form of wild fruit plants used in Mpumalanga Province, Sout Africa	h 5
Figure 2. 8 Marula fruit processed into local (jam and wine) and international product (cream liqueur) (Hyslop, 2012; Mutuwa, 2021)	5
Figure 2. 9 Percentages of different fruit types among wild fruit plants	
Figure 2. 10 Percentage of wild fruit plants used to treat various categories of ailment in the Mpumalanga Province, South Africa	7
Figure 2. 11 Percentage of plant parts used for medicinal purposes in Mpumalang Province, South Africa	7
Figure 2. 12 Mode of preparation of wild fruit plant part preparation for traditional medicinal use in the Mpumalanga Province	9
Figure 2. 13 Wild fruit plants of commercial significance in the Mpumalanga Province (a) <i>S. madagascariensis</i> (Akweni et al., 2022), (b) <i>V. infausta</i> (Mdungazi et al., 2024), and (c) <i>C. spinarum</i> (Siyum and Meresa, 2021)	et
Figure 2. 14 Carissa spinarum L. (a) whole plant and (b) leaves),
Figure 2. 16 Euclea crispa (Thunb.) Gürke whole plant (a) and leaves (b)	
Figure 2. 17 Ficus thonningii Blume whole plant (a), leaves (b), and fruit (c) 9 Figure 2. 18 Strychnos madagascariensis Poir. whole plant (a), fruit and leaves (b)	
Figure 2. 19 Strychnos spinosa Lam. whole plant (a), leaves (b), and fruit (c) 9	
Figure 3.1 A map indicating the villages from which the selected plant species wer collected. <i>C. spinarum</i> and <i>D. mespiliformis</i> (Gottenburg village), <i>E. crisp</i> (Clare), <i>F. thonningii</i> (Seville), and <i>S. spinosa</i> and <i>S. madagascariens</i> (Welverdiend)	a is
Figure 3.2 Antioxidant activity of hexane, acetone, and methanol leaf extracts from of spinarum, D. mespiliformis, E. crispa, F. thonningii, S. spinosa, and S.	С.

madagascariensis, evaluated against the 1,1-diphenyl-2-picrylhydrazyl
(DPPH) radical. Letter labels on the bar graphs indicate significant
differences (p < 0.05) in the antioxidant activities of each plant extract
compared to the positive control (ascorbic acid). Different letters indicate a
significant difference (p < 0.05) between the antioxidant activities of plant
extracts
Figure 3.3 Ferric reducing power of hexane, acetone, and methanol leaf extracts from
C. spinarum, D. mespiliformis, E. crispa, F. thonningii, S. spinosa, and S.
madagascariensis. Distinct letters on the line graphs indicate significant
differences (p < 0.05) in the reducing power of each extract compared to
· · · · · · · · · · · · · · · · · · ·
the positive controls (ascorbic acid and butylated hydroxytoluene) at 250
μ g/mL, whereas the same letter denotes no significant difference (p > 0.05).
Figure D. 1 Calibration curves for arsenic (As) at 228.81 nm, Cadmium (Cd) at
228.80 nm, Calcium (Ca) at 315.89 nm, Copper (Cu) at 228.62 nm,
Cobalt (Co) at 228.62 nm, and Chromium (Cr) at 205.56 nm,
demonstrating the relationship between concentration (mg/L) and
corrected intensity. The R ² values, representing the goodness of fit and
reliability of the calibration curves, were ≥ 0.99 for all elements 246
Figure D. 2 Calibration curves for Iron (Fe) at 239.56 nm, Manganese (Mn) at
260.57 nm, Magnesium (Mg) at 285.21 nm, Lead (Pb) at 217 nm,
Selenium (Se) at 196.03 nm, and Zinc (Zn) at 213.86 nm,
demonstrating the relationship between concentration (mg/L) and
corrected intensity. The R2 values, representing the goodness of fit and
reliability of the calibration curves, were ≥ 0.99 for all elements except
Iron247

LIST OF ABBREVIATIONS

AIDS Acquired Immunodeficiency Syndrome

ATCC American Type of Culture Collection

As Arsenic

BAF Bioaccumulation Factor

BHT Butylated Hydroxytoluene

Ca Calcium

Cd Cadmium

CDI Chronic Daily Intake

Cr Chromium

CRM Certified Reference Material

Co Cobalt

Cu Copper

DNA Deoxyribonucleic acid

DPPH 2,2-diphenyl-1-picryhydrazyl

EDI Estimated Daily Intake

Ev Energy value

Fe Iron

Fe³⁺ Ferric ion

Fe²⁺ Ferrous ion

FeCl₃ Iron (III) chloride

FRAP Ferric Reducing Antioxidant Power

IC₅₀ Half-maximal inhibitory concentration

HNO₃ Nitric acid

ICP-OES Inductively Coupled Plasma-Optical Emission Spectrometry

K Potassium

Mg Magnesium

MH Mueller-Hinton

MIC Minimum inhibitory concentration

MTPA Mpumalanga Tourism and Parks Agency

Mn Manganese

NaOH Sodium hydroxide

Ni Nickel

N Nitrogen

¹O₂ Singlet oxygen

O2o- Superoxide anion

OH° Hydroxyl radical

p Statistical significance

P Phosphorus

Pb Lead

r Correlation coefficient

R_fD Oral toxicity reference dose

RSA Free Radical Scavenging Activity

ROS Reactive Oxygen Species

RSD Relative Standard Deviation

SANBI South African National Biodiversity Institute

SD Standard Deviation

Se Selenium

SF Slope Factor

SMME South African Small, Medium, and Micro Enterprise

SPSS Statistical Package for the Social Sciences

TCR Target Carcinogenic Risk

THQ Target Hazard Quotient

USEPA United States Environmental Protection Agency

UV Ultraviolet

Zn Zinc

LIST OF APPENDICES

Appendix **A**: Ethical approval

Appendix **B**: Plant collection permit

Appendix **C**: Turnitin report

Appendix **D**: Supplementary data

Table of contents

DECLARATION	i
DEDICATION	ii
ACKNOWLEDGMENTS	iii
ABSTRACT	V
DEFINITIONS OF KEY CONCEPTS	. vii
PUBLICATIONS	X
CONFERENCE OUTPUTS	xi
LIST OF TABLES	. Xİİ
LIST OF FIGURES	Xiii
LIST OF ABBREVIATIONS	.XV
LIST OF APPENDICESx	viii
Chapter 1.0: General introduction	21
1.1 Introduction	21
1.2 Problem statement	24
1.3 Rationale and justification	24
1.4 Research aim	26
1.5 Research questions	26
1.7 Scope and limiting factors	26
1.8. Ethical consideration	27
1.9 Dissertation outline	28
References	30
Chapter 2.0: Literature review	39
Summary	39
2.1 Introduction	40
2.2 Types of skin diseases	41
2.3 Bacterial pathogens responsible for skin diseases study	41
2.4 Impact of oxidative stress on the skin	43
2.5 Social and psychological impact of skin diseases	43
2.6 Treatment of skin diseases and challenges	44
2.7 Significance of nutraceutical traditional knowledge	46
2.8 Nutraceuticals as skincare products	47
2.9 Types of nutraceuticals and their impacts on skin health	49
2.10 A systematic review of wild fruit plant species in the Mpumalanga Province, South Africa	

2.11 Plant species selected for further studies	96
2.12 Concluding remarks	99
References	100
Chapter 3.0: Antibacterial and antioxidant activities of the leaves of six wild species	-
Summary	170
3.1 Introduction	171
3.2 Materials and methods	173
3.3 Results	177
4.4 Discussion	184
3.5 Concluding remarks	188
References	190
Chapter 4.0: The nutritional and mineral composition of wild fruit plants harve Mpumalanga Province	
Summary	198
4.1 Introduction	198
4.2 Materials and methods	200
4.3 Results	207
4.4 Discussion	215
4.5 Concluding remarks	226
References	227
Chapter 5.0: General conclusion and implications for future research	239
Summary	239
5.1 Specific objectives and findings	239
5.3 Implications of the current findings in clinical practice and dermatolog	y 240
5.4 Implications for future research	241
5.5 Concluding remarks	242
Appendix A: Ethical approval	243
Appendix B: Plant collection permit	244
Appendix C: Turnitin report	245
Appendix D: Supplementary data	246

Chapter 1.0: General introduction

1.1 Introduction

The term "Nutraceutical" arises from both "Nutrition" and "Pharmaceutical" (Rajat et al., 2012). Nutraceuticals represent a rising category of natural products blurring the distinction between medicine and food (Adetuyi et al., 2022). Hence, nutraceuticals are foods which also offer health benefits, such as the prevention and treatment of diseases (DeFelice, 1995). In addition, they are considered medicine due to their physiological effects on the human body (Pandey et al., 2010). A nutraceutical can also be referred to as medical, designer or functional food; phytochemical, or nutritional supplement (Dable-Tupas et al., 2020). According to Prabu et al. (2012), nutraceuticals are classified into dietary supplements, herbals or botanicals, and nutrients. Nutraceuticals are also divided into antioxidants, dietary fibres, polyphenols, and spices (Kaur et al., 2015). They are available as capsules, pills, and tablets (Bernal et al., 2011).

The nutraceutical sector is experiencing significant growth and expansion at a rapid pace since they are regarded as proactive essentials for healthcare (Pandey et al., 2024). Present healthcare markets are leaning towards proactive health approaches, prioritising prevention over treatment and disease control. Furthermore, the nutraceutical industry is presently a significant multi-billion-dollar sector, poised for rapid expansion in the coming decade (Chopra et al., 2022). As highlighted by Jayaweera (2023), the global market of nutraceuticals is predicted to be worth US\$358.5 billion by 2027. However, Habeeba and Mehta (2022) highlighted that the nutraceutical industry is currently in its developmental phase, lacking a universally agreed-upon set of terms and designations recognised legally within this sector. Al-Obaidi et al. (2021) suggests the strict regulation of the nutraceutical industry with evidence supporting minimum safety and quality standards before production approval.

Nutraceuticals have also gained global popularity as alternatives to conventional medicine (Gidde et al., 2022) due to their potential therapeutic activities (Adetuyi et al., 2022; Taroncher et al., 2021). They are beneficial since they increase dietary value while correcting and preventing certain health conditions. Furthermore, they are considered as more natural than traditional western medicine while posing minimal

risks of side effects (Al-Obaidi et al., 2021; Pandey et al., 2010). The popularity of nutraceuticals can be associated with their health benefits including enhanced nutritional value of diets, extended life expectancy, prevention and cure of certain health conditions, lack of side effects, and that they can serve as conventional foods (Shelke et al., 2020). Furthermore, prior research has demonstrated the role of nutraceuticals in addressing various conditions including digestive issues, hypertension, respiratory ailments like colds and coughs, mental health concerns such as depression, cardiovascular diseases like coronary heart disease, weight management, diabetes, cancer, osteoporosis, and other chronic and degenerative disorders like Parkinson's and Alzheimer's diseases among others (Rajat et al., 2012).

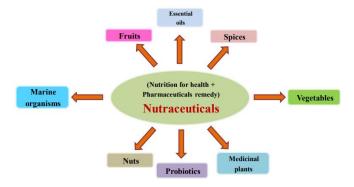


Figure 1.1 Different sources of nutraceuticals (Kaur et al., 2019).

Nutraceuticals can be derived from various sources including plants, and several studies have highlighted the importance of plants as a source of nutraceuticals (Cisneros-Zevallos, 2021; Hayat et al., 2017; Kaur et al., 2019; Prakash et al., 2012; Semwal et al., 2023). Plants are the oldest form of recognised nutraceuticals (Helal et al., 2019). Plant-based nutraceuticals have the potential to enhance human health, address chronic illnesses, and bolster various metabolic functions. The focus on research related to plant nutraceuticals is increasing, driven by their therapeutic benefits and the interest of supplement manufacturers in substituting synthetic ingredients with natural plant-derived molecules, owing to the growing demand for natural products. It is estimated that grains, fruits, and vegetables harbour over 4000 phytochemicals that could potentially be utilised in nutraceutical applications (Al-Obaidi et al., 2021).

Plant-based nutraceuticals have a broad range of bioactive compounds with antiinflammatory, antioxidant, antimicrobial, and antiproliferative activities (Taroncher et al., 2021). Plant-based nutraceuticals range from carotenoids, coumarins, flavonoids, lignans, phthalates, plant sterols, polyphenols, saponins, sulphides, and terpenoids (Jain et al., 2022). However, the components of nutraceuticals in plants vary depending on various factors such as climate, humidity, season, soil, and temperature (Bernal et al., 2011). One popular variety of nutraceutical and dietary supplement combines extracts from fruits and medicinal plants like American cranberries, red and blackberries, turmeric, grapevines, and green tea. These blends are renowned for their remarkable detoxifying, anti-aging, and antioxidant properties (Vidal-Casanella et al., 2021).

South Africa is rich in wild fruit plants. Hence, South African diets contain an extensive variety of wild fruits that have been documented since colonial times (Salami et al., 2022). Although South Africa is rich in wild fruit plants, Kimani-Murage et al. (2023) argues that 45% of the population is faced with a lack of food to meet daily nutritional and mineral requirements consequently affecting the health and wellbeing of people. Considering the importance of human health and nutrition for survival, it is imperative to develop new methods to support medical care, which can be found in the vast wild plant ecosystem (Pinela et al., 2016). A wide variety of cultures and societies relied on wild plants as a primary source of their human diet. In addition, native people have used wild plants for centuries to suppress dietary and pathogen-related ailments (Shad et al., 2014). Furthermore, consumption of wild plants remains a tradition in many cultures, both nutritionally and in relation to health (Pinela et al., 2016).

Previous research has shown that edible plants are abundant sources of medicinal phytochemicals (Dlamini et al., 2010). Since wild plants serve as a great source of essential nutrients for native people, it is significant to determine the nutritional value of these wild plants (Singh et al., 2017). In recent years, the focus of many researchers has shifted towards plant-based nutraceuticals, primarily because of the abundant array of phytochemicals, some of which remain undiscovered, offering numerous health benefits and properties for preventing diseases (Udeh et al., 2020). Therefore, this study was conducted to review the medicinal and nutritional data on wild fruit plant species used in Mpumalanga Province, South Africa, and to evaluate the antimicrobial, antioxidant, and nutritional potential of selected wild fruit plant species harvested from Bushbuckridge Local Municipality, Mpumalanga Province, South Africa.

1.2 Problem statement

Ethnobotanical studies focusing on the medicinal and nutritional uses of wild fruit species have been conducted in the Bushbuckridge municipality area (High and Shackleton, 2000; Mashile, et al., 2019; Shai et al., 2020; Tshikalange et al., 2016). However, scientific studies to validate the medicinal and nutritional value of the species in the Bushbuckridge area are lacking. Therefore, the present study aims to validate the use of wild fruit plants for medicinal and nutritional benefits. The study focuses on skin diseases to validate the nutraceutical properties of wild fruit plants since skin diseases are ranked as the fourth most common disease among all human diseases (Flohr and Hay, 2021). In addition, skin diseases affect about 70% of the global population and their quality of life (Maddheshiya et al., 2022). The management of skin diseases is a challenge since conventional medicines are associated with undesirable side effects posed by synthetic drugs and the rising resistance of microbes to antimicrobials (Uthaibutra et al., 2023). For instance, Trichophyton rubrum, a common fungal pathogen of the skin, has developed resistant strains against terbinafine (Hiruma et al., 2023). Additionally, current antibiotics have disadvantages such as low bioavailability and transdermal capacity, systemic toxicity, and adverse effects that vary with dosage (Teng et al., 2023). The oral administration of allylamines and azoles, for example, is hepatotoxic (Kanimozhi and Rose, 2023). Over the past few years, resistance to other common antibiotics such as erythromycin, kanamycin, neomycin, and tetracycline has increased (Otang and Afolayan, 2016). However, many people in rural areas use medicinal plants for treating skin infections. Furthermore, these medicinal plants are in demand to treat dermatological anomalies (Mabona and Van Vuuren, 2013). Hence, the need to explore the biological activities of these medicinal plants since they can serve as a source of nutrition and novel therapeutic agents that can be used to combat skin diseases and nutrient deficiencies.

1.3 Rationale and justification

The prevalence of skin diseases is on the rise in South Africa (Makwela et al., 2023). Skin diseases can be infectious, inflammatory, and/or cancerous (Kumar, 2021; Marcinkiewicz and Majewski, 2016). Skin diseases represent a significant challenge to both public health and economy across the globe (Phillips et al., 2024). Certain skin ailments result in extended hospital stays and, in severe cases, mortality (Jovic et al.,

2024; Pettit et al., 2023). The health and conditions of the skin are also modulated by nutrition (Piccardi and Manissier, 2009), undernutrition (Demarest-Litchford et al., 2024; Udoh et al., 2024), overnutrition (Morales et al., 2023; Roongpisuthipong and Klangjareonchai, 2024), mineral, and/or vitamin deficiencies (Godswill et al., 2020; Tahir et al., 2023; Xu and Li, 2024). Additionally, deficiencies in energy, protein, vitamins, and trace elements can alter the physiology of the skin (Dupont et al., 2018). Because of the challenges presented by antimicrobial drug resistance and unwanted side effects, the research was driven to explore the antimicrobial properties of medicinal plants against certain pathogens responsible for skin ailments as well as their antioxidant activities. Additionally, recognising the significance of nutrition in preserving skin well-being, the current investigation was inspired to analyse the nutritional content of wild fruit plants. While the primary focus remained on addressing skin diseases, the nutritional evaluation was anticipated to aid in addressing concerns related to food insecurity as well.

Industrial and scientific communities are investing in natural compounds because of their anti-inflammatory, anti-microbial, and antioxidant properties as well as their ability to interact with living cells (Contardi et al., 2021). Plants serve as an abundant source of bioactive substances with a noteworthy impact on the skin. Plant-based products promote skin health through the medical and antioxidant properties they possess (Michalak, 2022). People in the Bushbuckridge area also rely on plants for treatment of various diseases and ailments (Mashile et al., 2019; Rankoana et al., 2015), and to meet nutritional needs (Shai et al., 2020). In comparison to modern pharmaceutical drugs, plant-based natural products possess better efficiency with very low side effects at an affordable rate. Several compounds used to treat skin diseases have been isolated from plants including mangiferin from Mangifera indica L., curcumin from Curcuma longa L., and embelin from Embelia ribes Burm. Other compounds of plant origin such as lutein, lycopene, quercetin, apigenin, gingerol, naringenin, and resveratrol are also used in managing skin diseases (Mohd Zaid et al., 2022). This is proof that plants are a great source of compounds that can be used to treat various diseases. Therefore, it is essential to conduct bioassay studies and nutritional analysis to validate the medicinal and nutritional use of plant species in the Bushbuckridge Local Municipality area.

1.4 Research aim

The aim of the study was to explore the medicinal and nutritional value of wild fruit plants used by the local people in the Bushbuckridge Local Municipality, Mpumalanga province, South Africa.

Specific objectives:

- 1. To conduct a literature survey of wild fruit plants used by the local people of the Mpumalanga Province, South Africa.
- 2. To assess the antimicrobial activity of the leaves of Carissa spinarum L., Diospyros mespiliformis Hochst. ex A.DC., Euclea crispa (Thunb.) Gürke, Ficus thonningii Blume, Strychnos spinosa Lam., and Strychnos madagascariensis Poir., collected from the Bushbuckridge Local Municipality, Mpumalanga Province, against Klebsiella pneumoniae and Pseudomonas aeruginosa, bacterial pathogens that cause skin diseases.
- 3. To investigate the antioxidant potential of the leaves of *C. spinarum*, *D. mespiliformis*, *E. crispa*, *F. thonningii*, *S. spinosa*, and *S. madagascariensis*, collected from the Bushbuckridge Local Municipality, Mpumalanga Province.
- 4. To analyse the nutritional components of the fruit and the mineral composition of the leaves and fruit of *D. mespiliformis*, *Ficus thonningii*, and *S. spinosa* harvested from the Bushbuckridge Local Municipality, Mpumalanga Province.

1.5 Research questions

- 1. Are wild fruit plants fully documented with their medicinal and nutritional uses in the Mpumalanga Province?
- 2. Can the leaves of wild fruit plants be effective against microbial pathogens that cause skin diseases?
- 3. Do wild fruit plants possess antioxidant activities?
- 4. Can the wild fruit plants from Bushbuckridge serve as a good source of nutrients?

1.7 Scope and limiting factors

The study only assessed antimicrobial activity against two bacterial species.
 Other pathogens, including fungi and viruses, were not evaluated. The antimicrobial testing was conducted *in vitro*, and the results may not fully represent the efficacy of these plant extracts in real-world clinical settings.

- Variability in the chemical composition of plant extracts, due to factors such as harvesting time and environmental conditions, may influence the antimicrobial activity observed.
- The literature survey was based primarily on secondary sources, which may not always provide the most up-to-date or complete information on the medicinal uses of wild fruit species. The availability of literature specific to the Mpumalanga Province was limited, and some species may not have been included due to a lack of documented research in this region.
- The antioxidant assays conducted were limited to two methods: 2,2-diphenyl-1-picryhydrazyl (DPPH) and ferric-reducing power (FRAP) assays, which may not fully capture the diverse range of antioxidant activities present in the plant species. The concentration of antioxidants in the plant samples was not determined for specific bioactive compounds, limiting the understanding of compounds that contribute most to the observed antioxidant effects.
- The antioxidant potential was assessed in vitro, and the bioavailability and efficacy of antioxidants when consumed or applied topically may differ. Furthermore, nutritional analysis was conducted on the leaves and ripe fruit of three plant species, and variability in nutrient content due to factors such as growth conditions, ripeness, and processing methods could influence the results. The presence of heavy metals such as arsenic, cadmium, and chromium in some species raised concerns about the safety of consuming these fruits, and further studies are needed to assess the potential risks.

1.8. Ethical consideration

Ethics approval for the study was granted by the University of Mpumalanga's Ethics Committee (Ethics Reference: UMP/Chauke/230013937/MSC/2024; Appendix 1). Permission to collect plant species was obtained from the Mpumalanga Tourism and Parks Agency (Permit Number: MPB. 1465; Appendix 2) and the Mnisi Traditional Council. Voucher samples of the collected plant species were prepared and securely stored at the University of Mpumalanga's Indigenous Flora Research Laboratory for future reference and verification, with the assistance of Dr. L.J Ramarumo. Throughout the study, the University and faculty codes of ethics were rigorously followed, and all

online sources utilised to develop the database of wild fruit plants were properly acknowledged through comprehensive and accurate referencing.

1.9 Dissertation outline

The dissertation is organized into five chapters including the introduction, literature review, antimicrobial activity, antioxidant activity, and nutritional composition as follows:

Chapter 1 -This chapter outlines the thematic background, problem statement and rationale, aim and specific objectives, as well as a brief review on key concepts relevant to the current study such as the structure and functions of the skin, its susceptibility to factors like nutrition, infections, and injuries. It also delves into the current treatments available for skin conditions, highlighting the associated obstacles. Finally, the chapter explores the connection between the skin and nutraceuticals, emphasizing their role in promoting skin health. The chapter further explores the possible solution to current challenges in the treatment of skin conditions via the use of wild fruit plants and the general contribution of plants in the nutraceutical industry.

Chapter 2 – This chapter examines skin diseases, their causes, and current treatment options, highlighting challenges such as antimicrobial resistance and oxidative stress. It provides a systematic review of wild fruit plant species from Mpumalanga Province, South Africa, emphasizing their nutritional and medicinal potential. The chapter also includes botanical descriptions of the plant species selected for biological assays and nutritional analysis and identifies gaps in current research for further exploration.

Chapter 3 – This chapter examines the antibacterial activity of extracts from six select wild species against *Klebsiella pneumoniae* and *Pseudomonas aeruginosa* using disc diffusion and microdilution assays. Their antioxidant activities were assessed via DPPH and ferric reducing power assays. It outlines the extraction protocols and bioactivity testing methods, results, discussion, their potential health benefits, and applications in skin health.

Chapter 4 – This chapter investigates the nutritional and mineral compositions of *Diospyros mespiliformis*, *Ficus thonningii*, and *Strychnos spinosa*, emphasising their potential to combat food insecurity and support skin health. It includes a detailed

analysis of proximate composition, mineral content, and metal bioaccumulation profiles. The chapter explores the fruits' nutritional benefits, including their protein, fiber, and mineral content, alongside potential risks from metal contamination. Findings are discussed in relation to their implications for food security, health, and safe dietary applications.

Chapter 5 – The final chapter highlights the key findings of the study, discusses their relevance to clinical practice and skin health, and offers recommendations for future research.

References

- Adeshina, Y., Ayoola, G., Adegoke, A., Adepoju-Bello, A., 2011. Investigation of the antioxidant properties of *Chrysophyllum albidum* leaves. Nigerian Journal of Health and Biomedical Sciences 10, 45-49.
- Adetuyi, B.O., Odine, G.O., Olajide, P.A., Adetuyi, O.A., Atanda, O.O., Oloke, J.K., 2022. Nutraceuticals: Role in metabolic disease, prevention and treatment. World News of Natural Sciences 42, 1-27.
- Al-Obaidi, J.R., Alobaidi, K.H., Al-Taie, B.S., Wee, D.H.-S., Hussain, H., Jambari, N.N., Ahmad-Kamil, E., Ariffin, N.S., 2021. Uncovering prospective role and applications of existing and new nutraceuticals from bacterial, fungal, algal and cyanobacterial, and plant sources. Sustainability 13, 3671.
- Aronson, J.K., 2017. Defining 'nutraceuticals': Neither nutritious nor pharmaceutical.

 British Journal of Clinical Pharmacology 83, 8-19.
- Berker, K.I., Güçlü, K., Tor, İ., Apak, R., 2007. Comparative evaluation of Fe (III) reducing power-based antioxidant capacity assays in the presence of phenanthroline, batho-phenanthroline, tripyridyltriazine (FRAP), and ferricyanide reagents. Talanta 72, 1157-1165.
- Bernal, J., Mendiola, J., Ibáñez, E., Cifuentes, A., 2011. Advanced analysis of nutraceuticals. Journal of Pharmaceutical and Biomedical Analysis 55, 758-774.
- Chopra, A.S., Lordan, R., Horbańczuk, O.K., Atanasov, A.G., Chopra, I., Horbańczuk, J.O., Jóźwik, A., Huang, L., Pirgozliev, V., Banach, M., 2022. The current use and evolving landscape of nutraceuticals. Pharmacological Research 175, 106001.
- Cisneros-Zevallos, L., 2021. The power of plants: How fruit and vegetables work as source of nutraceuticals and supplements. International Journal of Food Sciences and Nutrition 72, 660-664.

- Contardi, M., Lenzuni, M., Fiorentini, F., Summa, M., Bertorelli, R., Suarato, G., Athanassiou, A., 2021. Hydroxycinnamic acids and derivatives formulations for skin damages and disorders: A review. Pharmaceutics 13, 999.
- Dable-Tupas, G., Otero, M.C.B., Bernolo, L., 2020. Functional foods and health benefits. Functional Foods and Nutraceuticals: Bioactive Components, Formulations and Innovations, 1-11.
- DeFelice, S.L., 1995. The nutraceutical revolution: Its impact on food industry R&D.

 Trends in Food Science and Technology 6, 59-61.
- Demarest-Litchford, M., Munoz, N., Strange, N., Casirati, A., Cereda, E., 2024. The impact of malnutrition on skin integrity and wound healing. Advances in Skin and Wound Care 37, 126-135.
- Dlamini, N., Moroka, T., Mlotshwa, L., Reddy, J., Botha, G., 2010. Indigenous edible plants as sources of nutrients and health benefitting components (nutraceuticals). Council of Scientific and Industrial Research: Science real and relevant conference 2010, 1-10.
- Dupont, R., Longué, M., Galinier, A., Frais, C.C., Ingueneau, C., Astudillo, L., Arlet, P., Adoue, D., Alric, L., Prévot, G., 2018. Impact of micronutrient deficiency & malnutrition in systemic sclerosis: Cohort study and literature review. Autoimmunity Reviews 17, 1081-1089.
- Flohr, C., Hay, R., 2021. Putting the burden of skin diseases on the global map. British Journal of Dermatology 184, 189-190.
- Gidde, N.D., Nitalikar, M.M., Gaikwad, K.V., Mistry, R.S., Jadhav, S.S., 2022. Nutraceuticals: An overview. World Journal of Pharmaceutical Research 12, 301-311.
- Godswill, A.G., Somtochukwu, I.V., Ikechukwu, A.O., Kate, E.C., 2020. Health benefits of micronutrients (vitamins and minerals) and their associated deficiency diseases: A systematic review. International Journal of Food Sciences 3, 1-32.
- Habeeba, S., Mehta, J., 2022. Nutraceutical: A plant based functional food and phytochemicals. Emerging Trends than Nutraceuticals 3, 43-49.

- Hayat, M., Abbas, M., Munir, F., Hayat, M.Q., Keyani, R., Amir, R., 2017. Potential of plant flavonoids in pharmaceutics and nutraceutics. Journal of Biomolecules and Biochemistry 1, 12-17.
- Helal, N.A., Eassa, H.A., Amer, A.M., Eltokhy, M.A., Edafiogho, I., Nounou, M.I., 2019. Nutraceuticals' novel formulations: The good, the bad, the unknown and patents involved. Recent Patents on Drug Delivery and Formulation 13, 105-156.
- High, C., Shackleton, C.M., 2000. The comparative value of wild and domestic plants in home gardens of a South African rural village. Agroforestry systems 48, 141-156.
- Hiruma, J., Kimura, U., Noguchi, H., Hiruma, M., Harada, K., Kano, R., 2023. *In vitro* azole susceptibility testing of Japanese isolates of terbinafine-resistant *Trichophyton indotineae* and *Trichophyton rubrum*. Medical Mycology Journal 64, 23-25.
- Jain, S., Purohit, A., Nema, P., Vishwakarma, H., Jain, P.K., 2022. A brief review on nutraceuticals and its application. Asian Journal of Dental and Health Sciences 2, 7-13.
- Jayaweera, J., 2023. Current trends and technologies in nutraceutical industry, in: Augustine Amalraj, S.K., Karthik Varma A.C., and Avtar Matharu (Ed.) Herbs, spices and their roles in nutraceuticals and functional foods. Elsevier, London, UK, pp. 347-360.
- Jovic, T.H., Watson, R., Gorse, S.H., Drew, P.J., Cubitt, J.J., 2024. Quantifying the clinical and economic burden of desquamating dermatological conditions: Implications for a supraregional burns centre. Journal of Plastic, Reconstructive and Aesthetic Surgery 88, 352-359.
- Kanimozhi, M., Rose, C., 2023. Screening and evaluation of potential antifungal plant extracts against skin infecting fungus *Trichophyton rubrum*. Pharmacognosy Research 15, 328-337.

- Kaur, G., Mukundan, S., Wani, V., Kumar, M.S., 2015. Nutraceuticals in the management and prevention of metabolic syndrome. Austin Journal of Pharmacology and Therapeutics 3, 1063.
- Kaur, S., Kumar, M., Pandit, K., Kumar, A., Kaur, S., 2019. Potential health benefits of nutraceuticals for human health, in: Ashita Sharma, M.K., Satwinderjeet Kaur and Avinash Kaur Nagpal (Ed.) Environmental Contaminants and Natural Products. Bentham Science Publishers, Sharjah, United Arab Emirates, pp. 193-208.
- Kimani-Murage, E., Gitagia, M., Osogo, D., Mutoro, A., Paganini, N., Kimani-Murage, E., Gitagia, M., Osogo, D., Mutoro, A., 2023. A human rights-based approach to food security in Kenya and South Africa. Think Tank for Sustainability, 1-14.
- Kumar, V., 2021. Going, toll-like receptors in skin inflammation and inflammatory diseases. Excli Journal 20, 52.
- Mabona, U., Van Vuuren, S., 2013. Southern African medicinal plants used to treat skin diseases. South African Journal of Botany 87, 175-193.
- Maddheshiya, S., Ahmad, A., Ahmad, W., Zakir, F., Aggarwal, G., 2022. Essential oils for the treatment of skin anomalies: Scope and potential. South African Journal of Botany 151, 187-197.
- Magiorakos, A.-P., Srinivasan, A., Carey, R.B., Carmeli, Y., Falagas, M., Giske, C., Harbarth, S., Hindler, J., Kahlmeter, G., Olsson-Liljequist, B., 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection 18, 268-281.
- Makwela, A.B., Grootboom, W.M., Abraham, V., Witika, B., Godman, B., Skosana, P.P., 2023. Antimicrobial management of skin and soft tissue infections among surgical wards in South Africa: Findings and implications. Antibiotics 12, 275.
- Marcinkiewicz, M., Majewski, S., 2016. The role of antimicrobial peptides in chronic inflammatory skin diseases. Advances in Dermatology and Allergology 33, 6-12.

- Mashile, S.P., Tshisikhawe, M.P., Masevhe, N.A., 2019. Medicinal plants used in the treatment of maternal health-related problems by the Mapulana of Ehlanzeni District, Mpumalanga province, South Africa. Journal of Applied Pharmaceutical Science 9, 21-29.
- Morales, F., Montserrat-de la Paz, S., Leon, M.J., Rivero-Pino, F., 2023. Effects of malnutrition on the immune system and infection and the role of nutritional strategies regarding improvements in children's health status: A literature review. Nutrients 16, 1-16.
- Michalak, M., Pierzak, M., Kręcisz, B., Suliga, E., 2021. Bioactive compounds for skin health: A review. Nutrients 13, 203.
- Mohd Zaid, N.A., Sekar, M., Bonam, S.R., Gan, S.H., Lum, P.T., Begum, M.Y., Mat Rani, N.N.I., Vaijanathappa, J., Wu, Y.S., Subramaniyan, V., 2022. Promising natural products in new drug design, development, and therapy for skin disorders: An overview of scientific evidence and understanding their mechanism of action. Drug Design, Development and Therapy 16, 23-66.
- Otang, W., Afolayan, A., 2016. Antimicrobial and antioxidant efficacy of *Citrus limon* L. peel extracts used for skin diseases by Xhosa tribe of Amathole District, Eastern Cape, South Africa. South African Journal of Botany 102, 46-49.
- Pancu, D.F., Scurtu, A., Macasoi, I.G., Marti, D., Mioc, M., Soica, C., Coricovac, D., Horhat, D., Poenaru, M., Dehelean, C., 2021. Antibiotics: Conventional therapy and natural compounds with antibacterial activity—a pharmacotoxicological screening. Antibiotics 10, 401.
- Pandey, M., Verma, R.K., Saraf, S.A., 2010. Nutraceuticals: New era of medicine and health. Asian Journal of Pharmaceutical and Clinical Research 3, 11-15.
- Pandey, P., Pal, R., Koli, M., Malakar, R.K., Verma, S., Kumar, N., Kumar, P., 2024. A traditional review: The utilization of nutraceutical as a traditional cure for the modern world at current prospectus for multiple health conditions. Journal of Drug Delivery and Therapeutics 14, 154-163.

- Pettit, C., Trinidad, J., Chung, C., Patterson, A., Kaffenberger, B.H., 2023. Hospital triage and skin disease: Hospital outcomes are differentially associated with cutaneous morphology. International Journal of Dermatology 62, 1034-1039.
- Phillips, R.O., Owusu, L., Koka, E., Ocloo, E.K., Simpson, H., Agbanyo, A., Okyere, D., Tuwor, R.D., Fokuoh-Boadu, A., Akuffo, R.A., 2024. Development of an integrated and decentralised skin health strategy to improve experiences of skin neglected tropical diseases and other skin conditions in Atwima Mponua District, Ghana. Plos Global Public Health 4, 0002809.
- Piccardi, N., Manissier, P., 2009. Nutrition and nutritional supplementation: Impact on skin health and beauty. Dermato-Endocrinology 1, 271-274.
- Pinela, J., Carocho, M., Dias, M.I., Caleja, C., Barros, L., Ferreira, I.C., 2016. 'Wild plant-based functional foods, drugs, and nutraceuticals' in: Ferreira I.C.F.R., Morales P., and Barros L. (Eds). Wild Plants, Mushrooms and Nuts: Functional Food Properties and Applications (1st Ed.). John Wiley and Sons, Chichester, UK, p. 315-351.
- Prabu, S.L., Suriyaprakash, T.N.K., Kumar, C.D., Kumar, S.S., 2012. Nutraceuticals and their medicinal importance. International Journal of Health and Allied Sciences 1, 47.
- Prakash, D., Gupta, C., Sharma, G., 2012. Importance of phytochemicals in nutraceuticals. Journal of Chinese Medicine Research and Development 1, 70-78.
- Qureshi, A., Tandon, H., Kumar, M., 2015. AVP-IC 50 Pred: Multiple machine learning techniques-based prediction of peptide antiviral activity in terms of half maximal inhibitory concentration (IC₅₀). Peptide Science 104, 753-763.
- Radeva, Z., Stoyanova-Doycheva, A., Popchev, I., Stoyanov, S., 2023. Development of anontology for Bulgarian wild, cultivated and protected flora, 2023 International Conference Automatics and Informatics (ICAI). IEEE, 373-377.
- Rajat, S., Manisha, S., Robin, S., Sunil, K., 2012. Nutraceuticals: A review. International Research Journal of Pharmacy 3, 95-99.

- Rankoana, S., Potgieter, M., Mothiba, T., Mamogobo, P., Setwaba, M., 2015.

 Traditional health foods of the Northern Sotho: a case study of Mamotintane community in Limpopo Province, South Africa. African Journal for Physical, Health Education, Recreation and Dance 1, 762-772.
- Roongpisuthipong, W., Klangjareonchai, T., 2024. The relationship between eating styles and the severity of psoriasis: A cross-sectional study in Thailand.

 Dermatologic Therapy 1, 1-6.
- Ryguła, I., Pikiewicz, W., Grabarek, B.O., Wójcik, M., Kaminiów, K., 2024. The role of the gut microbiome and microbial Dysbiosis in common skin diseases.

 International Journal of Molecular Sciences 25, 1984.
- Salami, S.O., Adegbaju, O.D., Idris, O.A., Jimoh, M.O., Olatunji, T.L., Omonona, S., Orimoloye, I.R., Adetunji, A.E., Olusola, A., Maboeta, M.S., 2022. South African wild fruits and vegetables under a changing climate: The implications on health and economy. South African Journal of Botany 145, 13-27.
- Saodat, K., Dilshodakhon, Y., Gulamovna, D.B., 2024. Skin diseases on medicine. Eurasian Journal of Medical and Natural Sciences 4, 151-159.
- Semwal, P., Painuli, S., Jamloki, A., Rauf, A., Rahman, M.M., Olatunde, A., Hemeg, H.A., Abu-Izneid, T., Naz, S., Punia Bangar, S., 2023. Himalayan wild fruits as a strong source of nutraceuticals, therapeutics, food and nutrition security. Food Reviews International 39, 6500-6536.
- Shad, A.A., Ahmad, S., Ullah, R., AbdEl-Salam, N.M., Fouad, H., Rehman, N.U., Hussain, H., Saeed, W., 2014. Phytochemical and biological activities of four wild medicinal plants. The Scientific World Journal, 1-7.
- Shai, K.N., Ncama, K., Ndhlovu, P.T., Struwig, M., Aremu, A.O., 2020. An exploratory study on the diverse uses and benefits of locally-sourced fruit species in three villages of Mpumalanga Province, South Africa. Foods 9, 1581.
- Shelke, S., Salunkhe, A., Galave, V., 2020. Health benefits of nutraceuticals: A review. International Journal of Research in Engineering, Science and Management 3, 524-527.

- Singh, S.V., Manhas, A., Kumar, Y., Mishra, S., Shanker, K., Khan, F., Srivastava, K., Pal, A., 2017. Antimalarial activity and safety assessment of *Flueggea virosa* leaves and its major constituent with special emphasis on their mode of action. Biomedicine and Pharmacotherapy 89, 761-771.
- Smith-Hall, C., Larsen, H.O., Pouliot, M., 2012. People, plants and health: A conceptual framework for assessing changes in medicinal plant consumption.

 Journal of Ethnobiology and Ethnomedicine 8, 1-11.
- Tahir, N.T., Alkubaisi, M.R., Elias, N.G., Al-Auqbi, T.F., 2023. Reflection of vitamins and mineral deficiency in general health condition: Article review. Journal for Research in Applied Sciences and Biotechnology 2, 184-193.
- Taroncher, M., Vila-Donat, P., Tolosa, J., Ruiz, M.J., Rodríguez-Carrasco, Y., 2021.

 Biological activity and toxicity of plant nutraceuticals: An overview. Current

 Opinion in Food Science 42, 113-118.
- Teng, Y., Li, S., Tang, H., Tao, X., Fan, Y., Huang, Y., 2023. Medical applications of hydrogels in skin infections: A review. Infection and Drug Resistance 16, 391-401.
- Tshikalange, T.E., Mophuting, B.C., Mahore, J., Winterboer, S., Lall, N., 2016. An ethnobotanical study of medicinal plants used in villages under Jongilanga tribal council, Mpumalanga, South Africa. African Journal of Traditional, Complementary and Alternative Medicine 13, 83-89.
- Udeh, E.L., Nyila, M.A., Kanu, S.A., 2020. Nutraceutical and antimicrobial potentials of Bambara groundnut (Vigna subterranean): A review. Heliyon 6, 05205.
- Udoh, E., Okorie, O., Okpokowuruk, F., Udo, E., Motilewa, O., Bassey, V., Ikobah, J., Adesina, S., Ebunlomo, I., Akpan, M., 2024. Morbidity pattern of underfives with moderate acute malnutrition in southern Nigeria. Ibom Medical Journal 17, 68-74.
- Uthaibutra, V., Kaewkod, T., Prapawilai, P., Pandith, H., Tragoolpua, Y., 2023. Inhibition of skin pathogenic bacteria, antioxidant and anti-inflammatory activity of royal jelly from Northern Thailand. Molecules 28, 996.

- Vidal-Casanella, O., Núñez, O., Granados, M., Saurina, J., Sentellas, S., 2021.

 Analytical methods for exploring nutraceuticals based on phenolic acids and polyphenols. Applied Sciences 11, 8276.
- Vo, T.T.T., Peng, T.-Y., Nguyen, T.H., Bui, T.N.H., Wang, C.-S., Lee, W.-J., Chen, Y.-L., Wu, Y.-C., Lee, I.-T., 2024. The crosstalk between copper-induced oxidative stress and cuproptosis: A novel potential anticancer paradigm. Cell Communication and Signaling 22, 353.
- Xu, J., Li, H., 2024. Association between dietary antioxidants intake and childhood eczema: results from the NHANES database. Journal of Health, Population and Nutrition 43, 12.

Chapter 2.0: Literature review

Summary

Globally, plants are an essential primary source of livelihood, particularly in rural communities. Food and health security remain pressing concerns in both developed and developing countries, as the rise of antimicrobial drug-resistant microbes and the adverse side effects of conventional drugs increasingly challenge healthcare systems. As a result, alternative sources of nutrition and medicine are urgently needed to mitigate food insecurity and address both long-standing and emerging health issues. The skin, as the body's largest organ, plays multifaceted roles, including acting as a protective barrier, regulating homeostasis, and functioning as a sensory organ. However, various physical and biological disruptions can lead to skin infections or diseases caused by bacterial pathogens like Klebsiella pneumoniae and Pseudomonas aeruginosa. Oxidative stress further exacerbates skin damage through reactive oxygen species, impacting DNA and collagen integrity. In this context, traditional nutraceuticals offer promising antimicrobial, antioxidative, and nutritional benefits for skin health. Despite advancements in topical, oral, and intravenous treatments, challenges such as antimicrobial resistance and formulation instability persist, emphasizing the need for innovative approaches in skin disease management. This review critically evaluates existing knowledge on wild fruit species in Mpumalanga Province, South Africa, with a specific focus on their nutritional and medicinal potential. Ethnobotanical information on wild fruits in Mpumalanga was obtained from various scientific databases and relevant literature. A total of 83 plant species, belonging to 63 genera from 31 families, have been documented in the Ehlanzeni District of Mpumalanga. Among the most commonly utilised species are Carissa spinarum L., Strychnos madagascariensis Poir., and Strychnos spinosa L. The findings reveal that 76% of these wild fruit species are used for medicinal purposes, while 51% serve as sources of nutrition. However, ethnobotanical studies conducted in Mpumalanga have been predominantly concentrated in the Ehlanzeni District, highlighting a significant knowledge gap across other regions of the province. Furthermore, while these species hold considerable potential for improving food security and health, their economic significance has not been fully explored. The study underscores the importance of further research to document the nutritional, medicinal, and economic values of wild

fruit species in Mpumalanga Province. Expanding ethnobotanical studies across different ethnic groups and geographic areas can unlock their potential, not only for addressing local health and nutrition challenges but also for contributing to global biodiversity conservation and sustainable development initiatives.

2.1 Introduction

The skin, the largest organ of the human body (Li et al., 2020) is divided into four layers; namely: the stratum corneum, the viable epidermis, the dermis, and subcutaneous tissues (Benson, 2012). This organ forms part of the innate immune system and the first line of defence (Brohi, 2021). It serves as a protective barrier against environmental factors such as ultraviolet radiation, chemicals, allergens, and microorganisms while preventing the loss of moisture and essential nutrients from the body (Abaci et al., 2017; Benson, 2012; Kasemsarn et al., 2016). Moreover, it plays a crucial role in maintaining internal balance (homeostasis) by regulating body temperature and blood pressure. Additionally, the skin functions as a vital sensory organ, detecting environmental stimuli such as temperature variations, pressure, and pain through touch (Benson, 2012).

Any alteration to the skin caused by physical traumas in the form of abrasions, penetrations, cuts and burns, pre-existing dermatoses with impaired barrier states, undernutrition, diabetes mellitus, and various congenital and immunodeficiency syndromes can all lead to skin infections (Bandyopadhyay, 2021). A range of microbial pathogens such as bacteria, fungi, and viruses may affect the skin extending to the soft tissue (subcutaneous tissue, muscles, and fascia), ranging from minor to potentially life-threatening conditions (Eckmann et al., 2024; Pujalte et al., 2023). These skin infections are classified based on the causative pathogen. The pathogens range from gram-negative bacteria such as Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, to gram-positive bacteria such as Staphylococcus aureus, Corynebacterium spp., and Streptococcus spp., and fungi such as Candida spp. and Aspergillus spp (Eckmann et al., 2024). Some pathogens such as Staphylococcus aureus and Streptococcus pyogenes are the most common bacterial causes of skin diseases such as furuncles, folliculitis, erythrasma, and impetigo. Impetigo mainly affects children, especially in developing countries (ALkahfaji, 2022). Fungal pathogens such as T. rubrum cause infections such as

onychomycosis, tinea corporis, tinea pedis, tinea manus, tinea capitis, and tinea cruris (Kanimozhi and Rose, 2023).

2.2 Types of skin diseases

Figure 2.1 Physical manifestation of different skin conditions on the human skin (Raina et al., 2023)

Skin diseases are not only infectious but can be cancerous, congenital, degenerative, and inflammatory (Hay et al., 2015). Non-infectious skin diseases such as dermatitis, and psoriasis (Figure 2.1) are accompanied by an inflammatory response (Mohd Zaid et al., 2022). These inflammatory skin disorders continue to affect people at a global prevalence of 30% per annum (Ohn et al., 2021).

2.3 Bacterial pathogens responsible for skin diseases study.

Two pathogens were selected for the study due to their association with skin diseases and antimicrobial drug resistance (Rashid et al., 2020).

2.3.1 Klebsiella pneumoniae

Figure 2.2 Scanning electron microscopy image of *K. pneumoniae* (Kareem and Alsammak, 2017)

Klebsiella pneumoniae (Figure 2.2), a gram-negative bacillus belonging to the Enterobacteriaceae family is prevalent in various environments and can inhabit the intestinal mucosa, skin, and nasopharynx of its host. It has the potential to induce various infections, including those affecting the respiratory system, bloodstream, liver (such as abscesses), and urinary tract (Li et al., 2024). K. pneumoniae is recognized as a reservoir for genes associated with multidrug resistance, resulting in limited treatment options due to the emergence of strains resistant to antimicrobial drugs, thereby elevating the pathogen's risk profile (Heng et al., 2024; Verani et al., 2024). Kelishomi et al. (2024) also highlighted that K. pneumoniae contributes 13-15% of wound infections which are difficult to treat due to antimicrobial drug resistance. Furthermore, wound infections caused by K. pneumoniae can be fatal (Boff et al., 2021).

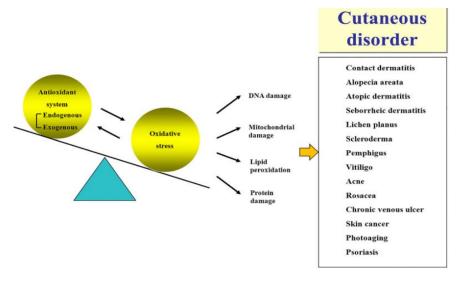

2.3.2 Pseudomonas aeruginosa

Figure 2.3 Scanning electron microscopy image of *P. aeruginosa* (Tyavambiza, 2018).

Pseudomonas aeruginosa (Figure 2.3) is a gram-negative aerobic bacillus (Esfahani et al., 2024), opportunistic in nature with the highest frequency of clinical isolation causing infections in the eyes, ears, urinary tract, respiratory system, and burn wounds (Zhan et al., 2024). *P. aeruginosa* ranks among some of the most prevalent microorganisms responsible for infections in severe skin wounds (Quiñones-Vico et al., 2024).

2.4 Impact of oxidative stress on the skin

Figure 2.4 Various skin conditions resulting from oxidative stress (Baek and Lee, 2016).

Oxidative stress refers to an imbalance in which the body's tissues struggle to effectively neutralize reactive oxygen species (ROS) originating from either external or internal sources (Trüeb, 2021). Keratinocytes and various skin cells generate ROS like superoxide anion (O2°-), peroxides, hydroxyl radical (OH°), and singlet oxygen (¹O2) when stimulated by cytokines, growth factors, environmental pollutants, UV radiation, food additives/preservatives, cosmetics, medications, and physiological stimuli. These ROS may cause damage to the deoxyribonucleic acid (DNA), lipid membranes, collagen structures, and mitochondrial function thereby leading to several skin conditions as shown in figure 2.4 (Baek and Lee, 2016). Moreover, persistent psychological stress can trigger oxidative stress in the skin by diminishing the body's antioxidant defences (Chen et al., 2021).

2.5 Social and psychological impact of skin diseases

Skin diseases are one of the most common diseases that affect people of all age groups. The negative effects of skin diseases on health range from physical incapacity to death (Hay et al., 2014). In addition, they result in psychological and social challenges since the skin is the most visible organ of the human body. Reports indicate that social and psychological distress is more common in patients with skin diseases in comparison with other diseases (Richard et al., 2023). Therefore, skin diseases

affect the quality of life, leading to anger, anxiety, depression, and fear among others (Gebashe et al., 2022; Sanclemente et al., 2017). Depression due to skin diseases can lead to isolation (Li et al., 2020) and suicide in some cases (Hay et al., 2015). Atopic dermatitis, acne vulgaris, and psoriasis are some of the skin diseases that can affect the quality of life (Sanclemente et al., 2017).

2.6 Treatment of skin diseases and challenges

2.6.1 Antimicrobial treatments

Globally, antibiotics are the predominantly prescribed drugs for the protection, maintenance, and restoration of health (Dimma et al., 2023). The treatment of skin infections depends on the type of causative pathogens (Eckmann et al., 2024). Although oral and topical antibiotics are used to treat some skin diseases, there is a rising concern about microbial pathogen resistance development (Li et al., 2020). Kanaujia et al. (2024) reported on the use of antimicrobial peptides from various sources such as amphibians, mammals, and aquatic organisms to treat bacterial, fungal, and viral skin infections and modulate wound healing since they have antiinflammatory properties and the ability to stimulate cell migration and proliferation. However, some of the antimicrobial peptides are toxic. Other antibiotics such as amoxicillin, vancomycin, erythromycin, azithromycin, and tetracyclines are used (Felgueiras, 2021). However, these antibiotics have limitations such as low transdermal capacity and toxicity (Liang et al., 2024). Over the past ten years, there has been a notable rise in the occurrence of bacterial skin infections, posing significant challenges and burdens on both clinical practice and healthcare finances (Abruzzo et al., 2024). One critical concern associated with these infections is the alarming worldwide dissemination of multidrug-resistant strains, complicating their treatment and presenting a substantial global public health threat (Guo et al., 2024).

2.6.2 Antioxidative treatments

Herbal medicines and nutrition are regarded as the main source of antioxidants for Indigenous people which provide them with protection against oxidative stress (Fahad and Mohammed, 2020). According to Pandel et al. (2013) the antioxidative defence of the skin is also influenced by nutrition. Antioxidants are essential for safeguarding the skin from the detrimental impacts of free radicals produced by UV radiation and environmental pollutants. Antioxidants contribute to skin well-being by thwarting

oxidative stress, lessening inflammation, and stimulating collagen synthesis (Wójciak et al., 2024). Antioxidants such as vitamins C and E, coenzyme Q10, niacinamide, lycopene, and idebenone are applied in topical formulations for the maintenance of skin health (Allemann and Baumann, 2008). Some antioxidants such as vitamins C and E can be taken orally and act synergistically in the prevention of skin DNA damage (Calvo et al., 2024). However, antioxidants are highly unstable and can be challenging to stabilize and ensure that they remain active and produce desired effects when incorporated into a product (Allemann and Baumann, 2008).

2.6.3 Drug administration methods for skin diseases

2.6.3.1 Topical therapy

Most antimicrobial agents are administered topically in the form of creams, gels, ointments, or sprays (Abruzzo et al., 2024). Examples of topical antibiotics include amikacin, benzoyl peroxide, clindamycin, gentamicin, and mupirocin (Dallo et al., 2023). Topical antibiotics are more preferred than systemic antibiotics because topical therapy ensures high and consistent doses directly at the site of infection requiring a smaller amount of antibiotics. This results in improved adherence to treatment, reduced occurrence of side effects, and lowered risks of developing antimicrobial resistance (Ray et al., 2019). However, Bonamonte et al. (2020) and Bandyopadhyay (2021) argue that topical antimicrobials are vulnerable to risks of developing resistance due to how they are stored in a patients' home for extended periods and inappropriate self-administration, leading to contamination, exacerbating the resistance issue. Topical antibiotics are frequently employed to address superficial pyodermas such as impetigo and to manage or prevent infections resulting from minor injuries like cuts, scrapes, burns, and surgical wounds. They are extensively utilized for addressing folliculitides and furuncles. Topical antibiotics find utility in treating secondary bacterial infections associated with skin conditions such as eczema and leg ulcers. However, topical antibiotics have shortcomings such as causing contact dermatitis, wound healing impairment, minimal depth of penetration, and risks of systemic absorption and toxicity (Bandyopadhyay, 2021).

2.6.3.2 Oral therapy

A wide range of oral antibiotics are available in the form of tablets, capsules, liquids, suspensions, and powders (Ebrahimnejad et al., 2024). It has been found that the greatest number and extended use of oral antibiotics is associated with dermal

conditions as compared to other health conditions (Barbieri et al., 2019). Del Rosso and Sachsman (2018) further emphasized that oral antibiotics are commonly prescribed by dermatologists, constituting roughly 20% of all medications prescribed within the field of dermatology. In some skin condition cases such as acne, oral antibiotics are considered when topical antibiotics have been unsuccessful. The most prescribed oral antibiotics include tetracyclines, azithromycin, erythromycin, clindamycin, trimethoprim, cotrimoxazole, and quinolones (Farrah and Tan, 2016). Typically, oral antibiotic agents fail to reach adequate concentrations in the site of infection to effectively eliminate microbial colonization at this site (Hogan et al., 2018). However, for more severe pyodermas such as carbuncles, ecthyma, cellulitis, or erysipelas, systemic antibiotics are typically preferred (Bandyopadhyay, 2021). Administering oral antibiotics can induce resistance in the normal flora present at any site on the body (Farrah and Tan, 2016). Furthermore, the disruptions to the microbiome can lead to the development of inflammatory bowel disease, collagen vascular diseases, and an increased risk of colon and breast cancer (Barbieri et al., 2019).

2.6.3.3 Intravenous therapy

Intravenous administration of antibiotics is not a common practice but only applied in serious skin infections such as cellulitis and necrotizing fasciitis (Sambrano et al., 2012). Antibiotics that are administered intravenously include daptomycin, linezolid, oritavancin, and vancomycin (Jensen et al., 2016). These antibiotics are often administered to patients with prolonged hospitalization and suffering from acute bacterial skin and skin structure infections (Claeys et al., 2015). Intravenous therapy generates a quicker response and ensures full bioavailability, necessitating smaller doses of the drug to achieve the intended effects. But the drawbacks of intravenous medication include swift absorption and heightened bioavailability which consequently increase the likelihood of notable side effects (Castro et al., 2024). Furthermore, obtaining IV access in a highly agitated patient is frequently difficult (Castro et al., 2024).

2.7 Significance of nutraceutical traditional knowledge

Traditional plant-derived nutraceuticals are the primary reservoir of essential nutrients, phytochemicals, and functional foods for over three quarters of the global population

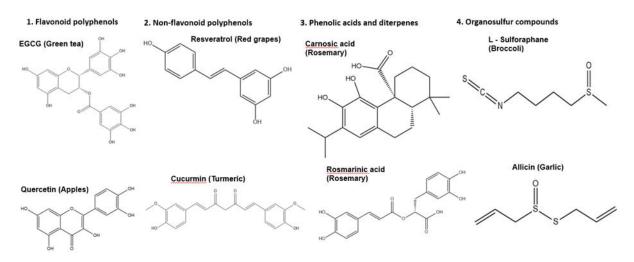
(Al-Obaidi et al., 2021). South Africa is one of the countries enriched with diverse plant life and extensive expertise in the traditional utilization of natural resources across various sectors like cosmetics, medicine, and food. Consequently, there is a high likelihood that South African enterprises or indigenous communities could uncover new commercially valuable nutraceuticals based on their traditional knowledge of plants (Gebashe et al., 2022). Therefore, there is an urgent requirement for the documentation and assessment of traditional knowledge through ethnobotanical research to safeguard both biological and cultural diversity (Sujarwo et al., 2014).

2.8 Nutraceuticals as skincare products

The food and cosmetic sectors are devising fresh approaches to link nutrient intake with skin well-being. As a result, there's a growing trend in utilising food components and supplements purposed to mitigate skin issues or combat skin aging. Incorporating vitamins, minerals, or essential fatty acids into one's diet can potentially enhance skin conditions (Pérez-Sánchez et al., 2018). The study of Sadowski and Sadowski (2020) proved that some skincare products with nutraceutical formulations improve skin elasticity, tone, hydration, and reduce wrinkle formation with no side effects. Nutraceuticals are incorporated into skincare products such as cleansers, toners, serums, moisturisers, sunscreens, and masks (Bell Loo and Le, 2018). Nutraceuticals can be used as oral supplements or incorporated into topical products to maintain skin health (Arora, 2021). Skincare products with nutraceutical ingredients are also known as cosmeceuticals or nutricosmetics since they contain biologically active principles from plants (Raja, 2016; Rangaraj et al., 2023). South African Small, Medium, and Micro Enterprises (SMMEs) have delved into the development of cosmeceutical products, drawing upon the extensive historical knowledge of medicinal plants and scientific studies confirming the effectiveness and safety of plant extracts and essential oils (Gebashe et al., 2022).

Table 2.1 Cosmeceuticals developed from plant species by South African companies (Gebashe et al., 2022).

Plant species (Scientific name)	Formulation type/cosmetic product category	Therapeutic benefit of developed products	Company/brand
African potato (Hypoxis hemerocallidea Fisch. And C. A. Mey.)	Cream, gel cleanser, moisturiser, aftershave soother, soap, toner, body lotion	Athlete's foot, boils, eczema, wounds, psoriasis, acne, rashes, sunburn and minor burns, bed sores, warts, stretch marks, scars, dry skin, cracked heels, boost skin hydration, anti-ageing	Phyto-force, Down to earth, Zinplex, Eskamel, Africology
Aloe (Aloe ferox Mill., A. vera Mill.)	Moisturizer, day and night cream, cleansers, toner, sun lotions, shampoos, conditioner, toothpaste and mouthwash, lightedning cream, soap	Burns, anti-ageing, sun damage/sunburn, acne- prone skin, strengthens and protects hair, insect bites, stings, cuts and bruises wrinkles, rash, eczema, healthy gums	Faithful to nature, Natraloe, Alcare, Aleounique, Howlistic pets, Aloeferox, Down to earth, Olive handmade soaps
Baobab (<i>Adansonia</i> <i>digitata</i> L.)	Shampoo, conditioner, sheet mask, body wash, hydrotherapy, facial toner, anti-ageing SPF cream, day wash, serum, lightening cream, deep cleansing powder, tonic, powder	Sun damage/sunburn, detoxify and hydrate skin, rejuvenate skin, cell renewal, refines pores, removes impurities, reduce wrinkle depth, smooth fine lines, protect against harmful UV and UVB damage, promotes collagen stimulation, aftershave tonic	Africa organics, Iwori beauty of Africa, Howlistic pets, Isivuno naturals, Skin creamery
Buchu (Agathosma betulina (P. J. Bergius) Pillans)	Soap, moisturiser, and aftershave soother, cream, bath salts, gel, serum, balm, soap, African clay mask	Reduces skin sensitivity, soothe razor-burn and irritation, wounds, bites, burns, eczema, bruising, anti-ageing, hydrate, nourish and brighten skin, itches, scratches, bruises, acne	Antjies Handmade Naturals, Le Naturel, Skimmelberg, Olive handmade soaps, Salty sistas
Bulbine (Bulbine frutescens (L.) Willd.)	Cleanser, sunscreen, day and night cream, moisturiser, toner, soap, soothing spray, bulbine	Discoloration and uneven skin tone, sun damage/sunburn, cuts, insect bites, stimulate collagen production, hydrate skin, grazes, acne,	Afari, Essentially natural, Timola, nautica, African botanicals


	frutescens extract, anti-ageing toner, soap	burns, blisters, cold sores, cracked lips, rashes, ringworm	
Cancer bush (Sutherlandia frutescens (L.) R. Br.)	Cream, soap, lotion, topical gel	Eczema, insect bites, psoriasis, shingles, acne, herpes, lesion, ageing, dark pigmentation, pimples, and marks	Phyto-force, lady K cosmetics, faithful to nature, African botanicals

2.9 Types of nutraceuticals and their impacts on skin health

2.9.1 Antimicrobials

Nutraceuticals are antimicrobials which have been validated through various studies to possess antimicrobial activity against various pathogens (Chanda and Kaneria, 2011). Classes of nutraceuticals with antimicrobial activity include terpenoids (e.g. carnosic acid), polyphenols (e.g. quercetin) and thiols (e.g. allicin) (Gutiérrez-del-Río et al., 2018). However, Costagliola et al. (2021) highlights that despite having direct antimicrobial activity, some nutraceuticals such as vitamin D can stimulate the synthesis of antimicrobial proteins in the immune system.

2.9.2 Antioxidants

Figure 2.5 Nutraceutical antioxidants from various plant sources (Kelsey et al., 2010).

Antioxidants encompass diverse substances and extracts sourced from a broad array of plants, grains, and fruits (Figure 2.5). They possess the ability to alleviate oxidative stress on the skin or shield from oxidative deterioration (Hoang et al., 2021). Nutraceutical antioxidants operate through various mechanisms and locations, primarily as scavengers for free radicals: 1) they counteract free radicals, 2) mend

oxidized membranes, 3) reduce the production of reactive oxygen species, and 4) neutralize reactive oxygen species (Simioni et al., 2018). Nutraceuticals have been discovered to diminish free radicals by functioning as scavengers, thus averting harm to lipids, proteins, and DNA (Ramli et al., 2020). Foods containing antioxidant-rich nutraceuticals encompass a variety of plant sources, such as fruits (grapes, citrus, blueberries, strawberries, blackberries), vegetables (beans, broccoli, beets, white cabbage, kale, spinach, and soybean), spices (rosemary, oregano, and thyme), herbs (sage), and beverages (tea and wine) among others (Inan, 2019). Anti-oxidative nutraceuticals from plants include carotenoids, polyphenols, phenolic compounds, and vitamin E (Inan, 2019). Several nutraceutical antioxidants have been isolated from various plants including epigallocatechin 3-gallate (EGCG) (Figure 2.5) which was found to possess scavenging properties against superoxide, hydroxyl radical, hydrogen peroxide, and nitric oxide (Kelsey et al., 2010).

2.9.3 Nutrients

Nutrition is essential for cell metabolism and the formation of collagen- the principal structural protein of the extracellular matrix (Stotts and Moulder, 2022). However, both undernutrition and overnutrition can alter the physiology of the skin (Piccardi and Manissier, 2009). Since the skin is a tissue with a high proliferative potential, it is essential to consume sufficient quantities of proteins, carbohydrates, and fats (Michalak et al., 2021). Extreme protein deficiency (Kwashiorkor) causes biochemical changes in the skin while malnutrition (anorexia nervosa) causes skin conditions such as xerosis (Piccardi and Manissier, 2009). Moreover, carbohydrates and fats provide the body with energy while proteins serve their function in the formation of collagen and cell structure (Posthauer et al., 2015). Cao et al. (2020) further elaborated that to construct, repair, and mediate skin physiological functions is amongst the primary functions of proteins. Fatty acid deficiencies are associated with eczema, depigmentation, and impaired wound healing (Krutmann and Humbert, 2011). Dietary fibres can be used to relieve inflammation in psoriasis patients, hence, there is a correlation between the low intake of dietary fibre and psoriasis (Sawada et al., 2021). Other skin defects such as acanthosis nigricans, acrochordons, and keratosis pilaris are attributed to obesity (Yosipovitch et al., 2007). Furthermore, the obese suffer wound-healing complications due to skin folds that provide a moist environment for bacterial growth (Munoz et al., 2020). Low-energy and vegetarian diets are

recommended for the prevention of chronic inflammatory skin diseases such as psoriasis (Piccardi and Manissier, 2009).

2.9.4 Minerals

Trace elements also serve the purpose of maintaining skin health, hence, their deficit may cause skin modifications (Piccardi and Manissier, 2009). Copper (Cu) is a trace mineral found throughout the body (Polefka et al., 2012) that is an essential component of enzymes involved in the synthesis of elastin, collagen, and melanin. Therefore, skin that is deficient in Cu can show signs of sagging and hypopigmentation (Krutmann and Humbert, 2011). Among its many benefits, Cu-peptides have been shown to reduce photodamaged skin, speed wound healing, and calm irritated skin (Polefka et al., 2012). Iron (Fe) is also important for maintenance of skin health since deficiencies in Fe are associated with pale, dry, and scaly skin (Krutmann and Humbert, 2011). As a dietary supplement, chromium (Cr) (III) is acknowledged as an important element in insulin action, protein, fat, and carbohydrate metabolism (Chowdhury et al., 2003). A major cofactor for wound healing enzymes is zinc (Zn) (Polefka et al., 2012) and its deficiency is associated with dermatitis (Krutmann and Humbert, 2011). Crossgrove and Zheng (2004) noted that manganese (Mn) is important for the normal development and function of the body, however, deficiencies in manganese are associated with skin lesions. Lastly, selenium (Se) is essential for the development and function of skin keratinocytes and related to skin antioxidant enzyme activity (Cao et al., 2020).

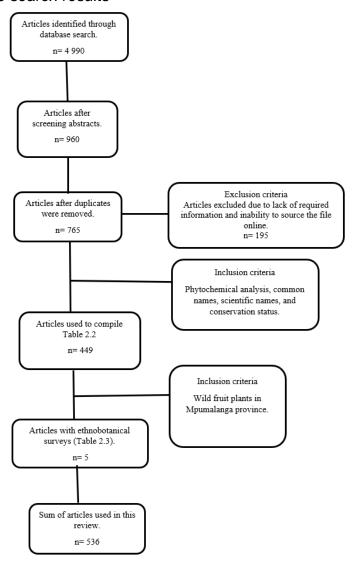
A concentration gradient of calcium (Ca) ions in the epidermis plays an important role in many skin functions, including keratinocyte differentiation, skin barrier formation, and permeability barrier homeostasis (Lee and Lee, 2018). Additionally, studies have demonstrated that local Ca influences cell proliferation, motility, and maturation as well as the formation of the epidermal lipid barrier through signal transduction and gene expression in cultured keratinocytes, dermal fibroblasts, and reconstructed epidermis (Lansdown, 2002). Healthy skin requires a functional Ca homeostasis in keratinocytes. A disturbance in such can cause skin diseases such as atopic dermatitis, darier and hailey-hailey disease, and psoriasis (Rinnerthaler et al., 2015). Magnesium (Mg) also serves as a co-factor of many enzymes that are associated with protein synthesis, muscle and nerve function, blood glucose control, and blood pressure regulation in the human body. In addition, the mineral takes part in the active transport of Ca and

potassium (K) ions across cell membranes. Therefore, Mg deficiency lowers calcium and potassium levels which are also important minerals of the skin (Al-Fartusie and Mohssan, 2017). Phosphorus is involved in cell metabolism, and is found in the soft tissues and extracellular matrix of the human skin (Bird and Eskin, 2021).

2.9.5 Concerns of the safety and efficacy of nutraceuticals

There is often insufficient information to validate the effectiveness, safety, and effects of nutraceuticals, posing concerns regarding their use and causing confusion as to how to classify such a product if it is intended for medicinal use (Chopra et al., 2022; Helal et al., 2019). Many claims regarding their medicinal or nutritional benefits remain unsubstantiated (Santini et al., 2018) because the majority of available scientific data originates from animal experiments and laboratory tests, while human clinical trials are limited and inconclusive (Voelkl et al., 2020). Moreover, essential aspects such as the absorption rate, metabolic pathways, dosage effects, and potential toxicity of nutraceuticals remain poorly defined (Paul-Chima et al., 2024). Nutraceuticals may pose potential risks to consumers if these products become contaminated with substances like heavy metals, mycotoxins, or allergens during manufacturing, or with pesticides and fertilizers if applied where the plants are cultivated, or if the plants are naturally toxic (Chopra et al., 2022; Gupta et al., 2018). Furthermore, there is a possibility of adverse interactions between nutraceuticals and therapeutic medications (Andrew and Izzo, 2017).

2.10 A systematic review of wild fruit plant species in the Mpumalanga Province, South Africa


2.10.1 Materials and methods

A literature review spanning from October 2022 to May 2024 was undertaken to document information on wild fruit plant species utilised in the Mpumalanga Province of South Africa. The data was sourced from various online databases including Science Direct, Scopus, Google Scholar, and JSTOR. Additionally, the University of Mpumalanga's library was consulted for theses, dissertations, and books. The search employed keywords such as ethnomedicine, Mpumalanga, wild fruit species, nutraceutical, medicinal, traditional, and nutrition; to identify relevant articles. The inclusion criteria involved studies that recorded wild fruit species throughout the Mpumalanga Province, and from these articles, the nutritional and medicinal uses, and

modes of preparation and plant parts used were extracted. Studies that included the phytochemical analysis of the specific wild fruit plant species were also included. Additional information such as scientific names that were verified using The Worldflora online (https://www.worldfloraonline.org/), common names that were cross-referenced with PlantZAfrica (pza.sanbi.org), and conservation statuses based on the South African National Biodiversity Institute (SANBI) Red List of South African Plants (redlist.sanbi.org/species) was extracted from the relevant articles.

2.10.2 Results and discussion

2.10.2.1 Literature search results

Figure 2.6 Flow diagram indicating the literature search and selection process.

The data gathered from various scientific databases constituted 4990 studies. However, abstract screening resulted in the identification of 960 articles relevant to the study (Figure 2.6). After excluding articles devoid of the required information,

inaccessible full text, and duplicates, 765 articles remained. Therefore, to complete Table 2.2, a total of 449 articles was used to document various wild fruit species in Mpumalanga Province, including their distribution, medicinal and nutritional uses, plant parts used and modes of preparation, phytoconstituents, pharmacological activities, and nutritional compositions. Five studies have reported the use of wild fruit species in the Mpumalanga Province, primarily in the Ehlanzeni District (Table 2.3). A total of 536 articles were used in the study including references that were used in the discussion of the results. The most dominant region was Bushbuckridge, followed by Mbombela and Thaba Chweu. Other districts such as Umjindi, Nkomazi, Gert Sibande, and Nkangala need further exploration (Tshikalange et al., 2016). Rasethe et al. (2013) noted a considerable difference of the use and reliance on wild plants between two villages in the Limpopo Province indicating that the ethnobotanical knowledge and use of plants may vary between different areas.

2.10.2.2 Diversity of wild fruit species

In this study, 83 wild fruit plant species belonging to 63 genera and 31 different families were identified (Table 2.1). Fabaceae and Anacardiaceae were the most dominant plant families, each contributing 15% and 9% respectively. Fabaceae species are widely distributed in South Africa. Lötter et al. (2014) revealed that the Fabaceae family was the second most common family of plants in the forests of the Mpumalanga Province. Unsurprisingly, the family Fabaceae is considered among the most significant plant families contributing to food and nutrition security globally and has the ability to symbiotically fix nitrogen (Alimi et al., 2021; Talukdar, 2013). Fabaceae species hold substantial economic and cultural importance, serving as sources of traditional medicines, food, timber, dyes, firewood, ornamental plants, and gums (Van Wyk, 2019). The current study is in contrast with previous studies which revealed that the Anacardiaceae family accounted for the greatest number of species (Mashile et al., 2019b; Shackleton et al., 2000; Shai et al., 2020). The most cited plant species include Carissa spinarum L., Strychnos madagascariensis Poir., and Strychnos spinosa L. Similarly, Shackleton et al. (2000) found that C. spinarum and S. spinosa were some of the most commonly used plant species in Mpumalanga Province. Shai et al. (2020) found that *S. madagascariensis* had the highest use value. Plant species like S. madagascariensis and S. spinosa were identified in various regions of South Africa as valuable for nutrition and household income, as documented by Akweni et al. (2020). Similarly, they were recognized in Mozambique (Chemane et al., 2022; Mausse et al., 2021a) and Zimbabwe (Ngadze et al., 2017) for their economic and nutritional significance.

Table 2.2 Ethnobotanical knowledge of wild fruit plant species in Mpumalanga Province, South Africa. The scientific names were verified using The World Flora Online (www.worldfloraonline.org) and conservation statuses were verified using the South African Red data list (redlist.sanbi.org).

Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
Lannea edulis (Sons.) Engl. Family: Anacardiaceae Habit: Shrublet	Diphiroku (P); nchunchun gwa (XT); wild grape (E); wildedruif (A); umgabunk homo (Z); mutsambat si (W); phepo (T)	Least concern	Free State, Gauteng, KwaZulu- Natal, Limpopo, and Mpumalanga	Edible fruit	Not specified	Drupe	Leaves- antihyperglycemic, antihyperlipidemic Bulb- pro- inflammatory, anti- HIV, toxicity	Root bark- Dihydroalkylhexen ones, alkylphenols, cardonol	Fruit-Ash, fibre, protein, carbohydrates, Ca, Fe, P	(Banda et al., 2018; Herrera et al., 2018; Malaisse and Parent, 1985; Mashile et al., 2019b; Queiroz et al., 2003; Shai et al., 2020; Sigidi et al., 2017)
Lannea schweinfurthii Engl. Family: Anacardiaceae Habit: Tree	Morulanop sane (P); False Marula (E); Mulivhadza (V); Umganunk omo (Z); Valsmaroel a (A)	Least concern	Mpumalanga , Limpopo, and KwaZulu- Natal	Edible fruit	Root decoction- body aches	Drupe	Stem bark- antibacterial, antifungal Root bark- anti- inflammatory, antioxidant, cytotoxicity Leaves- antiplasmodial, cytotoxicity	Stem bark- Fatty acids and derivatives, terpenoids, phenolics, polyketide derivatives, steroids, lupeol, epicatechin Roots- catechin	Leaves and root bark- ash, moisture, fibre, protein, fat, Cu, Fe, Zn, Pb, Mn, Cd	(Gathirwa et al., 2011; Herrera et al., 2018; Lawal et al., 2019; Maregesi et al., 2008; Mashile et al., 2019b; Okoth et al., 2014; Oyugi, 2016; Shai et al., 2020; Tshikalange et al., 2016; Wamuyu et al., 2020; Yaouba et al., 2018)
Sclerocarya birrea (A.Rich.) Hochst. subsp. caffra (Sond.) Kokwaro	Morula (PI); marula (E); mufula (V); and ukanyi (XT)	Least concern	KwaZulu- Natal, Limpopo, and Mpumalanga	Edible fruit- jam, beverage, or wine. Nuts	Bark- sexually transmitted diseases/infe ctions, diarrhoea	Drupe	Leaves- antioxidant, cytotoxicity, antibacterial, antidiabetic, antidiarrhoeal,	Stem- Catechin, 56uinic acid, epigallocatechin gallate, epicatechin gallate	Fruit- moisture, fat, fibre, Ca, Fe, Zn, Vitamin C	(Armentano et al., 2015; Baba et al., 2014; Belemtougri et al., 2016; Do et al., 2020; Eloff, 2001; Kamanula et

Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
Family: Anacardiaceae Habit: Tree							antisecretory, antiplasmodial Bark- antioxidant, toxicity, anti- convulsant, antibacterial, anti- inflammatory Roots- antibacterial, antioxidant, proapoptotic			al., 2022; Maharaj et al., 2022; Manzo et al., 2017; Mashile et al., 2019a, b; Ojewole, 2003, 2007; Russo et al., 2018; Shackleton et al., 2000; Shai et al., 2020; Shoko et al., 2018)
Ozoroa sphaerocarpa R.Fern. & A.Fern. Family: Anacardiaceae Habit: Tree	Currant resin tree (E); korentehar puisboom (A); imfuce lemnyamm a (W); monoko (S)	Least concern	KwaZulu- Natal, Limpopo, and Mpumalanga	Not specified	Whole plant decoction/ Infusion- wounds, induces lactation	Drupe	Bark- antibacterial, antifungal, antioxidant, haemolytic, toxicity Leaves-antibacterial, haemolytic, toxicity, antioxidant, antifungal Fruit- antibacterial, antifungal, antioxidant, haemolytic, toxicity	Fruit, leaves, and bark- phenolics, flavonoids	Not available	(Papo et al., 2022; Sibandze, 2018; Sibandze et al., 2009, 2010; Teichman and Van Wyk, 1993; Tshikalange et al., 2016)
Searsia leptodictya (Diels) T.S.Yi, A.J.Mill. & J.Wen Family: Anacardiaceae Habit: Tree	Mountain karee (E); bergkaree (A); inHlangush ane (W); Mohlwehlw e (S)	Least concern	Free State, Gauteng, Limpopo, Mpumalanga , and North West	Edible fruit	Not specified	Drupe	Leaves- cytotoxicity, antioxidant, and antimicrobial activities	Leaves- phenolics, tannins, flavonoids, flavonols	Leaves- P, K, Ca, Mg, Na, S, Fe, Cu, Zn, Mn	(Ahmed et al., 2014; Mashile et al., 2019b; Ravhuhali et al., 2023; Yang et al., 2016)
Searsia pendulina (Jacq.) Moffett Family: Anacardiaceae Habit: Tree	White Karee(E); witkaree(A) ; mosilabele (S); Botlhotlho (PI)	Least concern	Free State, Northern Cape, and Mpumalanga	Edible fruit- alcoholic beverage.	Not specified	Drupe	Leaves- cytotoxicity, antioxidant, and antimicrobial activities	Leaves- phenolics, tannins, flavonoids, flavonols	Not available	(Ahmed et al., 2014; Shai et al., 2020; Yang et al., 2016)

Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
Annona senegalensis Pers. Family: Annonaceae Habit: Tree	Motllepo (PI); African Custard- apple (E); Amamense (Nd); Wildesuike rappel (A); Isiphofu (Z); Muembe (V)	Least concern	KwaZulu- Natal, Limpopo, and Mpumalanga	Edible fruit	Decoction of leaves, roots-cosmetics and sexually transmitted diseases/infections	Etaerio berry	Leaves- cytotoxicity, analgesic, antisickling, antipyretic, antioxidant, anticonvulsant, central depressant, anxiolytic, antibacterial, antifungal, antimalarial Stem barkantidiarrhoeal Root barkcytotoxicity, anti-inflammatory, antibacterial, antiulcer	Stem bark- Hexadecane, oleic acid, squalene, tetratriacontane Leaves- saponins, tannins, and phlobatannins Root wood- sterols and triterpenes, polyphenols, reducing compounds, and flavonoids	Leaves and fruits- moisture, ash, fibre, fats, proteins Flower- moisture, ash, protein, carbohydrate, lipid, fiber, Na, K, Mg, P, Ca, N Roots- moisture, ash, fibre, protein, carbohydrate, fats	(Ajaiyeoba et al., 2006; Awa et al., 2012; Bongo et al., 2017; Donhouedé et al., 2023; Hamisu et al., 2023; Ilboudo et al., 2019; Konaté et al., 2021; Lino and Deogracious, 2006; Mashile et al., 2019a, b; Megwas et al., 2020; Mubarak et al., 2022; Ogbadoyi et al., 2007; Okoli et al., 2010; Shackleton et al., 2000; Shai et al., 2020; Suleiman et al., 2008; Tukur et al., 2020)
Carissa spinarum L. Family: Apocynaceae Habit: Shrub	Mothokolo (PI); ntshuguru (XT); climbing num-num (E); ranknoemn oem (A); murungulu (V); umlugulu (Nd)	Least concern	Limpopo and Mpumalanga	Edible fruit- beverages/w ine	Root decoction- body pains, ear problems, vomiting blood	Berry	Leaves- antinociceptive, antibacterial Roots- anthelmintic, antibacterial, antifungal, wound healing Root bark- antioxidant, anti- inflammatory, hepatoprotective	Leaves- Tannins, saponins, alkaloids, flavonoids, glycosides, terpenoids, Anthraquinones	Fruit- moisture, protein, fat, ash, fiber, carbohydrate, energy, vitamin C, K, Ca, Fe, Zn, Mn	(Ahmad and Mir, 2022; Ali and Engidawork, 2022; Ayalew Tiruneh et al., 2022; Feyissa and Melaku, 2016; Harwansh et al., 2010; Liu et al., 2021; Mashile et al., 2019a, b; Mworia et al., 2015; Sanwal and Chaudhary, 2011; Shackleton et al., 2000; Siyum and Meresa, 2021; Tshikalange et al., 2016)

Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
Asparagus exuvialis Burch. Family: Asparagaceae Habit: Shrub	Nkwangula tilo lowuntsong o (XT)	Least concern	Mpumalanga	Not specified	Root decoction- Back pains Fatigue	Berry	Mucilage- anti-ulcer, toxicity	Mucilage- alkaloids, saponins, tannins, flavonoids, and glycosides	Mucilage- carbohydrates, proteins	(Shatri, 2023; Tshikalange et al., 2016)
Laggera crispata (Vahl) Hepper & J.R.I.Wood Family: Asteraceae Habit: Herb	Xikhwaxa (XT)	Least concern	Eastern Cape, Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , North West	Not specified	Root decoction- swollen stomach	Drupe	Aerial part- antioxidant, antibacterial	Aerial part- Guaiol, phytol, erucylamide	Not available	(Daubotei, 2021; Tshikalange et al., 2016)
Cordia monoica Roxb. Family: Boraginaceae Habit: Tree	Sandpaper Saucer- berry (E), Mpungwan a (XT)	Least concern	KwaZulu- Natal, Limpopo, Mpumalanga	Not specified	Bark infusion- good luck	Berry	Roots- antibacterial	Leaves- Phytol acetate, n-hexadecanoic acid, neophytadiene, neopentyl hydroxyl acetate and nonacosane	Not available	(Omwenga et al., 2009; Sivakumar and Dhivya, 2015; Tshikalange et al., 2016)
Elaeodendron transvaalense (Burtt Davy) R.H.Archer Family: Celastraceae Habit: Tree	bushveld saffron (E); lepelhout (A); uMgugudo (Z); shimapana (XT); monamane (S)	Near threatened	KwaZulu- Natal, Limpopo, Mpumalanga , North West	Not specified	Stem decoction- induce vomiting and goodluck	Drupe	Stem bark- antibacterial, anti- HIV, antifungal, pro- inflammatory Rootbark- hypoglycaemic, toxicity	Stem bark- lup- 20(30)-ene-3α,29- diol; 6β-hydroxylup- 20(29)-ene-3-one; and 30- hydroxylup- 20(29)-ene-3-one; 4'-O- methylepigallocat echin	Not available	(Deutschländer et al., 2009; Khumalo et al., 2019; Mamba et al., 2016; Tshikalange et al., 2016)
Gymnosporia buxifolia (L.) Szyszyl. Family: Celastraceae Habit: Tree	Stinking spike-thorn (E); gewone pendoring (A); ingqwanga	Least concern	Eastern Cape, Free State, Gauteng, KwaZulu- Natal, Limpopo,	Not specified	Leaves and root decoction/ infusion- epilepsy	Capsul e	Cell biomass- antibacterial Leaves-antioxidant	Cell biomass- phenolics, flavonoids Leaves- D- mannitol or dulcitol, dihyro-β-	Not available	(Killian, 2009; Kumari et al., 2018; Tshikalange et al., 2016)

Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
	ne (Z); mnqaqoba, umhlongw e (X); sephatwa (S); motlhonu (T); sihlangu lesimnyam a (W); tshiphandw a (V)		Mpumalanga , North West, Northern Cape, Western Cape					agarofuran sesquiterpenoid		
Parinari curatellifolia Planch. ex Benth. Family: Chrysobalanace ae Habit: Shrub	Mphola (PI); mbulwa (XT); hissing tree (E); grysappel (A); mobola (T); muvhula (V)	Least concern	Limpopo and Mpumalanga	Edible fruit- syrups, soft porridge	Roots- pneumonia, sore eyes, ear problems	Drupe	Leaves- toxicity, anti-inflammatory, antibacterial, analgesic Stem- antibacterial Stem bark- antiplasmodial Root- antibacterial	Leaves- tannins, saponins, terpenoids, alkaloids, cardiac glycosides, flavonoids	Fruit- dry matter, ash, fibre, fat, protein, carbohydrate, K, Mg, Mn, Cu, Zn, Fe, P Leaves- K, Na, Ca, Al, Mn, Cr, Pb, Cu, Co, Cd, Ni	(Chatepa et al., 2018; Fakai et al.; Gororo et al., 2016; Ibibia et al., 2023a, b; Kahimbi et al., 2023; Mashile et al., 2019a, b; Mawire et al., 2021; Omoniwa et al., 2021; Peni et al., 2010; Shai et al., 2020; Sylvanus et al., 2014)
Parinari capensis Harv. Family: Chrysobalanace ae Habit: Shrublet	Mmolofasa ne (P); Dwarf Mobola- plum (E); Gruisappel tjie (A)	Least concern	Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , and North- West.	Edible fruit- soft porridge, syrups	Roots- ear problems, sore eyes	Drupe	Whole plant- anticancer Stem- antimalarial Roots- antibacterial	Whole plant- 10α- hydroxy-9α- methyl-15-oxo-20- nor- kaur-16-en-19-oic acid γ-lactone (15-oxozoapatlin), diterpene lactones Stem- 13- methoxy-16,17- dibromide-15- oxozoapatlin	Fruit- moisture, protein, amino acids Leaves- dry matter, moisture, Ca, P, Mg, N, K, C	(Baumgärtel et al., 2022; Fouché et al., 2008; Garo et al., 1997; Gomes et al., 2019; Khalid, 2009; Mashile et al., 2019b; Mulyangote, 2016; Shai et al., 2020; Uys et al., 2002)

Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
Combretum imberbe Warwa. Family: Combretaceae Habit: Tree	Leadwood (E); hardekool (A); motswiri (S); mondzo (XT); motswere (T); umbondwe (Z); muhiri (V)	Least concern	Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , North West	Not specified	Root/ stem infusion- menstruation	Nut	Leaves, stem- antioxidant Wood ash- antifungal	Leaves- tannins, saponins, terpenoids, steroids, cardiac glycosides, flavonoids	Leaves, stem- moisture, protein, energy, Ca, Co, Cu, Fe, K, Mg, Mn, Na, Ni, Zn Leaves- dry matter, protein, fibre, P	(Dambe et al., 2015; Mathipa et al., 2022; Peloewetse et al., 2007; Tshikalange et al., 2016)
Terminalia sericea Burch. ex DC. Family: Combretaceae Habit: Tree	Mususu (V); silver cluster-leaf (E); vaalboom (A)	Least concern	Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , North West, Northern Cape	Not specified	Decoction of tumours- tonsils	Nut	Leaves- antioxidant, hepatoprotective, antibacterial Fruit- antioxidant Roots- antibacterial, antifungal, anti-inflammatory, antioxidant, cytotoxicity Stem barkantidiabetic, antioxidant	Root bark- Sericoside, sericic acid, resveratrol- 3-O-β-rutinoside Fruit, root, leaves, stem- phenolics	Seeds- dry matter, organic matter, protein, fat, amino acids, fatty acids, fbre, ash, Ca, Mg, P, vitamin E, squalene	(Anokwuru et al., 2018; Chivandi et al., 2013; Mochizuki and Hasegawa, 2007; Moshi and Mbwambo, 2005; Mulaudzi et al., 2021; Nel et al., 2020; Nkobole et al., 2011; Sobeh et al., 2019; Tshikalange et al., 2016)
Ipomoea oblongata E.Mey. ex Choisy Family: Convolvulaceae Habit: Herb	Wild morning glory (E); krismisblo m (A); ubhoqo (Z); mothokgo (S)	Least concern	Eastern Cape, Free State, Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , North West, Northern Cape	Not specified	Bulb decoction- asthma, high blood pressure	Capsul e	Roots- antibacterial, antidiabetic, toxicity, antioxidant Leaves, stem- antibacterial, toxicity	Roots- saponins, steroids, triterpenoids, alkaloids, flavonoids, tannins	Roots- carbohydrates, protein	(Kose et al., 2021; Polori et al., 2021; Semenya et al., 2018; Tshikalange et al., 2016)

Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
Diospyros lycioides Desf. subs Lycioides Family: Ebenaceae Habit: Shrub	Bluebush, star-apple (E); bloubos (A); Muthala (V); Lethanyu (T); Monkganku (S); Umbhongis a (X); Umbulwa (Z); Umcafuda ne (W)	Least concern	Eastern Cape, Free State, Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , North West, Northern Cape	Not specified	Root decoction- sexually transmitted diseases	Berry	Stem- antibacterial, anti-inflammatory Roots- antibacterial Leaves- antibacterial, antioxidant, antimetastatic, toxicity, anti-inflammatory	Leaves- flavonoids, tannins, saponins, terpenoids, cardiac glycosides, alkaloids, coumarin, triterpenoids, anthraquinone, phenolics Root, twigs- coumarin, triterpenoids, anthraquinone, triterpenoids, anthraquinone, triterpenoids, anthraquinone, tannins, alkaloids, steroids, flavonoids	Leaves- Ca, P, K, protein, Fruit- Ca, Cu, Fe, P, Mg, K, Na, Zn, carbohydrates, fibre, energy, flavonoids, protein,	(Bagla et al., 2016; Fawole et al., 2009; Kanyemba et al., 2022; Mbanga et al., 2013; Tshikalange et al., 2016; Wehmeyer, 1986)
Diospyros mespiliformis Hochst. ex A.DC. Family: Ebenaceae Habit: Tree	Ditsoma (PI); ntoma (XT); jackal- berry (E); jakkalsbes sie (A); musuma (V)	Least concern	Limpopo and Mpumalanga	Edible fruit	Branches- epilepsy	Berry	Fruit- antioxidant, anti-inflammatory, antispasmodic, cytotoxicity, antiplasmodial, mito-protective Leaves- antioxidant, anti-inflammatory, toxicity, spasmolytic, wound healing Stem bark- antipyretic, anti- inflammatory, cytotoxicity, antioxidant, wound healing Roots- antioxidant, wound healing	Bark, leaf, root- Anthraquinones, alkaloids, flavonoids, saponin glycosides, steroids, tannins, volatile oils	Fruit- ash, carbohydrate, protein, moisture, fat, Ca, K, Mg, Na, P, S, Mn, Cu, Fe, Se, Zn Roots, leaves, and bark- moisture, ash, lipid, fibre, protein, N, carbohydrate	(Adzu et al., 2002; Ebbo et al., 2014, 2019b, 2022; Mashile et al., 2019a, b; Nitiéma et al., 2023a, b; Nyambe et al., 2019a; Olanlokun et al., 2021; Shackleton et al., 2000; Shai et al., 2020)

Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
Euclea crispa (Thunb.) Gürke Family: Ebenaceae Habit: Tree	Motlhakola swifi (PI); xintomanto mane (XT), blue guarri (E); bloughwarr ie (A); umgwali (X); motlhalets ogane (T); idungamuz i (Z)	Least concern	Mpumalanga , Eastern Cape, and KwaZulu- Natal.	Edible fruit Leaves- herbal tea	Not specified	Berry	Leaves- antifungal, antibacterial, antioxidant, antiproliferative Stem bark-antibacterial, antidiarrhoeal	Stem bark- Tannins, saponins, flavonoids, cardiac glycosides, steroids Leaves- tannins, flavonoids, steroids, saponins, reducing sugars, cardiac glycosides	Leaves- energy, ash, protein	(Alayande et al., 2016, 2017b, 2018; Kujoana et al., 2023; Magama et al., 2003a; Mashile et al., 2019b; Palanisamy et al., 2019, 2020; Rademan et al., 2019; Tshikalange et al., 2016; Wallnöfer, 2001)
Euclea divinorum Hiern. Family: Ebenaceae Habit: Tree	Motlhakola ne (PI); nhlangula (XT); magic guarri (E); towerghwa rrie (A); umhlangul a (Z); umdlelany amatane (T); mutangule (V)	Least concern	KwaZulu- Natal, Limpopo, and Mpumalanga	Edible fruit	Not specified	Berry	Leaves- antifungal, antibacterial, antioxidant Stem- antibacterial, antifungal Chewing sticks- antibacterial, cytotoxicity Root- antifungal, antioxidant, cytotoxicity, diuretic, antimalarial	Root bark- alkaloids, cardiac glycosides, flavonoids, phenols, quinones, saponins, steroids, tannins, terpenes, volatile oils Tender stems- cardiac glycosides, phenols, quinones, saponins, steroids, tannins, terpenes, volatile oils Leaves- volatile oils Leaves- volatile oils, terpenes, tannins, steroids, saponins, quinones, cardiac glycosides	Leaves- fibre, protein, ash, organic matter, P, N	(Al-Fatimi, 2019; Bogari et al., 2022; Girmaw and Engidawork, 2022; Habte et al., 2021; Kilonzo et al., 2019; Mashile et al., 2019a, b; Mbabazia et al., 2020; Ngari et al., 2013; Scogings et al., 2015; Shai et al., 2020; Wallnöfer, 2001; Woldemedhin et al., 2017)

Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
Euclea natalensis A.DC. Family: Ebenaceae Habit: Tree	Natal ebony, (E); natalghwar rie (A); umKhasa (X); umAnyathi (Z); umHlangul a (XT)	Least concern	Eastern Cape, Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , and Western Cape	Not specified	Roots, stem- Skin care, STI	Berry	Leaves- antiplasmodial, cytotoxic Roots- antifungal, antibacterial, antiviral, antischistosoma cytotoxic, antitubercular	Seeds and seedlings- naphthoquinones Root bark- Naphthoquinones, triterpenoids	Not available	(Bapela et al., 2008; Lall et al., 2005a, b, 2006; Lima et al., 2022; Sparg et al., 2000; Tajuddeen et al., 2022; Tshikalange et al., 2016; Wallnöfer, 2001; Weigenand et al., 2004)
Jatropha zeyheri Sond. Family: Euphorbiaceae Habit: Herb	Verfbol (A); sefapabadi a (S); xidomeja (XT); mafuredon ga (V); ugodide (Z)	Least concern	Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , North West	Not specified	Chew bulb- miscarriage, testicle sores	Capsul e	Roots- antibacterial, antioxidant, cytotoxicity, anticancer Leaves- antioxidant, antibacterial	Leaves- tannins, flavonoid, phenolics	Leaves- K, Ca, Mg, S, Ni, P, Al, Co, Cr, Na	(Bango and Mphosi, 2023; Mongalo et al., 2013, 2019; Mutshekwa et al., 2019; Sehlapelo et al., 2021; Tshikalange et al., 2016)
Abrus precatorius L. subsp. africanus Verdc. Family: Fabaceae Habit: Liana	Bead vine (E); amabope (N); nsimani (XT); umkhokha (Z)	Least concern	Eastern Cape, KwaZulu- Natal, Limpopo, Mpumalanga	Not specified	Decoction of whole plant- Kidney problems Blood in urine	Pod	Seed, leaves, stem- antibacterial, antifungal, antioxidant	Seed, root, leaves- tannin, saponins, alkaloids, flavonoids, terpenoids, steroids, phenols	Seeds- ash, fibre, fat, moisture, Na, K, Ca, Mn, P, Fe, Zn, Cu, Mn Leaves- Moisture, ash, fibre, protein, fat, carbohydrate, Na, Fe, Zn, Ca, K, Mg	(Adelowotan et al., 2008; Palvai et al., 2014; Paul et al., 2013; Sunday et al., 2016; Tresina and ramasamy Mohan, 2012; Tshikalange et al., 2016)
Albizia harveyi E.Fourn. Family: Fabaceae Habit: Tree	Bosveld- valsdoring (A), bushveld false-thorn	Least concern	Limpopo, Mpumalanga	Not specified	Root decoction- cleansing ceremonies	Pod	Leaves- antibacterial Roots- toxicity Stem bark- antioxidant,	Leaves- Tannins, saponins, flavonoids Steroids,	Leaves- dry matter, protein, ash, fibre	(Makoye et al., 2020; Moshi et al., 2003; Shayo and Udén, 1999; Sobeh et al., 2017;

Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
	(E), mohlalakg akga (S), muvhola (V), Umbola (Nd)						antidiabetic, hepatoprotective	terpenoids, phenolics Stem bark- tannins, flavan-3- ol derivatives		Tshikalange et al., 2016)
Chamaecrista capensis (Thunb.) E.Mey. var. capensis Family: Fabaceae Habit: Herb	Mahlakule (XT)	Least concern	Eastern Cape, Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , North West	Not specified	Root decoction- witchcraft	Pod	Not available	Not available	Not available	(Tshikalange et al., 2016)
Dalbergia melanoxylon Guill. & Perr. Family: Fabaceae Habit: Tree	African ebony (E), sebrahout (A); mogôrôgôr ô (S); xipalatsi (XT); muuluri (V); umphhingo (Z)	Least concern	Limpopo, Mpumalanga	Not specified	Root decoction- rash	Pod	Leaves- antioxidant Bark- antibacterial, antifungal, antioxidant	Leaves- tannins, saponins, glycosides, flavonoids, anthroquinones Bark- alkaloids, flavonoids, triterpenes, tannins, saponins, glycosides	Leaves- proteins, moisture, ash, fibre	(Najeeb et al., 2018; Swetha, 2017; Tshikalange et al., 2016; Vyas and Naik, 2019)
Dichrostachys cinerea subsp. nyassana (Taub.) Brenan Family: Fabaceae Habit: Shrub	Grootblaar- sekelbos (A); Kalahari Christmas Tree (E); Muunga (V); Ugagane (Z)	Least concern	Eastern Cape, Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga	Not specified	Root and pods decoction/ infusion- snake bite, wounds	Pod	Root- antioxidant, antibacterial Leaf- analgesic, anti-inflammatory, antioxidant, antibacterial Stem bark- analgesic, anti- inflammatory, antioxidant, antiplasmodial, toxicity, antibacterial	Leaves- Alkaloids, glycosides, flavonoids, saponins, steroids Fruit- tannins, phenolics	Fruit- dry matter, organic matter, fibre, N Root- ash, proteins, carbohydrates	(Bolleddu et al., 2019; Kweyamba et al., 2019; Mlambo et al., 2004; Susithra and Jayakumari, 2018; Tshikalange et al., 2016)

Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
Macrotyloma maranguense (Taub.) Verdc. Family: Fabaceae Habit: Tree	Xikondlo (XT), Mokorola kgogo (PI)	Least concern	KwaZulu- Natal, Limpopo, and Mpumalanga	Edible fruit	Bulb- chewed to treat swollen testicles	Pod	Not available	Not available	Not available	(Shai et al., 2020; Tshikalange et al., 2016)
Mundulea sericea (Willd.) A.Chev. Family: Fabaceae Habit: Tree	Rhodesian silver-leaf (E); kurkbos (A); mosetlathlou (S); umSindand lovana (W); ntsandzan dlopfu (XT), moswaatlo u (T); mukundandou (V); umHlalante the, umSindand lovu (Z)	Least concern	Free State, Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , and North West	Not specified	Roots- added to bath water to release nervous tension	Pods	Leaves- antioxidant, antiplasmodial, antileishmanial, antifungal, antibacterial Bark- anticancer, antidiabetic, anti-inflammatory, antioxidant, antifungal, antibacterial, toxicity Twigs- antibacterial, antifungal	Leaves- morphinan, agarospirol, cinnamic acid Leaves, stem bark, twigs- 5- methoxy mundulin	Not available	(Chepkirui et al., 2021; Gangadevi et al., 2020, 2021a, b; Gangadevi et al., 2020; Khyade and Waman, 2017; Langat et al., 2012; Mazimba et al., 2012a, b; Tshikalange et al., 2016)
Ormocarpum trichocarpum (Taub.) Engl. Family: Fabaceae Habit: Tree	Caterpillar Bush (E); Isithibane (Z); Mosepe (S); muthari (V), rusperboon tjie (A), umsindadl ovana (Z)	Least concern	KwaZulu- Natal, Limpopo, and Mpumalanga	Not specified	Inner bark of roots infusion- erectile dysfunction	Pods	Aerial parts- antiplasmodial, antibacterial, cytotoxicity Leaves- antibacterial, antioxidant, mutagenic and antimutagenic	Leaves- Terpenoids, flavonoids	Not available	(Chukwujekwu et al., 2012, 2013; Jacqueline et al., 2018; Tshikalange et al., 2016)

Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
Philenoptera violacea (Klotzsch) Schrire Family: Fabaceae Habit: Tree	Apple-leaf (E); appelblaar (A); umBhandu (Z)	Least concern	KwaZulu- Natal, Limpopo, and Mpumalanga	Not specified	Root infusion- induce vomiting	Pods	Leaves, flower, twigs- anticancer, antioxidant, antibacterial	Twigs, leaves, flowers- tannins, flavonoids, steroids, terpenoids, alkaloids, cardiac glycosides	Not available	(Manduna et al., 2014; Mfengwana and Mashele, 2016; Ntsoelinyane, 2014; Tshikalange et al., 2016)
Peltophorum africanum Sond. Family: Fabaceae Habit: Tree	African blackwood (E); boerboon (A); umthobo (Z); mosese (S); mosêtlha (W); musese (V); ndzedze (XT)	Least concern	Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , and North West	Not specified	Root decoction- body pains	Pods	Leaves- hepatoprotective, antioxidant, anti- inflammatory Stem bark- antibacterial, anticancer, antifungal, antioxidant, antiviral, cytotoxicity Roots- antioxidant	Leaves- saponins, flavonoids, tannins, phenols, glycosides, terpenoids, phlobatannins Stem bark-polyphenols	Leaves- ash, fibre, protein, energy, fat, amino acids Stem bark- Al, Cl, Na, N, S, C, O, Ti, Si, Au, Cu, Zn, K	(Adebayo et al., 2017; Bizimenyera et al., 2007; Ebada et al., 2008; Mudau et al., 2021, 2022; Okeleye et al., 2013, 2015, 2017, 2019; Theo et al., 2009; Tshikalange et al., 2016)
Pterocarpus angolensis DC. Family: Fabaceae Habit: Tree	Transvaal teak (E); wilde-kiaat (A); morôtô (S); mokwa, morotômad i (Tswana); umvangazi , umbilo (Z)	Least concern	KwaZulu- Natal, Limpopo, and Mpumalanga	Not specified	Root decoction- Heartburn, stomach problems, induces vomiting	Pods	Leaves- antibacterial, antifungal Bark- antibacterial, antifungal, antioxidant, antiplasmodial, anti- inflammatory, cytotoxicity Fruit- antibacterial, antifungal Root- antibacterial, antifungal	Stem bark- glycosides, ketone, saturated and unsaturated fatty acids, alcohols, sterols Stem bark- tannins, saponins Leaves- flavonoids, tannins, terpenes Fruit- tannins Root- saponins	Leaves- protein, fibre, Na Mg K Ca P	(Abubakar and Majinda, 2016; Anokwuru et al., 2017; Chipinga, 2018; Holdo, 2003; Sigidi et al., 2016; Tshikalange et al., 2016; Zininga et al., 2017)
Pterocarpus rotundifolius (Sond.) Druce	Muhataha (V); round- leaved	Least concern	Gauteng, KwaZulu- Natal,	Not specified	Ground root- treat fertility in cows	Pods	Not available	Dalbergieae lectins	Leaves-protein, fibre, Na, Mg, K, Ca, P	(Holdo, 2003; Nascimento et al.,

Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
Family: Fabaceae Habit: Tree	bloodwood (E); dopperkiaa t (A)		Limpopo, Mpumalanga , and North West							2020; Tshikalange et al., 2016)
Schotia brachypetala Sond. Family: Fabaceae Habit: Tree	African walnut (E); huilboerbo on (A); umfofofo (X), ihluze (Z), molope (S); mulibi (V); nwavilomb e (XT); umutwa (T); uvovovo (W)	Least concern	Eastern Cape, Gauteng, KwaZulu- Natal, Limpopo, and Mpumalanga	Not specified	Seeds, roots decoction- Shoulder and sternum pains	Pods	Leaves- antibacterial, antioxidant, anti- inflammatory Bark- antibacterial Aril of seeds- antioxidant, antibacterial, antimalarial Root bark- antibacterial Roots- antibacterial Seed pods with seeds- antibacterial Flowers- antibacterial Young stems- antibacterial	Leaves- polyphenols, flavonoids, gallic acid Aril of seeds- quercetin glucoside derivatives	Leaves- ash, fibre, protein, carbohydrates, energy, fat	(Du, 2011; Du et al., 2014; El-Hawary et al., 2015; McGaw et al., 2002; Mudau et al., 2021; Sobeh et al., 2016; Tshikalange et al., 2016)
Senna italica subsp. arachoides (Burch.) Lock Family: Fabaceae Habit: Shrub	Eland's pea, wild senna (E); swartstorm , wilde ertjies (A)	Least concern	Free State, Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , Northern Cape, and North West	Not specified	Root decoction- sexually transmitted infections	Pods	Aerial parts- antibacterial, antifungal, anticancer, antioxidant Leaves- antinociceptive Roots- antioxidant, antibacterial, antiproliferative	Roots- flavonoids, prosalins, caretenoids	Leaves- fibre, protein	(Hembapu et al.; Madkour et al., 2017; Masoko et al., 2010a; Olorukooba et al., 2023; Tshikalange et al., 2016)
Piliostigma thonningii (Schumach.) Milne-Redh. Family: Fabaceae Habit: Tree	Camel's foot (E); kameelspo or (A); mukolokot e (V); mokgoropo	Least concern	Limpopo and Mpumalanga	Edible fruit	Not specified	Pod	Leaves- antibacterial, analgesic, antimalarial, anti- inflammatory Stem bark- cytotoxic,	Leaves- saponins, alkaloids, tannins, flavonoids Stem bark- Alkaloids, flavonoids, steroids,	Leaves- carbohydrate, protein, ash, fat, energy, moisture, fibre Stem bark and roots- moisture,	(Alagbe, 2019; Bunney et al., 2019; Igbe et al., 2012; Ighodaro et al., 2012; Jimoh and Oladiji, 2005; Kwaji et al., 2010;

Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
	(S); nkolokotso (Z)						antioxidant, anti- inflammatory, analgesic, lipoxygenase inhibition	terpenoids, saponins, carbohydrates Seeds- saponins, flavonoids, phenolics, glycosides, anthraquinone, cardiac glycosides	dry matter, protein, fibre, carbohydrate, energy, Ca, P, K, Mg, Zn, Mn, Fe, Na, Cu, Co, Cr, Se, Cd, Pb Seeds- moisture, ash, fibre, protein, fat, Fe, Se, Zn, Mn, P, Ca	Marquardt et al., 2020; Mashile et al., 2019b; Noufou et al., 2016; Olela et al., 2020; Seyi et al., 2022)
Senegalia nigrescens (Oliv.) P.J.H. Hurter Family: Fabaceae Habit: Tree	Knob thorn (E); knoppiesd oring (A); muunga (V); mooka (S); umKhaya (Zulu)	Least concern	Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , and North West	Not specified	Stem infusion- diarrhoea	Pod	Stem bark- antibacterial, antifungal, cytotoxicity, antioxidative, anticancer Roots, leaves- antibacterial	Stem bark- 3β- hydroxy-20(29)- en-lupan-30-al; melanoxetin; quercetin; quercetin-3-O- methyl ether	Leaves- fibre, protein, ash, fat, carbohydrates, energy	(Bodede et al., 2018, 2021; Mudau et al., 2021)
Vachellia karroo (Hayne) Banfi & Glasso Family: Fabaceae Habit: Tree	Sweet thorn (E); soetdoring (A); mookana (S); mooka (W); umuNga (Z)	Least concern	Eastern Cape, Free State, Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , Northern Cape, North West, and Western Cape	Not specified	Root decoction- sexually transmitted infections	Pod	Leaves- antifungal, antioxidant, cytotoxicity, anti- inflammatory, Pods- toxicity	Leaves- catechin, epicatechin, biocalein, quercetin	Leaves- organic matter, protein, ash	(Maposa et al., 2020; More et al., 2021a, b; Ravhuhali et al., 2022)
Vachellia nilotica (L.) P.J.H.Hurter & Mabb. Family: Fabaceae Habit: Tree	Scented- pod acacia (E); lekkerruikp eul (A); Mogohlo	Least concern	Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga	Edible fruit	Not specified	Pod	Bark- antiviral, toxicological, antibacterial Leaves- toxicological, antibacterial	Leaf, stem bark, pods- phenols, flavonoids	Seed pods and shoots- protein, fibre, energy, N, K, Ca, P, Na, Fe, Mn, Zn, Cu	(Abdallah et al., 2021; Donalisio et al., 2018; Manganyi et al., 2023; Mashile et al., 2019a, b; Okoro et al., 2014)

Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
	(S); umNcawe (W); Motsha (T); umNqawe (Z)		, and North West				Roots- antibacterial, toxicological			
Hypoxis hemerocallidea Fisch. & C.A.Mey. Family: Hypoxidaceae Habit: Herb	Gifbol (A), Inkomfe (Z), Star- flower (E), Mbhumbhu nunu (XT)	Least concern	Eastern Cape, Free State, Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , North West	Not specified	Bulb decoction- high blood pressure	Capsul e	Bulb- antibacterial, antifungal, antioxidant, toxicity	Bulb- Undecane, benzothiazole, heptacosane, 2,7-Octanedione, α-Myrcene	Leaf, corm, peels, roots- protein, fat, ash, fibre, dry matter, Ca, Mg, K, Na, P, Zn, Cu, Mn, Fe, Ce, Fe, Si	(Afolayan and Otunola, 2014; Mwinga et al., 2019a; Otunola and Afolayan, 2019; Tshikalange et al., 2016)
Strychnos madagascariens is Poir. Family: Loganiaceae Habit: Tree	Mogwagwa (P); nkwaka (XT); black monkey orange (E); swartklapp er (A); mogorwag orwana (T); mukwakwa (V); umKwakw a (Z)	Least concern	Free State, Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , and North West.	Edible fruit	Decoction/ infusion of leaves and roots- wounds Roots- induce vomiting	Berry	Fruit- cytotoxicity, antibacterial, antidiabetic, antioxidant Bark- antifungal Leaves- antibacterial, antifungal Seed coat- antioxidant, antidiabetic	Leaves- Alkaloids, flavonoids, steroids, triterpenoids, saponins, tannins Seeds- pyrazole, vinyl acrylate, ethylene acetal, furfuryl alcohol, furaneol, butanoic acid	Seeds- fat, fibre, sugar, starch, protein, Ca, Mg, K, P, Na, Zn, Mn, Fe, Cu Fruit- moisture, ash, protein, fibre, fat, carbohydrate, K, Mg, N, Ca, Na, P, Fe, Zn, Cu	(Bunney et al., 2019; Mashile et al., 2019a, b; Nciki et al., 2016; Nhaca et al., 2020; Oboh et al., 2020a, 2023; Shackleton et al., 2020; Shai et al., 2020; Tshikalange et al., 2017; Van Rayne et al., 2020; Van Vuuren et al., 2015)
Strychnos spinosa Lam. Family: Loganiaceae Habit: Tree	Moshala (P); nsala (XT); spiny monkey orange/gre en monkey orange (E); doringklap	Least concern	Eastern Cape, KwaZulu- Natal, Limpopo, and Mpumalanga	Edible fruit	Not specified	Berry (Bunne y et al., 2019)	Fruit- antioxidant Leaves- antifungal, antioxidant, antibacterial, antitrypanosomal Root bark- antibacterial,	Leaves- Alkaloids, anthraquinones, cardiac glycosides, flavonoids, saponins, steroids, tannins	Fruit- dry matter, ash, protein, fat, fibre, vitamin C, P, Ca, Mg, Fe, K, Na, Zn, Cu, Mn	(Amarteifio and Mosase, 2006; Hoet et al., 2006; Isa et al., 2014; Lawal et al., 2019; Mashile et al., 2019a, b; Mausse et al., 2021b; Mbunde et

Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
	per (A); umKwakw a (T); muramba (V)						antifungal, antioxidant	(Nhaca et al., 2020)		al., 2019; Shackleton et al., 2000; Shai et al., 2020; Tor-Anyiin et al., 2015)
Abutilon fruticosum Guill. & Perr. Family: Malvaceae Habit: Shrub	Shrubby Abutilon (E)	Least concern	Limpopo, Mpumalanga	Not specified	Root decoction- Cramps Muscle pulls	Capsul e	Aerial parts- antibacterial, antifungal	Aerial parts- flavonoids, tannins, sterols, terpenes, quercetin, rutin, synaptic acid, diosmin Leaves- Palmitic acid, neophytadiene, tetradecanoic acid, Azulene	Aerial parts- carbohydrates Leaves- Carbohydrates, proteins, fat	(Bano and Deora, 2020; Gouda et al., 2022; Tshikalange et al., 2016)
Grewia flavescens Juss. Family: Malvaceae Habit: Tree	Mopharats hena (PI); nsihana (XT); square-stemmed raisin (E); skurweblaa rrosyntjie (A); loklolo (W); motuu (T); mupharash eni (V); ilalanyathi (Z)	Least concern	Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , and Northwest.	Edible fruit- beverage or juice	Not specified	Drupe	Leaves- antidiabetic, antibacterial, toxicity Stem bark- immunomodulatory, cytotoxic Whole plant- anthelmintic	Leaves, fruit- Triterpenes	Fruit- K, Ca, Mn, Fe, Cu, Zn, amino acids, moisture, fibre, ash, protein, fat, Carbohydrate, sugar, starch	(Elhassan and Yagi, 2010; ELhassan et al., 2021; Kumar et al., 2022; Mashile et al., 2019b; Motlhanka et al., 2008; Sana et al., 2023; Shai et al., 2020; Yanadaiah, 2013)
Grewia occidentalis L. Family: Malvaceae Habit: Shrub	Ross-berry (E), kruisbessie (A), mogwane (S),	Least concern	Eastern Cape, Free State, Gauteng, KwaZulu- Natal,	Not specified	Stem-magic	Berry	Bark- antioxidant, toxicity Shoots- antibacterial Leaves and twigs- antifungal	Bark and wood- Sinapaldehyde (E)-4-hydroxy-3,5- dimethoxycinnam aldehyde); coniferaldehyde	Leaves- protein, crude fibre, ash, fibre, Ca, Na, Fe, Cu, Zn, Mn, Mg, K	(Afolayan et al., 2002; Grierson and Afolayan, 1999; Kumar et al., 2022; Mthi et al., 2016; Steenkamp et al.,

Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
	iLalanyathi (Z), umSipane (W), umNqabaz a (X), Mulembu (V), Nsihana (XT)		Limpopo, Mpumalanga , North West, Northern Cape, Western Cape							2005; Tshikalange et al., 2016)
Sida rhombifolia L. Family: Malvaceae Habit: Shrub	Ivivane (W), Pretoria Bossie (A), Pretoria Sida (E), Tihoveta (XT)	Least concern	Eastern Cape, Free State, Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , Northern Cape, North West	Not specified	Ground whole plant- anti dandruff	Capsul e	Whole plant- anti- inflammatory, toxicity, anti- cholinergic, antiplasmodial Leaves- analgesic, hypoglycaemic, antidiabetic Fruit- antibacterial Root- anti- inflammatory	Whole plant- rhombifoliamide, xylitol dimer, oleanolic acid, b- amyrin glucoside, ursolic acid, b- sitosterol glucoside, tiliroside	Aerial parts and roots- moisture, ash, Na, Ca, K, Co, Cu, Mg, Zn	(Gangadhar et al., 2019; Kamdoum et al., 2022; Logeswari et al., 2013; Mah et al., 2017; Rao and Mishra, 1997; Sarangi et al., 2010; Shaheen et al., 2017; Tshikalange et al., 2016)
Trichilia dregeana Harv. & Sond. Family: Meliaceae Habit: Tree	Forest mahogany (E); rooiessenh out (A); uMathunzi ni (Z); umKhuhlu (Xhosa); mmaba (S); mutshikili (V)	Least concern	KwaZulu- Natal, Limpopo, and Mpumalanga	Edible fruit	Not specified	Capsul e	Leaves- antibacterial, antifungal, antioxidant, anti- cholinesterase mutagenic, anti- inflammatory, wound healing, toxicity	Leaves- Cycloart- 23-ene-3,25-diol, lyoniresinol, maslinic acid, asperphernamate	Seeds- protein, fat, ash, moisture, K, P, S, Mg, Ca, Cu, Mn, B, Fe, Zn Fruit- sugar, moisture, protein, fat	(Eldeen et al., 2007; Fotso Tatio et al., 2023; Mashile et al., 2019a, b; Shewaye et al., 2023; Tsomele et al., 2021; Wilson and Downs, 2012)

Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
Trichilia emetica Vahl. Family: Meliaceae Habit: Tree	Natal mahogany (E); rooiessenh out (A); mamba (S); umathunzi ni (Z); umkuhlu (W); umkhuhlu (X); nkulu (XT); mutuhu (V)	Least concern	KwaZulu- Natal and Mpumalanga	Edible fruit- beverage/jui ce	Roots, stem infusion-painful feet, stomach cleansing Bark, roots-kidney problems	Capsul e	Leaves- antidiarrheal, antiplasmodial, antibacterial Seeds- antioxidant, cytotoxic, antifungal, antiplasmodial, antitrypanosomal Stem bark- antibacterial, antifungal, antiplasmodial, antitrypanosomal	Bark- Trichirokin, rohituka-3, rohituka-9 Leaves-phenolics, flavonoids Seeds- alkaloids, cardiac glycosides, flavonoids, phenols, sterols, terpenoids	Seeds- dry matter, fat, fibre, ash, protein, energy, carbohydrate, protein Seed oil- Ca, Cr, Cd, Zn, Cu	(Adinew, 2014, 2015; Atindehou et al., 2004; Babalola and Adelakun, 2018; Konaté et al., 2015; Perumal et al., 2020a, b; Rukayyah et al., 2015; Shackleton et al., 2000; Shai et al., 2020; Tshikalange et al., 2016; Tsopgni et al., 2019)
Ficus sur Forssk. Family: Moraceae Habit: Tree	Mogo (PI); broom cluster fig (E); besem- trosvy (A); umkhiwane (X and Z)	Least concern	Eastern Cape, KwaZulu- Natal, Limpopo, Mpumalanga , and Western Cape.	Edible fruit- jam	Bark- chest problems	Drupe	Leaves- toxicity, antioxidant, diuretic Stem bark- toxicity, anti-inflammatory, antioxidant Fruit- antibacterial, antioxidant Roots- antioxidant	Fruit and leaves- β-sitosterol, lupeol, epicatechin, phaeophytin A	Bark and leaves- ash, fibre, fat, moisture, protein, carbohydrate, Mg, Mn, Fe, K, Cu, Ca, Na, Zn, Ni Fruit- Mg, Mn, Fe, Cu, Zn, Cd, K, Ca, Pb	(Akesa et al., 2017; Akoto et al., 2020; Ayele et al., 2020; Mashile et al., 2019a, b; Odusanmi, 2017; Ogunlaja et al., 2022; Pawlos et al., 2021; Saloufou et al., 2018; Shai et al., 2020; Sieniawska et al., 2022)
Ficus thonningii Blume Family: Moraceae Habit: Tree	Xirhombe, xirhomberh ombe, nhluhlawu mbe (XT); mokumo (PI)	Least concern	Eastern Cape, Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , and North- West.	Edible fruit- jam	Root infusion- eye problems	Drupe	Leaves- antimicrobial, antioxidant, analgesic, anti- inflammatory, cytotoxicity, antimalarial Stem bark- antiulcer Fruits- antiulcer	Fruit and roots- Thonningiol, thonningiisoflavon , β-sitosterol	Leaves- protein, fibre, AI, N, K, Ca, Mg, Na, Mn, Fe, S	(Akesa et al., 2017; Falade et al., 2014; Fokunang et al., 2019; Fongang et al., 2015; Mashile et al., 2019a, b; Otimenyin et al., 2004; Shai et al., 2020; Tegbe et al., 2006; Tegegne,

Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
										2008; Tshikalange et al., 2016; Uku et al., 2020; Yahaya et al., 2021b)
Syzigium cordatum Hochst. Ex Krauss Family: Myrtaceae Habit: Tree	water berry (E); waterbessi e (A); umdoni (Z); umjomi (X), mawthoo (Southern Sotho), mutu (V); muhlwa (XT)	Least concern	KwaZulu- Natal, Mpumalanga , and Western Cape.	Edible fruit- alcoholic beverage.	Roots- tuberculosis	Berry	Leaves- antidiabetic, antidiarrhoeal, antibacterial, antifungal, anti- inflammatory, mutagenic Bark- antioxidant, cytotoxicity	Bark- alkaloids, flavonoids, glycosides, phenolic acids, terpenoids, coumarins Fruit- phenolics, flavonols Leaves- toluene, triacetin, silane, ledol	Fruit and seeds- moisture, fat, fibre, ash, protein, carbohydrates, energy, K, Ca, Na, Zn, Fe, Ag, B, Al	(Chalannavar et al., 2011; Cordier et al., 2013; Deliwe and Amabeoku, 2013; Maliehe, 2015; Mashile et al., 2019b; Mulaudzi et al., 2012; Ndhlala, A. et al., 2008; Shai et al., 2020)
Syzygium intermedium Engl. & Brehmer Family: Myrtaceae Habit: Tree	Intermediat e Waterberry (E), Ditlho (PI)	Least concern	Mpumalanga	Edible fruit	Not specified	Berry	Not available	Not available	Not available	(Shai et al., 2020)
Syzygium guineense DC. Family: Myrtaceae Habit: Tree	Waterberry (E); waterpeer (A); umdoni (Nd)	Least concern	KwaZulu- Natal, Limpopo, and Mpumalanga	Edible fruit	Not specified	Berry	Leaves- antimalarial, antiulcer, analgesic, anti-inflammatory, antioxidant, antidiarrhoeal, antihypertensive, vasodepressor Stem bark- anti- tuberculosis, antibacterial	Leaves- Fatty acids, Hydrocarbons, terpenes, organic acids	Fruit- Ca, K, P, S, Mn, Fe, Ti, Zn, Rb, Sr, Zr, protein, fibre, ash, fat	(Abok and Manulu, 2017; Ayele et al., 2010; Edewor et al., 2021; Ezenyi and Igoli, 2019; Ezenyi et al., 2019; Ior et al., 2012; Koval et al., 2018; Maregesi et al., 2016; Mavanza et al., 2017; Shackleton et al., 2000; Sibiya et al., 2021; Tadesse and Wubneh, 2017)

Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
Ochna natalitia Walp. Family: Ochnaceae Habit: Tree	Natal plane (E); natalrooiho ut (A); mbovu (Z); tshipfure (V); isibomvu (X)	Least concern	Eastern Cape, Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , and North West	Not specified	Root decoction- painful joints	Drupe	Leaves- antibacterial, antifungal, antioxidant, mutagenicity, cytotoxicity, genotoxicity,	Leaves- phytosterols, anthraquinones, tannins, flavonoids, terpenoids	Not available	(Chemane, I. et al., 2022; Makhafola, 2012; Makhafola et al., 2014; Ngubane et al., 2024; Shah et al., 2018; Suleiman et al., 2010; Tshikalange et al., 2016)
Jasminum abyssinicum Hochst. ex DC. Family: Oleaceae Habit: Shrub	Mthundang azi (Z)	Least concern	KwaZulu- Natal, Limpopo, Mpumalanga	Not specified	Root decoction- bladder cleaner	Berry	Leaves- antioxidant, anti-proliferative, antibacterial Root- analgesic, anti-inflammatory	Root- flavonoids, glycosides, saponins, secoiridoid glucosides, terpenoids,triter penes	Not available	(Gallo et al., 2006; Habtamu et al., 2010; Tadiwos et al., 2017; Tauchen et al., 2015; Tshikalange et al., 2016)
Jasminum fluminense subsp. Fluminense Family: Oleaceae Habit: Shrub	Maloyana (XT)	Least concern	KwaZulu- Natal, Limpopo, Mpumalanga	Not specified	Root decoction- sexually transmitted infections	Berry	Leaves, flower- antiplasmodial	Leaves- Phytol, hexadecanoic acid, linolenic acid, squalene Flower- Phenylethanolami ne, cinnamic acid	Leaves, flowers- carbohydrates, proteins	(Arivoli et al., 2018; Tshikalange et al., 2016)
Antidesma venosum E.Mey. ex Tul. Family: Phyllanthaceae Habit: Tree	Tasselberr y (E); Tosselbess ie (A); Isiqutwane (Z); Segagama (T); Mufhala-khwali (V); Umtyongi (X)	Least concern	Eastern Cape, KwaZulu- Natal, Limpopo, and Mpumalanga	Edible fruit	Root decoction- fertility in women	Berry	Leaves- antibacterial Roots- antibacterial, antifungal, toxicity Stem bark- antibacterial, antifungal, toxicity	Stem, leaves-Loliolide, β-sitosterol 3- <i>O</i> -β-D glucoside, lutein, 4-hydroxyphenyleth yl trans-ferulate, pheophytin A, pheophytin B	Fruit- moisture, protein, amino acid content, sugars, fat, vitamin C, vitamin E, vitamin B ₁ and B ₂	(Adegoke et al., 2013; Baumgärtel et al., 2022; Hlengwa, 2018; Mashile et al., 2019a, b; Mwangomo et al., 2012; Shackleton et al., 2000; Tshikalange et al., 2016; Wilson and Downs, 2012)
Bridelia micrantha (Hochst.) Baill.	Motsere (PI); ndzerhe (XT); bruin	Least concern	Eastern Cape, KwaZulu- Natal,	Edible fruit	Bark- headache, sore eyes, toothache,	Berry	Bark- antioxidant, antibacterial, anticonvulsant, sedative,	Leaves- Phosphoric acid, Decanal, phenyl salicylate.	Fruit- sugar, moisture, protein, fat	(Adesina et al., 2020; Asumang et al., 2021; Bum et al., 2012; Mashile et

Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
Family: Phyllanthaceae Habit: Tree	stinkhout (A); motsere (S); ndzerhe (T)		Limpopo, and Mpumalanga		and diarrhoea		antioxidant, antinociceptive, toxicity Leaves- antioxidant, antibacterial, antifungal, wound healing		Leaves- fibre, protein, Ca, P, Mg, Na, S, Fe, Mn, Cu, Mo, Co, Zn, Se	al., 2019a, b; Ngane, 2019; Ondiek et al., 2010; Onoja et al., 2014; Shai et al., 2020; Shelembe et al., 2016; Steenkamp et al., 2009; Wilson and Downs, 2012)
Flueggea virosa (Roxb. ex Willd.) Royle Family: Phyllanthaceae Habit: Tree	Motlhalabu (PI); white berry-bush (E); witbessies bos (A); mutangahu ma (V); mpfalamba ti (XT); Muhlakau me (S)	Least concern	KwaZulu- Natal, Limpopo, and Mpumalanga	Edible fruit	Bark- chest problems	Berry	Leaves- antimalarial, analgesic, antiviral, toxicity, anti- inflammatory Stem- analgesic, anti-inflammatory Twigs- antiviral Roots- toxicity, anti- inflammatory, antipyretic	Roots- trinorditerpenes Fruit- flueindoline A, B, and C, norsecurinamines A and B	Not available	(Chao et al., 2014; Dénou et al., 2021; Ezeonwumelu et al., 2012; Mashile et al., 2019a, b; Qiu-Jie et al., 2020; Shai et al., 2020; Singh et al., 2017; Zhang et al., 2015)
Phyllanthus reticulatus Poir. Family: Phyllanthaceae Habit: Shrub	Potato plant (E); aartappelb os (A); umchumel o (Z); thethenya (XT)	Least concern	KwaZulu- Natal, Limpopo, Mpumalanga	Not specified	Root decoction- blood problems	Berry	Fruit- anti- inflammatory Leaves- antibacterial, antioxidant, analgesic, anti- inflammatory, CNS depressant Stem bark- antioxidant	Leaf, stem bark- tannins, alkaloids, reducing sugars, flavonoids, steroids, saponins, anthraquinones	Leaf, stem bark- ash, moisture, protein	(Begum and Rahaman, 2021; Haque et al., 2016; Khatun et al., 2013; Kumar et al., 2012; Tshikalange et al., 2016)
Faurea saligna Harv. Family: Proteaceae Habit: Tree	African beech (E); Bosveldbo ekenhout (A); iSefu (Z); umOnyeli (N);	Least concern	KwaZulu- Natal, Mpumalanga	Not specified	Leaf decoction- epilepsy	Nut	Stem bark- antioxidant, anti- inflammatory, toxicity Bark- antibacterial	Leaves- tannin Bark- tannin	Leaves- Ca, Cl, Cu, Fe, K, Mg, Mn, Na, Ni and P	(Ernst, 1975; Lawal et al., 2019; Mthethwa, 2009; Tshikalange et al., 2016; Würger et al., 2014)

Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
	mohlako (S); muTango (V)									
Berchemia discolor Hemsl. Family: Rhamnaceae Habit: Tree	Mogokgom a (P); nyiri (XT); birdplum (E); voëlpruim (A); motsintsila (T); munie (V); uvuku (Z)	Least concern	KwaZulu- Natal, Limpopo, and Mpumalanga	Edible fruit- alcoholic beverage, porridge.	Bark, roots- wounds, bleeding gums	Drupe	Leaves- antioxidant, antifungal, antibacterial, antituberculosis Bark- antibacterial, antituberculosis	Bark, fruit, leaves- Alkaloids, anthraquinone, phlobatanins, saponins steroids, tannins, terpenoids, phenols, cardiac glycoside, flavonoids	Leaves and shoots- fibre, protein, ash, P, K, Ca, Mg, Cu, Mn, Fe	(Cheikhyoussef et al., 2010; Green et al., 2010; Kemboi et al., 2021; Gundidza and Sibanda, 1991; Machaba et al., 2024; Mashile et al., 2019b; Shai et al., 2013, 2020)
Berchemia zeyheri (Sond.) Grubov Family: Rhamnaceae Habit: Tree	Moneyi (PI); pink ivory (E), rooihout (A); umNeyi (W); xiniyani (XT); moye (T); muniane (V); umNini (X); umNini (Z)	Least concern	Eastern Cape, Limpopo, and Mpumalanga	Edible fruit	Root- headache	Drupe	Bark- antibacterial, toxicity, anthelmintic	Heartwood- Flavanone, isoflavanone- benzofuranoid	Leaves- ash, protein, fibre	(Bekker et al., 2000; Mashile et al., 2019a; McGaw et al., 2007; Mudau et al., 2021; Shai et al., 2020)
Ziziphus mucronata Willd. Family: Rhamnaceae Habit: Tree	Mothalo (PI); Ncecenyi, Mphasamh ala (XT); buffalo thorn (E); blinkblaar- wag-'n-	Least concern	Eastern Cape, Free State, Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , North-West,	Edible fruit	Leaves, roots mixed with lotion- skin problems	Drupe	Bark- antioxidant, antibacterial, antifungal Fruit- hepatoprotective, antioxidant Leaves-antioxidant, antibacterial, antidiabetic,	Root- Flavanols, flavonoids, phenols	Seeds- ash, fibre, protein, dry matter, P, Ca, K, Mg, Mn, Fe, Cu, Zn Leaves- ash, protein, fibre	(Abolaji et al., 2021; Adewusi and Steenkamp, 2011; Aganga and Mosase, 2001; Foyet et al., 2019; Ibrahim et al., 2012; Kwape et al., 2013; Mashile et al.,

Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
	bietjie (A); isilahla (Z); umphafa (X); umlahlaba ntu (W); mokgalo (T); mutshetsh ete (V)		and Northern Cape.				anxiolytic, antidepressant, cytotoxicity, anticholinesterase Root- antioxidant			2019a, b; Motlhanka et al., 2008; Mthi et al., 2016; Nemudzivhadi and Masoko, 2015; Olajuyigbe and Afolayan, 2011, 2012; Tshikalange et al., 2016; Wado et al., 2020)
Ziziphus zeyheriana Sond. Family: Rhamnaceae Habit: Shrub	Mothalo fasane (PI); dwarf buffalo- thorn (E); haakbessie (A)	Least concern	Free State, Gauteng, Limpopo, Mpumalanga , and North- West.	Edible fruit	Not specified	Drupe	Not available	Not available	Not available	(Mashile, et al., 2019b)
Agathisanthemu m bojeri Klotzsch Family: Rubiaceae Habit: Herb	Mavunge (XT)	Least concern	Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , North West	Not specified	Root decoction- swollen testicles	Capsul e	Aerial parts, roots- antifungal Leaves, stem- antibacterial, antioxidant, toxicity, antityrosinase Whole plant- antiplasmodial	Not available	Shoots, roots-P, C, N	(Lall et al., 2019; Muthaura et al., 2015; Runyoro et al., 2006; Treydte et al., 2006; Tshikalange et al., 2016)
Canthium inerme (L.f) Kuntze Family: Rubiaceae Habit: Tree	Turkey- berry (E); gewone bokdrol (A); umvuthwa mini (X, Z); mvutwamir a (W); muvhibvela -shadani (V)	Least concern	Eastern Cape, Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , North West, and Western Cape	Edible fruit	Not specified	Berry	Leaves- antibacterial, anthelmintic, anti- amoebic	Leaves- tannins, phenolics	Fruit- sugar, protein, fat, moisture Leaves- protein, fibre	(Bhatta et al., 2013; McGaw et al., 2000; Shai et al., 2020; Wilson and Downs, 2012)

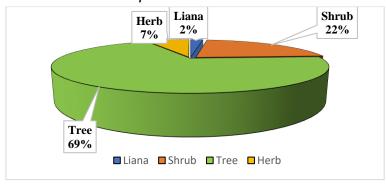
Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
Pavetta gracilifolia Bremek. Family: Rubiaceae Habit: Tree	Kleinbruids bos (A); small bride's bush (E)	Least concern	Eastern Cape, KwaZulu- Natal, Limpopo, and Mpumalanga	Not specified	Root decoction- painful feet	Drupe	Roots-antibacterial, antifungal	Not available	Not available	(Mophuting, 2015; Tshikalange et al., 2016)
Vangueria infausta Burch. Family: Rubiaceae Habit: Tree	Mmilo (PI); mpfilwa (XT); ild medlar (E); wilde mispel (A); muzwilu (V); umtulwa (Z); umvilo (X), umviyo (Nd), mmilo (T)	Least concern	Eastern Cape, Free State, Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , North-West, and Northern- Cape	Edible fruit- alcoholic beverage.	Bark, roots decoction- sexually transmitted infections/dis eases, toothache Roots- snake bites	Drupe	Fruit- antioxidant, antibacterial, antifungal Leaves- hypolipidemic, antioxidant, antibacterial Root bark- antiplasmodial Roots- antibacterial, antifungal, antiviral, cytotoxicity	Root- Alkaloids, anthranoids, flavonoids, glycosides, polyphenols, saponins, tannins	Fruit- protein, moisture, dry matter, fat, carbohydrate, energy, N, P, K, Ca, Mn, Fe, Cu, Na, Zn, Mg	(Abosi et al., 2006; Amusan et al., 2007; De Boer et al., 2005; Gwatidzo et al., 2018; Kebonye et al., 2021; Kiteme et al., 2023; Maluleke et al., 2024; Mashile et al., 2019a, b; Mausse et al., 2021b; Mothapo, 2014; Motlhanka et al., 2008; Mthethwa et al., 2014; Sanad, 2020; Shackleton et al., 2020; Tshikalange et al., 2016)
Vangueria pygmaea Schltr. Syn: Pachystigma pygmaeum (Schltr.) Robyns Family: Rubiaceae Habit: Subshrub	Mmilofasa ne (PI); Dwarf Crowned- medlar (E); Goubos A); Umkukuzel a (Nd)	Least concern	Free State, Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , and North- West.	Edible fruit- alcoholic beverage.	Bark, leaves- sexually transmitted diseases or infections.	Drupe	Leaves- anticancer, toxicity (syn)	Leaves- pavettamine (polyamine) (syn)	Not available	(Bode et al., 2010; Ellis et al., 2010; Fourie et al., 1995; Mashile et al., 2019b; Saeed et al., 2016; Shai et al., 2020)

Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
Flacourtia indica (Burm.f.) Merr. Family: Salicaceae Habit: Tree	Governor's Plum (E); muvhamba -ngoma (V); umqokolo (Nd)	Least concern	Eastern Cape, KwaZulu- Natal, Limpopo, Mpumalanga , and North West	Edible fruit	Not specified	Drupe	Fruit- antioxidant Stem bark- antioxidant Whole plant- antinociceptive, anti-inflammatory, diuretic, analgesic, antipyretic Leaves- antiasthmatic, antioxidant Roots- antifungal	Stem bark, leaves- phenols, flavonols Roots- Heneicosane, squalene Fruit- Rutin, salicylic acid glycoside, caffeoylshikimic acid	Fruit and seed- moisture, fat, protein, sugar, vitamin B ₁ , vitamin, C	(Alakolanga et al., 2014; Chun and Kundu, 2013; Eramma and Gayathri, 2021; Eramma and Patil, 2023; Islam et al., 2023; Misra and Misra, 2016; Selim et al., 2021; Shackleton et al., 2000; Swati et al., 2009; Tiwari, 2017; Tyagi et al., 2011)
Pappea capensis Eckl. & Zeyh. Family: Sapindaceae Habit: Tree	Bushveld cherry (E); doppruim (A); indaba (Z); ilitye (X); mongatane (S); liletsa (W); xikwakwax u, gulaswimbi (XT)	Least concern	Eastern Cape, Free State, Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , North West, Northern Cape, and Western Cape	Not specified	Bark decoction- Penis enlargement, reduction of breasts in men	Berry	Leaves- antibacterial, antifungal, antigonococcal, antioxidant, cytotoxicity, antiplasmodial Twigs- antiplasmodial, cytotoxicity Whole plant- anticancer	Leaves- Epicatechin, isoquercitrin, quercitrin, juglanin, guaijaverin Stem bark- phenolics, flavonoids, terpenoids, fatty acids and derivatives	Fruit- ash, moisture, fat, fibre, carbohydrates Leaves, stem bark- fibre, protein, Se, Fe, Zn, Cr, Cu, Ni, Mn, Co, V, Mo, Al, Hg, Pb, vitamin C, vitamin A, vitamin E, vitamin B ₁ and B ₂	(Karau et al., 2012; Mabuza et al., 2022; Muruthi et al., 2023; Osuga et al., 2006; Paksio and Samson, 2021; Pendota et al., 2017; Potts et al., 2013; Sibiya et al., 2021; Tajuddeen et al., 2021; Tshikalange et al., 2016)
Solanum tomentosum L. Family: Solanaceae Habit:	Slangappel bos (A); Nthomane (XT)	Least concern	Mpumalanga , Eastern Cape, Free State, Northern Cape, Western Cape	Not specified	Root infusion- eyes	Berry	Leaves- antifungal, antibacterial Stem- anticancer Roots- antifungal, anti-HIV, anti- inflammatory	Fruit- phenolics	Fruit- dry matter	(Aliero and Afolayan, 2006; Fouché et al., 2008; Kaushik et al., 2017; Mamba et al., 2016; Tshikalange et al., 2016)

Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
Ximenia americana L. Family: Olacaceae Habit: Tree	Ditsadi (PI); ntsengele (XT); small blue sourplum (E); kleinblousu urpruim (A); umkholots hwana (Z); umtfundvul uka (W); morotologa na (T); mutanzwa (V)	Least concern	Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , and North- West.	Edible fruit	Bark, roots- wounds, constipation	Drupe	Leaves- antioxidant, antibacterial, antidiabetic, anti- inflammatory, analgesic, anti- proliferative, antitumor, toxicity Root- antitumor, antioxidant, toxicity Root bark- anti- inflammatory, toxicity Stem bark- antioxidant, antidepressant,	Leaves- Epicatechin, catechin, rutin, isoquercetin, avicularin	Fruit- moisture, ash, fibre, protein, fat, vitamin C, Na, K, Ca, Mg, P Leaves- moisture, fibre, protein, ash, N, Na, K, Ca, P, Mg Seeds- fat	(Abel et al., 2023; Bakrim et al., 2022; Feyssa et al., 2012; Hemamalini et al., 2011; Mashile et al., 2019a; Muhammad et al., 2019; Okhale et al., 2017; Olabissi et al., 2011; Pare et al., 2019; Shai et al., 2020; Shettar et al., 2015, 2017; Tanko et al., 2017; Togbossi et al., 2020)
Ximenia caffra Sond. Family: Olacaceae Habit: Tree	Motjhidi (P); large sourplum (E); grootsuurp ruim (A); umThundul uka-obmvu (Z)	Least concern	Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , and North- West.	Edible fruit- jam	Leaves- diarrhoea, fever, infertility	Drupe	Not available	Fruit juice- Flavonoids, phenols, organic acids	Fruit- Na, Zn, K, P, Ca, Fe, moisture, fibre, protein, fat, carbohydrate	(Goosen et al., 2018; Mapunda and Mligo, 2019; Mashile et al., 2019a, b; Rankoana et al., 2015; Shai et al., 2020)
Englerophytum magalismontanu m (Sond.) T.D. Penn Family: Sapotaceae Habit: Tree	Ditlhatjwa tsa tlhaga (P); Transvaal milkplum (E); stamvrug (A); motlhatswa (T); munombel o (V);	Least concern	Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , and North- West.	Edible fruit- jam, syrup, wine	Not specified	Berry	Leaves, bark- antibacterial, antifungal, anti- inflammatory, antioxidant, toxicity, anticholinesterase Fruits- antioxidant	Leaves- Naringenin	Fruits- moisture, ash, protein, fibre, carbohydrate, energy, fat, vitamin C, vitamin B ₁ , vitamin B ₂ , vitamin B ₃ , Al, Ca, Fe, K, Mg, Mn, P, Pb, Se, Zn, Cu, Na, B	(Akhalwaya et al., 2018; Dzoyem and Eloff, 2015; Mashile et al., 2019a, b; Netshituni et al., 2022; Nkosi et al., 2022; Olaokun et al., 2022; Shai et al., 2020; Sibiya et al., 2020, 2021; Swenson et al.,

Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
	amanumbe la (Z); umnumbel a (T)								Leaves- Ca, Fe, K, Mg, Mn, P, Zn, Cu	2023; Wehmeyer, 1966)
Mimusops zeyheri Sond. Family: Sapotaceae Habit: Tree	Nhlantswa (XT); Transvaal red milkwood (E); moepel (A); umpushan e (Z); mubululu (V)	Least concern	Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , and North- West.	Edible fruit	Not specified	Berry	Leaves- antibacterial Seed oil- antiproliferative	Leaves- Phenols, alkaloids, flavonoids, terpenoids, tannins, quinones, saponins, glycosides	Fruit- dry matter, organic matter, protein, ash, carbohydrates Seeds- fat, fibre, protein, organic matter, dry matter, vitamin E, Ca, Mg, P Leaves- N, P, K, Ca, Mg, Zn, Cu, Fe, Al, Mn	(Chivandi et al., 2012; Fakudze et al., 2023; Mabadahanye et al., 2022; Mashile et al., 2019b; Mngadi, 2017; Omotayo et al., 2020; Shai et al., 2020)
Lantana rugosa Thunb. Family: Verbenaceae Habit: Shrub	Bird's brandy (E); wildesalie (A); sekwebeta ne (N); utywala bentaka (X); impema, utshwala benyoni (Z); molutoane (S)	Least concern	Eastern Cape, Free State, Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , North West, and Western Cape	Edible fruit	Leaves, roots- fever, diarrhoea	Berry	Leaves- anthelmintic, antibacterial, antifungal, toxicity Stem- antibacterial, antifungal,	Leaves- lantanin	Not available	(Mashile et al., 2019b; McGaw et al., 2005; Shai et al., 2020; Sibiya et al., 2021; Suliman, 2010)
Lippia javanica (Burm.f.) Spreng. Family: Verbenaceae Habit: Shrub	Lemon bush (E); koorsbossi e (A); umsutane (W); inzinziniba	Least concern	Eastern Cape, Free State, Gauteng, KwaZulu- Natal, Limpopo,	Not specified	Decoction- respiratory problems	Nut	Leaves- antioxidant, antibacterial, antifungal	Leaves- Tannin, flavonoids, terpenoids, alkaloids, phenols, α-thujene, α-pinene, camphene,	Aerial parts- Ash, moisture, fat, Fibre, protein, carbohydrate, Ca, N, Mg, K, P, Na, Zn, Cu, Mn, Fe	(Afolayan et al., 2021; Endris et al., 2016; Osunsanmi et al., 2019; Tshikalange et al., 2016)

Plant species	Common name (s)	Conservation status in South Africa	Province of availability in South Africa	Nutritional use (s)	Medicinal uses and methods of preparation	Fruit type	Pharmacological studies	Phytochemicals detected/isolated from plants	Nutritional composition	References
	(X); umswazi (Z)		Mpumalanga , North West					sabinene, myrcene, α-Phellandrene, α-terpinene		
Rhoicissus tridentata (L.f.) Wild & R.B.Drumm. Family: Vitaceae Habit: Liana	Wild grape (E); wildedruif (A); ulatile, (X); umthwazi (Z); lumbu (XT); morara-oathaba (S); murumbula -mbudzana (V)	Least concern	Eastern Cape, Free State, Gauteng, KwaZulu- Natal, Limpopo, Mpumalanga , North West, Northern Cape	Not specified	Root decoction- sexually transmitted intfections	Berry	Root bark, leaves, tubers, stem bark-antioxidant Leaves- antidiabetic Roots- uterotonic	Root bark, leaves, tubers, stem bark-catechin, epicatechin, gallic acid, epigallo-catechin-gallate Roots- 3-O-α-L-rhamnopyranosid e, trans-resveratrol 3-O-β-glucopyranoside, asiatic arjunolic acids, quercetin 3-O-rhamnopyranosid e, catechin, β-sitosterol, linoleic acid	Not available	(Mshengu et al., 2023; Mukundi et al., 2015; Naidoo et al., 2006; Tshikalange et al., 2016)


Common names: Afrikaans (A), English (E), Ndebele (Nd), Setswana (T), Sepulana (PI), Sesotho (S), Swati (W), Xhosa (X), Xitsonga (XT), Zulu (Z)

Minerals: Phosphorus (Ph), Calcium (Ca), Copper (Cu), Sodium (Na), Potassium (K), Nickel (Ni), Chromium (Cr), Cadmium (Cd), Nitrogen (N), Manganese (Mn), Zinc (Zn), Iron (Fe), Magnesium (Mg),

Table 2.3 An inventory of wild fruit plants in different regions of the Mpumalanga Province, South Africa.

Authors	District	Local Municipality	Ethnic group	Interviewee recruitment method	No. of participants	No of wild fruit plants	No. of families of wild fruit plants	Voucher specimen s	Dominant plant families	Study focus	Economic aspect
(Shackleton et al., 2000)	Ehlanzeni	Bushbuckridge	Tsonga Pedi	Random sampling, structured questionnair e	180 households	54	Unspecified	Unspecifie d	Ebenaceae Anacardiaceae	Edible	Yes
(Tshikalange et al., 2016)	Ehlanzeni	Bushbuckridge	Tsonga	Purposive sampling, Semi- structured questionnair e	15	55	42	Yes	Fabaceae	Medicinal	Unspecifie d
(Mashile et al., 2019a)	Ehlanzeni	Bushbuckridge Mbombela Thaba Chweu	Sepulana	Snowball, semi- structured questionnair e	68	21	19	Unspecifie d	Phyllanthaceae	Edible and woody	Unspecifie d
(Mashile et al., 2019b)	Ehlanzeni	Bushbuckridge Mbombela Thaba Chweu	Sepulana	Snowball, semi- structured questionnair e	82	33	26	Yes	Anacardiaceae Rhamnaceae	Edible	Unspecifie d
(Shai et al., 2020)	Ehlanzeni	Bushbuckridge	Sepulana	Questionnair e, semi- structured interviews	41	31	17	Yes	Anacardiaceae Rubiaceae	Edible and medicinal	Unspecifie d

2.10.2.3 Growth form of wild fruit species

Figure 2.7 Growth form of wild fruit plants used in Mpumalanga Province, South Africa.

The analysis of the growth form of documented wild fruits showed that trees (69%) were dominant, followed by shrubs (22%), herbs (7%), and lianas (2%) (Figure 2.7). Similarly, Ramachandran (2007) observed that trees were the most dominant growth form of wild fruit species, followed by shrubs, and the least being lianas. The high proportion of trees and shrubs could be linked to their ability to endure extended dry seasons, accounting for their copiousness and ease of access throughout the year (Tolossa et al., 2013). Additionally, the Mpumalanga Province is dominated by savanna woodlands (Brown et al., 2022; Ifegbesan, 2009; Prinsloo, 2015) consisting of sparsely distributed tree species (Campos et al., 2011; Pickering and Bunn, 2007), which could be a factor influencing the abundance of trees.

2.10.2.4 Nutritional uses and types of fruit produced by wild fruit species

Figure 2.8 Marula fruit processed into local (jam and wine) and international products (cream liqueur) (Hyslop, 2012; Mutuwa, 2021).

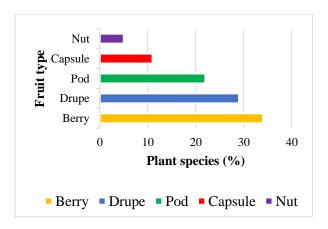
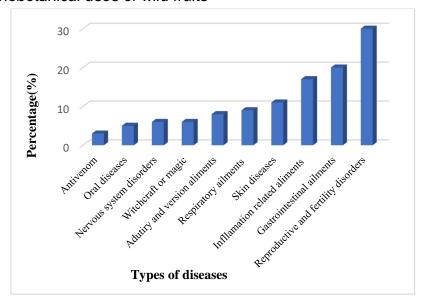



Figure 2.9 Percentages of different fruit types among wild fruit plants

The study revealed that 51% of wild fruit plant species are utilised for their nutritional value, primarily through their fruit, while the edibility of the remaining 49% was not specified. The study further revealed that the different types of wild fruits are processed into beverages, jams, juice, wine, syrup, and soft porridge by the local people (Table 2.2, Figure 2.8). The fruit types observed include berries, drupes, pods, capsules, and nuts (Figure 2.9). The most dominant fruit types were berries (34%) and drupes (29%). Similar to the findings of the current study, berries and drupes were the most common fruit types of wild fruit species in a study conducted by Mahapatra et al. (2012). Drupes, also known as stone fruits are single-seeded fleshy fruits (Bobrov and Romanov, 2019; Datta and Rawat, 2003), while berries are single or multi-seeded fruits with watery pulp (Datta and Rawat, 2003). These edible fruits are a great source of nourishment for local people since they are vitamin and mineral rich (Nazar et al., 2022). The consumption of wild fruits such as wild berries and drupes dates back to prehistoric times and still forms an integral part of the biocultural identity of local communities (Aguilera and Toledo, 2022). Surprisingly, in addition to the edible fruit, E. crispa leaves are used to prepare herbal tea (Table 2.2). The current results are in line with a prior study by Marwat et al. (2011) which demonstrated that the fruit and leaves of some wild fruit plant species such as Grewia tenax are edible and provide nutritional value to rural communities. This further indicates that wild fruit species can potentially possess nutritional benefits in other parts other than the fruit.

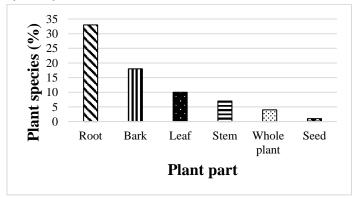
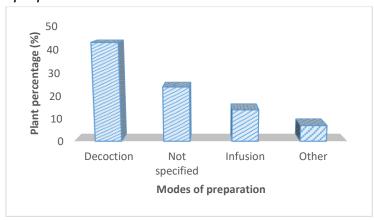

2.10.2.5 Ethnobotanical uses of wild fruits

Figure 2.10 Percentage of wild fruit plants used to treat various categories of ailments in the Mpumalanga Province, South Africa.

In the current study, 76% of the wild fruit plant species were employed in addressing a range of ailments and diseases. The study revealed the traditional medicinal use of these plants for treating various diseases, including reproductive, respiratory, gastrointestinal, skin, urinary, renal, wounds, eye problems, toothache, and as antivenom (Table 2.2 and Figure 2.10). Fabaceae plant species, including *Macrotyloma maranguense* and *Senna italica* subsp. arachoides, are commonly used for treating reproductive disorders and diseases, particularly sexually transmitted infections, as noted by Mathibela et al. (2019) in the Blouberg area of South Africa.

2.10.2.6 Medicinal plant parts


Figure 2.11 Percentage of plant parts used for medicinal purposes in Mpumalanga Province. South Africa.

The present findings showed that most plant parts are used for medicinal purposes (Figure 2.11); roots (33%), bark (18%), and leaves (8%) are among the most dominant medicinal parts. Unsurprisingly, these results resonate with previous studies that indicated that roots were the most commonly used plant part, followed by leaves and bark for medicinal purposes (Ndhlovu et al., 2023; Pascaline et al., 2011). Novotna et al. (2020) highlighted that local traditional health practitioners refer to roots as "real medicine." The frequent use of roots may be attributed to the fact that, even during extended dry seasons, they remain in the soil and are easily accessible (Tolossa et al., 2013). However, in other studies, the leaves are the predominantly used plant part because they are the most easily accessible part of the plant (Agisho et al., 2014; Chaachouay et al., 2022; Megersa and Woldetsadik, 2022). Furthermore, Alamgeer et al. (2018), indicated that preference of leaves over other plant parts may be due to the fact that they are the photosynthetic organs containing the photosynthates which might be responsible for their medicinal values.

A major challenge in conserving medicinal plants is the unregulated and unsustainable over-harvesting driven by the growing global demand for these plants (Raju and Das, 2024). To ensure their long-term availability, it is essential to raise awareness about sustainable harvesting practices and the responsible use of medicinal plants. Such efforts not only protect biodiversity but also foster socioeconomic development (Alemu et al., 2024).

Local communities use various harvesting techniques depending on the part of the plant required, often utilising a single plant in multiple ways, such as cutting the bark, plucking leaves, tapping sap, or extracting roots. Educating these communities on sustainable harvesting methods is vital to prevent over-harvesting and ensure the continued availability of medicinal plants. Best practices include carefully extracting roots without damaging the taproot, selectively removing stem bark to avoid harming inner layers, and plucking leaves without breaking shoots. These approaches help preserve plant populations, support biodiversity conservation, and promote the sustainable use of medicinal resources (Bukuluki et al., 2014).

2.10.2.7 Mode of preparation

Figure 2.12 Mode of preparation of wild fruit plant part preparation for traditional medicinal use in the Mpumalanga Province.

The most frequent mode of traditional medicine preparation was decoction (43%), followed by infusion (14%; Figure 2.12). The current findings align with Ahmad et al. (2014), who also found that decoction was the commonly used mode of preparation. Decoction involves boiling plant parts, which makes the extraction of active principles more efficient and aids in preserving traditional medicine longer (Tugume and Nyakoojo, 2019). The second most common mode of preparation (infusion) involves soaking plant material in hot or warm water and allowing the mixture to cool (Tugume and Nyakoojo, 2019). However, the modes of preparation employed by the local people of Mpumalanga Province in their traditional medicines are not limited to decoctions and infusions. There are other methods employed such as chewing the plant material or adding the plant material to bathing water (Table 2.2). Lastly, 24% of mode of preparation of some plant species was not recorded. Existing inventories' quality is impacted by lack of information regarding plant parts, preparation methods, and uses. A comprehensive plant profile is crucial for ethnopharmacological research, as incomplete data could lead to the decontextualization of traditional knowledge and hinder scientific validation (Weckerle et al., 2018). As a result, all significant plant information must be recorded.

2.10.2.8 Pharmacological studies on wild fruit plant species

The findings of the current study indicate that pharmacological studies have been conducted on 93% of the plant species recorded in Table 2.2. The findings presented in Table 2.2 demonstrate that the antimicrobial properties, encompassing

antibacterial, antifungal, and antiviral activities, are extensively investigated among wild fruit plants. The results further indicate that the antimicrobial activities of 86% of these species have been studied. The increasing problem of antimicrobial drug resistance among pathogens linked to various diseases drives the primary interest in seeking antimicrobial agents from medicinal plants (Škovranová et al., 2024). Pharmacological studies play a vital role in novel drug discovery and in the maintenance of health by preventing and providing a cure for diseases such as cancer and acquired immunodeficiency syndrome (AIDS) (Süntar, 2020). Cabada-Aguirre et al. (2023) highlighted that 75% of healthcare professionals recommend the use of herbal medicines.

2.10.2.9 Phytochemical studies on wild fruit species

The study uncovered that 85% of wild fruit plant species have been studied for phytochemical composition with the leaves being the most studied part (Table 2.2). This indicates that most wild fruit plant species have been studied. Additionally, the current findings further revealed that phytochemical studies of the fruit or fruit components was conducted on 34% of the wild fruit plant species (Table 2.2). Contrast to the present study findings, other recent studies indicate that leaves are the most used medicinal plant part, prompting researchers to study their phytochemistry (Alemu et al., 2024; Gillani et al., 2024; Pandey et al., 2024). Additionally, a study of Ardalani et al. 2021 shows a growing interest in the study of the phytochemistry of the roots of medicinal plants and that they offer while highlighting that the phytochemistry of the roots needs to be explored more. Therefore, comprehensive research is needed on fruit phytochemistry, as it is an edible component of wild fruit species and often used for medicinal purposes.

Phytochemical studies vary in nature, with some studies conducting preliminary screening and others focusing on compound identification and isolation. About 70% of preliminary screening was conducted on wild edible fruits, while 30% compounds were identified or isolated from these plants. Epicatechin, a compound found in various plant species, was observed in *Sclerocarya birrea* Hochst., *Ficus sur* Forssk., *Pappea capensis* Eckl. & Zeyh, and *Ximenia americana* L., while quercetin and its derivatives were found in *Schotia brachypetala* Sond., *Morus alba* L., *X. americana* L., and *Vitis vinifera* L (Table 2.2). Epicatechin, a polyphenol found in raspberries and leaves, is known for its antioxidant and anti-allergic properties (German et al., 2024). Quercetin,

another plant polyphenol, also exhibits antioxidant and anti-inflammatory properties (Frez et al., 2024). These findings suggest that wild fruit species are rich in beneficial phytochemicals for human health. Further research is needed on fruit phytochemistry, as fruits are an edible component of wild fruit species.

2.10.2.10 Nutritional composition of wild fruit plant species

The nutritional compositions of various components of wild fruit plants from 62 plant species including 27 wild fruits are listed in Table 2.2. It is important to determine the nutritional contents of wild fruits since they serve as supplementary foods and essential nutrients for local people (Tesfay et al., 2024). However, the results indicate a predominant focus on the nutritional content of leaves, accounting for 60% of the studied plant species. The interest in assessing the nutritional profiles of stems and leaves arises from the fact that some of these plant species are browsed by animals. For example, *Diospyros mespiliformis* Hochst. ex A.DC., *Parinari curatellifolia* Planch. ex Benth., and *Syzigium cordatum* Hochst. Ex Krauss bear edible fruits, yet the plants are utilized as browse species for livestock in the Bushbuckridge local municipality (Chepape et al., 2014).

2.10.2.11 Conservation status

In the current study, all the plant species excluding *Elaeodendron transvaalense* (Burtt Davy) R.H. Archer are classified as of "Least concern". Currently, *E. transvaalense* is listed as "Near threatened" in the South African National Red List Data for plants. E. transvaalense is mainly exploited for its bark, which is commonly sought after and traded in traditional markets for medicinal purposes (Khumalo et al., 2019). Factors such as over-harvesting, destructive bark harvesting, and the clearing of land for agricultural and urban development are responsible for the decline in the wild population of E. transvaalense in South Africa (Maroyi and Semenya, 2019). As noted by Williams et al. (2013), plant species can be classified as "Least concern", "Critically Endangered", "Endangered", "Vulnerable", "Near Threatened", "Data deficient", "Extinct", or "Extinct in the wild". Assessment of the conservation status of indigenous plants is paramount because a threat to these species may negatively impact the natural ecosystem (Moraswi et al., 2019). The primary threats to biodiversity, leading to an increased risk of extinction for numerous plant taxa in South Africa, stem from the over-utilisation of plant resources and anthropogenic pressures (Moraswi et al., 2019). It is also crucial to use plants of "least concern" sparingly to prevent extinction

in the future. It is further essential to assess the conservation status of non-evaluated plants and non-listed plants because habitat loss, harvesting, and trade may threaten their existence (Williams et al., 2013). Indigenous communities have their own methods of preserving valuable plants. For instance, Mashabela and Otang Mbeng (2021) and Seile et al. (2022) confirmed that locals in Ehlanzeni District of Mpumalanga Province conserve plants through seed storage and cultivation in their home gardens, and harvest only parts they need, demonstrating their concern for protecting their plant resources.

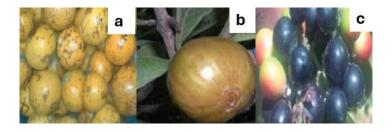
2.10.2.12 Comparison of ethnobotanical studies reporting on wild fruits Table 2.3 presents various interview recruitment methods, including spo

Table 2.3 presents various interview recruitment methods, including snowball (40%), purposive (20%), and random (20%) sampling. Purposive sampling is an efficient method in ethnobotany (Tongco, 2007), while random sampling helps draw general conclusions on large populations (Vogl et al., 2004). However, Alemu et al. (2024) explored random, purposive, and snowball techniques in their study. Semi-structured questionnaires were used in 80% of the studies. Fakchich and Elachouri (2023) argue that structured questionnaires result in low novel discoveries since the scope is restricted to the interests of the researcher. Additionally, Silva et al. (2014) recommends inventory-based type of interviews since they ensure the complete record of species in an area.

Shackleton et al. (2000) covered a significantly higher number of participants (180 households) in their study than the rest of the studies (Table 2.3). Paniagua-Zambrana et al. (2018) highlighted having a higher number of participants as an excellent method for acquiring a lot of information in ethnobotanical studies. In a recent study, Alemu et al. (2024) interviewed 388 participants, a number that is significantly higher than the studies in Table 2.3 which had less than 100 participants (Mashile et al., 2019a, b; Shai et al., 2020; Tshikalange et al., 2016). Additionally, Tshikalange et al. (2016) interviewed the least number of participants but recorded the highest (82) number of wild fruit species compared to other studies. Table 2.3 indicates that ethnobotanical studies often concentrate on the researcher's interests, rather than utilizing all available data on a species. For instance, Mashile, S. et al. (2019b) and Shackleton et al. (2000) focused only on edible wild fruit species, whereas Shai et al. (2020) focused on both medicinal and edible wild fruit species.

Table 2.4 Edible wild fruit plant species cited in all five ethnobotanical studies.

Plant species	No. of citations	Ethnobotanical studies			
C. spinarum	5	(Mashile et al., 2019a, b; Shackleton et al., 2000; Shai et			
		al., 2020; Tshikalange et al., 2016))			
D. mespiliformis	5	(Mashile et al., 2019a, b; Shackleton et al., 2000; Shai et al., 2020; Tshikalange et al., 2016)			
S. madagascariensis	5	(Mashile et al., 2019a, b; Shackleton et al., 2000; Shai et al., 2020; Tshikalange et al., 2016)			
V. infausta	5	(Mashile et al., 2019a, b; Shackleton et al., 2000; Shai et al., 2020; Tshikalange et al., 2016)			


Different numbers of plant species were recorded in the five different studies as highlighted in Table 2.3. However, some wild fruit plant species such as *V. infausta* and *S. madagascariensis* (Table 2.4) were cited in all the five-ethnobotanical studies reviewed in this paper which indicates their popularity and importance in the Bushbuckridge local Municipality.

The current study indicates that 20% of the previous investigations have focused on the economic aspects of wild fruit species. The study highlights the economic use and domestication of wild fruit species by indigenous communities in Bushbuckridge, highlighting the need to encourage the cultivation and processing of these plants for specific products (Shackleton et al., 2000), whereas, Nkosi et al. (2020) highlighted the commercial and nutritional value of indigenous wild fruit species in KwaZulu-Natal Province, South Africa, ranking them based on local markets and potential international market production. Hence, there is dire need to document and explore the cultivation/domestication as well as commercialisation of wild fruit species in the Mpumalanga Province as this could potentially benefit the community.

2.10.2.13 Economic value of wild fruit species

The trade of indigenous fruits and their products serves as a source of supplementary or main income for households (Mugari et al., 2024). The rise in demand for fruit in urban areas and limited economic opportunities in rural areas are driving the

increasing commercialisation of edible wild plant fruits (Seyoum et al., 2015). The production, sale, and consumption of wild fruits contributes to economic status of local people (Jabeen et al., 2024). Furthermore, several wild fruits are sold in local, national, and international markets (Termote et al., 2012). Some South African indigenous wild plant species whose fruit/ product has reached both local and international markets include *S. birrea* (Sardeshpande and Shackleton, 2019), *Adansonia digitata*, *Cucumis metulifer*, *Strychnos spinosa* Lam. (Hlangwani et al., 2023). The Marula tree is an important commercial plant from which products such as clay face mask, lip balm, soap, purifying face mask, serum, cream, body lotion, body wash gel, face wash, toner, body scrub, shampoo and conditioner are developed and sold nationwide by companies such as Portia M, Africa organics, The Victorian Garden, Lulu and Marula, and Iwori Beauty of Africa among others (Gebashe et al., 2022). The study of Shackleton et al. (2000) shows that the people of Bushbuckridge Municipality have long practiced indigenous fruit trade, selling *S. madagascariensis*, *C. spinarum*, and *V. infausta* fruits (Figure 2.13).

Figure 2.13 Wild fruit plants of commercial significance in the Mpumalanga Province, (a) *S. madagascariensis* (Akweni et al., 2022), (b) *V. infausta* (Mdungazi et al., 2024), and (c) *C. spinarum* (Siyum and Meresa, 2021).

2.10.2.14 Research gaps identified on studies on wild fruit species in Mpumalanga Province

Tshikalange et al. (2016) argue that the Mpumalanga Province consists of different ethnic groups, including Tsonga, Zulu, Swati, Pedi, and Ndebele. However, the results (Table 2.2) indicate that only the Sepulana- (50%), Tsonga- (33%), and Pedi- (17%) speaking ethnic groups are often consulted about the wild edible fruits. Therefore, there is a need to investigate the differences in the uses of these plants amongst different ethnic groups, given that the Mpumalanga Province is culturally diverse. Maroyi and Rasethe (2015) highlighted the differences and similarities in the use of wild plants by the Bapedi people of South Africa and the Chikaranga-speaking people

of Zimbabwe. Joshi et al. (2020) studied the utilisation of wild plants between three ethnic groups in Nepal, Asia and highlighted how these kinds of studies help reveal cultural differences in rural or urban settings.

Despite the rich diversity of wild fruit species in South Africa (Table 2.2), there has been limited success in their commercialisation and recognition in international markets due to the lack of innovation when it comes to value addition (Mabhaudhi et al., 2017; Sileshi et al., 2023). Notably, "amarula" from *S. birrea* stands out as one of the few South African products that have successfully penetrated the international market (Sileshi et al., 2023). This underscores the neglect and underutilisation of numerous other wild plant species (Issa-Zacharia et al., 2024; Sahoo et al., 2021; Shembe et al., 2023). Currently, there is a predominant emphasis on cultivating and commercialising conventional crops in South Africa, posing challenges exacerbated by climate change (Ntshidi et al., 2022). There is also a bias extending towards the cultivation of conventional and exotic crops rather than focusing on wild plants (Mabhaudhi et al., 2017; Nxusani et al., 2023). However, incorporating alternative crops such as wild fruit species is crucial for sustaining agriculture in the country, contributing significantly to health, food and economic security (Aga and Gagabo, 2024; Sulaiman et al., 2023).

As indicated in Table 2.2, wild fruits offer versatile consumption options, either fresh or processed into various products. Recent studies continue to prove both the nutritional and medicinal value of wild plants (Chaudhary et al., 2024; Ningthoujam et al., 2024). Medicinal and nutritional applications of wild fruit species can serve as a basis for their commercialisation (Seleteng-Kose et al., 2023). According to Shackleton et al. (2000), 15% of participants were involved in the local trade of wild fruits in Bushbuckridge, especially that of *S. madagascariensis* and *V. infausta*. This suggests that participation in the wild fruit trade was limited in the community. The remaining investigations in Table 2.3 have not delved into or pinpointed the economic utilisation or advantages of these plant species within the communities where the wild fruit species were documented. Consequently, there is a necessity to assess the current status of wild fruit species trade in these communities or to promote and support such trade. Furthermore, it is imperative to expand the trade of wild fruit species products beyond local markets. Thus, domesticating wild fruit species can facilitate large-scale production and commercialisation, thereby contributing to the local economy (Sileshi

et al., 2023). Integrating wild fruits into farming practices is also essential for safeguarding them from extinction, especially in the face of urbanisation and conventional farming methods (Borelli et al., 2020; Sileshi et al., 2023). Hence, a comprehensive research effort is needed to explore and encourage the domestication and innovative efforts to boost the commercialisation of wild fruit species in the Mpumalanga Province.

2.11 Plant species selected for further studies

The following six wild fruit plant species were selected based on their frequent citation in existing literature, traditional uses, research gaps in bioassays, and the availability and ease of access for collection.

2.11.1 Botanical description of Carissa spinarum L.

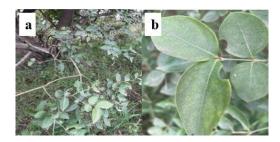


Figure 2.14 Carissa spinarum L. (a) whole plant and (b) leaves

Carissa spinarum L. (Figure 2.14) is a spiny evergreen shrub (Sanwal and Chaudhary, 2011). The woody plant has forked branches (Berhanu et al., 2020). Leaves are ovate, leathery, and exude white latex (Fatima et al., 2013). The plant produces a cluster of fragrant white flowers with a tint of purple or pink. The edible fruits are green and turn red to purplish black when ripe (Smyth and Sheridan, 2022).

2.11.2 Botanical description of *Diospyros mespiliformis* Hochst. ex A.DC

Figure 2.15 *Diospyros mespiliformis* Hochst. ex A.DC. whole plant **(a)**, flowers **(b)**, and fruit **(c)**

Diospyros mespiliformis Hochst. ex A.DC. (Figure 2.15) is a tree that can grow up to 25 m with an evergreen dense canopy (Ahmed and Mahmud, 2017). The tree produces fruit that are almost spherical and about 25 mm in diameter. When ripe, they turn into a fleshy yellow to purple colour (Nyambe et al., 2019b).

2.11.3 Botanical description of Euclea crispa (Thunb.) Gürke

Figure 2.16 Euclea crispa (Thunb.) Gürke whole plant (a) and leaves (b)

Euclea crispa (Thunb.) Gürke (Figure 2.16) is an evergreen and hardy shrub or tree (Palanisamy et al., 2018) growing up to 6 m in height (Alayande et al., 2020). The plant consists of a dense canopy of leaves that are simple, leathery, rigid, and dull green in colour. The bark ranges from grey to brown in colour. Furthermore, the plant bears yellow to greenish-white coloured small, waxy, and pendulous flowers (Palanisamy et al., 2022).

2.11.4 Botanical description of Ficus thonningii Blume

Figure 2.17 Ficus thonningii Blume whole plant (a), leaves (b), and fruit (c)

Ficus thonningii Blume (Figure 2.17) is a tree that grows from 6 to 21 m high, with a round, spreading crown that is densely packed (Maiha et al., 2013). All parts of the plant exude excessive milky latex. It has simple, glossy, dark green, thin leaves. A milky juice often distinguishes the fruits, which can come single or in pairs (Coker et al., 2015). Juvenile branches have hairy bark with a stipular cap covering the growth tip, whereas older branches and stems have smooth, grey bark. The fruit of the fig tree is hairy and usually borne in the leaf axils, sessile or on peduncles to 10 mm in length (Berg and Corner, 2005).

2.11.5 Botanical description of Strychnos madagascariensis Poir.

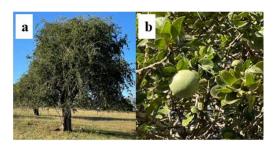


Figure 2.18 Strychnos madagascariensis Poir. whole plant (a), fruit and leaves (b)

Strychnos madagascariensis Poir (Figure 2.18) grows to a height of 15 m, often multistemmed, with flat and densely branched, twiggy and spreading crown. The bark of *S. madagascariensis* is pale grey in colour, smooth or grooved, with no spines but with often hard, short, and rigid lateral side shoots which give the impression of thorns. The leaves of *S. madagascariensis* are simple, opposite, or clustered on lateral twigs, thin, elliptic to oval in shape, shiny, leathery, dark green above and pale green beneath. The flowers are trumpet-shaped, small on short stalks, in axils of leaves and yellow green in colour with white hairs in the throat. The fruit of *S. madagascariensis* are large, globose or round berries, blue-green or green when young and ripening to orange-yellow (Maroyi, 2021). The fruit of this plant species contains edible pulp with a bitter-sweet taste. The fruit also contains large translucent seeds that are believed to be toxic (Van Rayne et al., 2020).

2.11.6 Botanical description of Strychnos spinosa Lam.

Figure 2.19 Strychnos spinosa Lam. whole plant (a), leaves (b), and fruit (c)

Strychnos spinosa Lam. (Figure 2.19) is a tree that can grow up to 7 m in height with a corky bark and spines than are curved or straight. Leaves are simple, oval, glabrous, and arranged oppositely with axillary spines. Fruits of this tree are edible and are bright green (unripe) with woody peels that are 3 to 4 mm thick. Meanwhile, as they ripen, the peel turns yellow-brown in colour. The fruit has a pleasantly sour taste and has a diameter of 10 to 15 cm with flat seeds that vary in size. It has hard-brown seeds and pale brown pulp that is edible, juicy, and sweet-sour (Abaci et al., 2017).

2.12 Concluding remarks

Skin diseases, whether infectious, inflammatory, or degenerative, pose significant global health and psychological challenges. Oxidative stress plays a critical role in skin damage, underscoring the importance of effective antioxidative treatments. Wild fruit species in Mpumalanga, with their potent antioxidant properties, offer promising solutions for managing skin conditions. Moreover, their antimicrobial effects could address multidrug-resistant pathogens like Klebsiella pneumoniae and Pseudomonas aeruginosa. The Province of Mpumalanga boasts a rich diversity of wild fruits that serve dual roles as medicinal and nutritional resources, providing significant economic potential owing to their multifaceted uses. The research highlighted in this review predominantly centres on the Ehlanzeni district. Variations in traditional knowledge concerning wild fruit species among different cultures and ethnicities underscore the importance of exploring this knowledge across diverse regions and ethnic groups. These findings lay a crucial groundwork for future scientific inquiries aimed at comprehensive assessment and validation, while also preserving this significant cultural heritage. Thus, extensive documentation of wild fruit species in Mpumalanga Province and further investigation into their biological properties is recommended. Additionally, a thorough exploration of the commercial viability and domestication potential of these wild fruit species in Mpumalanga Province is recommended.

References

- Abaci, H., Guo, Z., Doucet, Y., Jackow, J., Christiano, A., 2017. Next generation human skin constructs as advanced tools for drug development. Experimental Biology and Medicine 242, 1657-1668.
- Abdallah, M.S., Mustafa, M., Nallappan, M.A.P., Choi, S., Paik, J.-H., Rusea, G., 2021. Determination of phenolics and flavonoids of some useful medicinal plants and bioassay-guided fractionation substances of *Sclerocarya birrea* (A. Rich) Hochst stem (bark) extract and their efficacy against Salmonella typhi. Frontiers in Chemistry 9, 670530.
- Abel, A., Mahoud, S., Adamu, M., CT, A., 2023. Anti-tumor activities/Alternative therapy of some selected nigerian medicinal plants. IDOSR Journal of Scientific Research 8, 152-164.
- Abok, J., Manulu, C., 2017. TLC analysis and GC-MS profiling of hexane extract of *Syzygium guineense* leaf. Journal of Medicinal Plants Studies 5, 261-265.
- Abolaji, O.K., Ukwuani-Kwaja, A., Sani, I., Sylvester, M., 2021. In-vitro antidiabetic effect of *Ziziphus mucronata* leave extracts. Journal of Drug Delivery and Therapeutics 11, 9-13.
- Abosi, A., Mbukwa, E., Majinda, R.R., Raseroka, B., Yenesew, A., Midiwo, J.O., Akala,
 H., Liyala, P., Waters, N.C., 2006. *Vangueria infausta* root bark: In vivo and *in vitro* antiplasmodial activity. British Journal of Biomedical Science 63, 129-133.
- Abruzzo, A., Pucci, R., Abruzzo, P., Canaider, S., Parolin, C., Vitali, B., Valle, F., Brucale, M., Cerchiara, T., Luppi, B., 2024. Azithromycin-loaded liposomes and niosomes for the treatment of skin infections: Influence of excipients and preparative methods on the functional properties. European Journal of Pharmaceutics and Biopharmaceutics 197, 114233.
- Abubakar, M.N., Majinda, R.R., 2016. GC-MS analysis and preliminary antimicrobial activity of *Albizia adianthifolia* (Schumach) and *Pterocarpus angolensis* (DC). Medicines 3, 3.

- Adebayo, S.A., Shai, L.J., Eloff, J.N., 2017. First isolation of glutinol and a bioactive fraction with good anti-inflammatory activity from n-hexane fraction of *Peltophorum africanum* leaf. Asian Pacific Journal of Tropical Medicine 10, 42-46.
- Adegoke, S., Agada, F., Ogundipe, L., 2013. Antibacterial activity of methanol and ethanol leaf extracts of *Antidesma venosum* and *Lannea barteri*. African Journal of Microbiology Research 7, 27.
- Adelowotan, O., Aibinu, I., Adenipekun, E., 2008. The *in-vitro* antimicrobial activity of Abrus precatorius. Nigerian Postgraduate Medical Journal 15, 33-37.
- Adesina, J., Rajashaker, Y., Ofuya, T.I., 2020. Potentiality and chemical composition of *Bridelia micrantha* (Berth) extracts and its fractions as biofumigant against economically important stored grain insect pests. Journal of Horticulture and Postharvest Research 3, 61-72.
- Adewusi, E.A., Steenkamp, V., 2011. *In vitro* screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from southern Africa. Asian Pacific Journal of Tropical Medicine 4, 829-835.
- Adinew, B., 2014. Proximate nutritional composition, characterization of some selected physicochemical properties and comparative compositional analysis of *Trichilia emetica* oilseeds with some selected commercial oilseeds. African Journal of Agricultural Research 9, 2177-2184.
- Adinew, B., 2015. Minerals and fatty acid composition analysis of *Trichilia emetica* seed oil and the possibility of its use in cosmetic preparation. World Journal of Pharmaceutical Sciences 3, 2185-2191.
- Adzu, B., Amos, S., Dzarma, S., Muazzam, I., Gamaniel, K., 2002. Pharmacological evidence favouring the folkloric use of *Diospyros mespiliformis* Hochst in the relief of pain and fever. Journal of Ethnopharmacology 82, 191-195.
- Afolayan, A., Grierson, D., Kambizi, L., Madamombe, I., Masika, P., Jäger, A., 2002. *In vitro* antifungal activity of some South African medicinal plants. South African Journal of Botany 68, 72-76.

- Afolayan, A., Otunola, G., Asowata-Ayodele, A., 2021. The nutrient, mineral and antinutrient studies of two indigenous South African spices. Journal of Advances in Biology and Biotechnology 24, 15-23.
- Afolayan, A.J., Otunola, G.A., 2014. Ultrastructure and elemental analysis of *Hypoxis hemerocallidea*: A multipurpose medicinal plant. African Journal of Traditional, Complementary and Alternative Medicines 11, 39-43.
- Aga, G.W., Gagabo, S.Y., 2024. Review status of Mango production and research in Ethiopia. Journal of Plant Sciences 12, 21-29.
- Aganga, A., Mosase, K., 2001. Tannin content, nutritive value and dry matter digestibility of *Lonchocarpus capassa*, *Zizyphus mucronata*, *Sclerocarya birrea, Kirkia acuminata and Rhus lancea seeds. Animal Feed Science and Technology* 91, 107-113.
- Agisho, H., Osie, M., Lambore, T., 2014. Traditional medicinal plants utilization, management and threats in Hadiya Zone, Ethiopia. Journal of Medicinal Plants 2, 94-108.
- Aguilera, J.M., Toledo, T., 2022. Wild berries and related wild small fruits as traditional healthy foods. Critical Reviews in Food Science and Nutrition, 1-15.
- Ahmad, M., Sultana, S., Fazl-i-Hadi, S., Ben Hadda, T., Rashid, S., Zafar, M., Khan, M.A., Khan, M.P.Z., Yaseen, G., 2014. An ethnobotanical study of medicinal plants in high mountainous region of Chail valley (District Swat-Pakistan). Journal of Ethnobiology and Ethnomedicine 10, 1-18.
- Ahmad, P.A., Mir, F.A., 2022. Photovoltaic response of *Carissa spinarum* berry extract in dye-sensitized solar cell. Environmental Science and Pollution Research, 1-8.
- Ahmed, A., Mahmud, A., 2017. Pharmacological activities of *Diospyros mespiliformis*: A review. International Journal of Pharmaceutical and Biological Sciences 7, 93-96.
- Ahmed, A.S., McGaw, L.J., Moodley, N., Naidoo, V., Eloff, J.N., 2014. Cytotoxic, antimicrobial, antioxidant, antilipoxygenase activities and phenolic composition of *Ozoroa* and *Searsia species* (Anacardiaceae) used in South

- African traditional medicine for treating diarrhoea. South African Journal of Botany 95, 9-18.
- Ajaiyeoba, E., Falade, M., Ogbole, O., Okpako, L., Akinboye, D., 2006. *In vivo* antimalarial and cytotoxic properties of Annona senegalensis extract. African Journal of Traditional, Complementary and Alternative Medicines 3, 137-141.
- Akesa, T., Adedzwa, D., Anyam, R., Apeelu, S., Waya, J., Dughdugh, P., 2017. Taxonomic studies of members of the family Moraceae in selected areas of Benuestate, Nigeria. Global Scientific Journal 5, 68.
- Akhalwaya, S., Van Vuuren, S., Patel, M., 2018. An *in vitro* investigation of indigenous South African medicinal plants used to treat oral infections. Journal of Ethnopharmacology, 359-371.
- Akoto, C.O., Acheampong, A., Kwame, O., Boateng, B.A., 2020. An Assessment of the anti-inflammatory, antimicrobial, and antioxidant activities of *Ficus sur* stem-bark. Organic and Medicinal Chemistry International Journal 9, 116-124.
- Akweni, A.L., Sibanda, S., Zharare, G.E., Zimudzi, C., 2020. Fruit-based allometry of *Strychnos madagascariensis* and *S. spinosa* (Loganiaceae) in the savannah woodlands of the Umhlabuyalingana municipality, KwaZulu-Natal, South Africa. Trees, Forests and People 2, 100025.
- Akweni, A.L., Sibanda, S., Zharare, G.E., Zimudzi, C., 2022. Deriving biomass allocation and carbon stocks in fruit components of *Strychnos madagascariensis* (Poir.) and *Strychnos spinosa* (Lam.) in South Africa. International Journal of Fruit Science 22, 1-16.
- Alemu, M., Asfaw, Z., Lulekal, E., Warkineh, B., Debella, A., Sisay, B., Debebe, E., 2024. Ethnobotanical study of traditional medicinal plants used by the local people in Habru District, North Wollo Zone, Ethiopia. Journal of Ethnobiology and Ethnomedicine 20, 1-30.
- Al-Fartusie, F.S., Mohssan, S.N., 2017. Essential trace elements and their vital roles in human body. Indian Journal of Advances in Chemical Sciences 5, 127-136.
- Al-Fatimi, M., 2019. Antifungal activity of *Euclea divinorum* root and study of its ethnobotany and phytopharmacology. Processes 7, 680.

- AL-kahfaji, M.H.A.M., 2022. Human skin infection: A review study. Biomedicine and Chemical Sciences 1, 254-258.
- Al-Obaidi, J.R., Alobaidi, K.H., Al-Taie, B.S., Wee, D.H.-S., Hussain, H., Jambari, N.N., Ahmad-Kamil, E., Ariffin, N.S., 2021. Uncovering prospective role and applications of existing and new nutraceuticals from bacterial, fungal, algal and cyanobacterial, and plant sources. Sustainability 13, 3671.
- Alagbe, J., 2019. Proximate, mineral and phytochemical analysis of *Piliostigma thonningii* stem bark and roots. International Journal of Biological, Physical and Chemical Studies 1, 1-7.
- Alakolanga, A., Siriwardane, A., Kumar, N.S., Jayasinghe, L., Jaiswal, R., Kuhnert, N., 2014. LC-MSn identification and characterization of the phenolic compounds from the fruits of *Flacourtia indica* (Burm. F.) Merr. and Flacourtia inermis Roxb. Food Research International 62, 388-396.
- Alamgeer, Younis, W., Asif, H., Sharif, A., Riaz, H., Bukhari, I.A., Assiri, A.M., 2018. Traditional medicinal plants used for respiratory disorders in Pakistan: a review of the ethno-medicinal and pharmacological evidence. Chinese Medicine 13, 1-29.
- Alayande, K., Pohl, C., Ashafa, A., 2016. Assessment of antidiarrhoea properties of *Euclea crispa* (Thunb.) leaf extract and fractions. South African Journal of Botany 103, 306.
- Alayande, K., Pohl, C., Ashafa, A., 2018. Significance of combination therapy between Euclea crispa (Thunb.) (leaf and stem bark) extracts and standard antibiotics against drug resistant bacteria. South African Journal of Botany 118, 203-208.
- Alayande, K.A., Pohl, C.H., Ashafa, A.O.T., 2017. Time-kill kinetics and biocidal effect of Euclea crispa leaf extracts against microbial membrane. Asian Pacific Journal of Tropical Medicine 10, 390-399.
- Alayande, K.A., Pohl, C.H., Ashafa, A.O.T., 2020. Evaluations of biocidal potential of *Euclea crispa* stem bark extract and ability to compromise the integrity of microbial cell membrane. Journal of Herbal Medicine 21, 100304.

- Alemu, M., Asfaw, Z., Lulekal, E., Warkineh, B., Debella, A., Sisay, B., Debebe, E., 2024. Ethnobotanical study of traditional medicinal plants used by the local people in Habru District, North Wollo Zone, Ethiopia. Journal of Ethnobiology and Ethnomedicine 20, 4.
- Ali, H.S., Engidawork, E., 2022. Antidepressant-like activity of solvent fractions of the root bark of *Carissa spinarum* Linn. (Apocynaceae) in rodents Involves multiple signaling pathways. Journal of Experimental Pharmacology 14, 379-394.
- Aliero, A., Afolayan, A., 2006. Antimicrobial activity of *Solanum tomentosum*. African Journal of Biotechnology 5, 369-372.
- Alimi, A., Adeleke, R., Moteetee, A., 2021. Soil environmental factors shape the rhizosphere arbuscular mycorrhizal fungal communities in South African indigenous legumes (Fabaceae). Biodiversitas Journal of Biological Diversity 22, 2466-2476.
- Allemann, I.B., Baumann, L., 2008. Antioxidants used in skin care formulations. Skin Therapy Letters 13, 5-9.
- Amarteifio, J., Mosase, M., 2006. The chemical composition of selected indigenous fruits of Botswana. Journal of Applied Sciences and Environmental Management 10, 43-47.
- Amusan, O.O., Sukati, N.A., Dlamini, P.S., Sibandze, F.G., 2007. Some Swazi phytomedicines and their constituents. African Journal of Biotechnology 6, 267-272.
- Andrew, R., Izzo, A.A., 2017. Principles of pharmacological research of nutraceuticals.

 British Journal of Pharmacology 174, 1177.
- Anokwuru, C., Sigidi, M., Boukandou, M., Tshisikhawe, P., Traore, A., Potgieter, N., 2018. Antioxidant activity and spectroscopic characteristics of extractable and non-extractable phenolics from *Terminalia sericea* Burch. ex DC. Molecules 23, 1303.
- Anokwuru, C., Sigidi, M., Zininga, T., Tshisikhawe, M., Shonhai, A., Ramaite, I., Traoré, A., Potgieter, N., 2017. Phenolic contents, antioxidant activity and

- spectroscopic characteristics of *Pterocarpus angolensis* DC. stem bark fractions. Indian Journal of Traditional Knowledge 16, 400-406.
- Ardalanu, H., Amiri, F.H., Hadipanah, A., Kongstad, K.T., 2021. Potential antidiabetic phytochemicals in plant roots: A review of *in vivo* studies. Journal of Diabetes and Metabolic Disorders 20, 1837-1854.
- Arivoli, S., Divya, S., Arumugam, B., Meeran, M., Jayakumar, M., Raveen, R., Samuel, T., 2018. Phytochemical constituents of *Jasminum fluminense* Linnaeus (Oleaceae): An additional tool in the ecofriendly management of mosquitoes? Journal of Pharmacognosy and Phytochemistry 7, 548-556.
- Armentano, M.F., Bisaccia, F., Miglionico, R., Russo, D., Nolfi, N., Carmosino, M., Andrade, P.B., Valentão, P., Diop, M.S., Milella, L., 2015. Antioxidant and proapoptotic activities of *Sclerocarya birrea* [(A. Rich.) Hochst.] methanolic root extract on the hepatocellular carcinoma cell line HepG2. BioMed Research International.
- Asumang, P., Boakye, Y.D., Agana, T.A., Yakubu, J., Entsie, P., Akanwariwiak, W.G., Adu, F., Agyare, C., 2021. Antimicrobial, antioxidant and wound healing activities of methanol leaf extract of *Bridelia micrantha* (Hochst.) Baill. Scientific African 14, 00980.
- Atindehou, K.K., Schmid, C., Brun, R., Koné, M., Traore, D., 2004. Antitrypanosomal and antiplasmodial activity of medicinal plants from Côte d'Ivoire. Journal of Ethnopharmacology 90, 221-227.
- Awa, E., Ibrahim, S., Ameh, D., 2012. GC/MS analysis and antimicrobial activity of diethyl ether fraction of methanolic extract from the stem bark of *Annona senegalensis* Pers. International Journal of Pharmaceutical Sciences and Research 3, 4213.
- Ayalew Tiruneh, T., Ayalew Tiruneh, G., Chekol Abebe, E., Mengie Ayele, T., 2022. Phytochemical investigation and determination of antibacterial activity of solvent leave extracts of *Carissa spinarum*. Infection and Drug Resistance, 807-819.

- Ayele, M., Makonnen, E., Ayele, A.G., Tolcha, Y., 2020. Evaluation of the diuretic activity of the aqueous and 80% methanol extracts of *Ficus sur* Forssk (Moraceae) leaves in saline-loaded rats. Journal of Experimental Pharmacology, 619-627.
- Ayele, Y., Urga, K., Engidawork, E., 2010. Evaluation of in vivo antihypertensive and in vitro vasodepressor activities of the leaf extract of *Syzygium guineense* (Willd) DC. Phytotherapy Research 24, 1457-1462.
- Baba, G., Adewumi, A., Jere, S.A., Adewumi, A., Jere, S., 2014. Toxicity study, phytochemical characterization and anti-parasitic efficacy of aqueous and ethanolic extracts of Sclerocarya birrea against *Plasmodium berghei* and *Salmonella typhi*. British Journal of Pharmacology and Toxicology 5(2), 59-67.
- Babalola, I.T., Adelakun, E.A., 2018. Phytochemical analysis and antimicrobial activity of *Trichilia emetical* Vahl (Meliaceae). Journal of Pharmacognosy and Phytochemistry 7, 1980-1982.
- Baek, J., Lee, M.-G., 2016. Oxidative stress and antioxidant strategies in dermatology. Redox Report 21, 164-169.
- Bagla, V., Lubisi, V., Ndiitwani, T., Mokgotho, M., Mampuru, L., Mbazima, V., 2016. Antibacterial and antimetastatic potential of *Diospyros lycioides* extract on cervical cancer cells and associated pathogens. Evidence-Based Complementary and Alternative Medicine, 1-10.
- Bakrim, W.B., Nurcahyanti, A.D.R., Dmirieh, M., Mahdi, I., Elgamal, A.M., El Raey, M.A., Wink, M., Sobeh, M., 2022. Phytochemical profiling of the leaf extract of *Ximenia Americana* var. *Caffr*a and its antioxidant, antibacterial, and antiaging activities *in vitro* and in Caenorhabditis Elegans: A cosmeceutical and dermatological approach. Oxidative Medicine and Cellular Longevity, 1-11.
- Banda, M., Nyirenda, J., Muzandu, K., Sijumbila, G., Mudenda, S., 2018.

 Antihyperglycemic and antihyperlipidemic effects of aqueous extracts of *Lannea edulis* in alloxan-induced diabetic rats. Frontiers in Pharmacology 9, 1099.

- Bandyopadhyay, D., 2021. Topical antibacterials in dermatology. Indian Journal of Dermatology 66, 117-125.
- Bango, H., Mphosi, M.S., 2023. Effect of increased fertilization on the phytochemical constituents and antioxidant activity of *Jatropha zeyheri* tea under greenhouse conditions. Research on Crops 24, 384-390.
- Bano, I., Deora, G., 2020. Preliminary phytochemical screening and Gc-Ms analysis for identification of bioactive compounds from *Abutilon fruticosum* Guill and Perr. a rare and endemic plant of Indian Thar desert. International Journal of Pharma Sciences and Research 11, 2671-2679.
- Bapela, M., Lall, N., Meyer, J., 2008. Seasonal variation of naphthoquinones in *Euclea natalensis* subspecies *natalensis*. South African Journal of Botany 74, 218-224.
- Barbieri, J.S., Bhate, K., Hartnett, K.P., Fleming-Dutra, K.E., Margolis, D.J., 2019. Trends in oral antibiotic prescription in dermatology, 2008 to 2016. JAMA Dermatology 155, 290-297.
- Baumgärtel, C., Förster, A., Frommherz, L., Henle, T., Ramiro, G.J., Afonso, F., Lautenschläger, T., 2022. Potential and nutritional properties of local food plants from Angola to combat malnutrition– suitable alternatives to frequently cultivated crops. Journal of Applied Botany and Food Quality 95, 143-153.
- Begum, S.N., Rahaman, C.H., 2021. Pharmacognostic standardization, phytochemical investigation and antioxidant studies on *Phyllanthus reticulatus*Poir. Journal of Traditional and Folk Practices 9, 158-172.
- Bekker, R., Ferreira, D., Swart, K.J., Brandt, E.V., 2000. Biflavonoids. Part 5: Structure and stereochemistry of the first bibenzofuranoids. Tetrahedron 56, 5297-5302.
- Belemtougri, R., Tougouma, L., Ouedraogo, Y., Bayala, B., 2016. Pharmacological studies on toxicological, antidiarrhoeal and vasodilatory activities of *Sclerocarya birrea* (A. Rich) Hochst (Anacardiaceae) aqueous leaf extract. International Journal of Biology Research 1, 13-19.

- Benson, H.A., 2012. Skin structure, function, and permeation, in: A.E. Benson, H.A.E.a.W., Adam C. (Ed.) Topical and Transdermal Drug delivery: Principles and practice. Wiley and Sons, Inc., New Jersey, pp. 1-22.
- Berg, C.C., Corner, E.J.H., 2005. Moraceae: Ficeae. Flora Malesiana-Series 1, Spermatophyta 17, 1-702.
- Berhanu, G., Atalel, D., Kandi, V., 2020. A review of the medicinal and antimicrobial properties of *Carissa spinarum* L. American. Journal of. Biomedical Research 8, 54-58.
- Bhatta, R., Baruah, L., Saravanan, M., Suresh, K., Sampath, K., 2013. Effect of medicinal and aromatic plants on rumen fermentation, protozoa population and methanogenesis *in vitro*. Journal of Animal Physiology and Animal Nutrition 97, 446-456.
- Bird, R.P., Eskin, N.M., 2021. The emerging role of phosphorus in human health, Advances in food and Nutrition Research. Elsevier, pp. 27-88.
- Bizimenyera, E., Aderogba, M.A., Eloff, J.N., Swan, G.E., 2007. Potential of neuroprotective antioxidant-based therapeutics from *Peltophorum africanum* Sond. (Fabaceae). African Journal of Traditional, Complementary and Alternative Medicines 4, 99-106.
- Bobrov, A.V.C., Romanov, M.S., 2019. Morphogenesis of fruits and types of fruit of angiosperms. Botany Letters 166, 366-399.
- Bode, M.L., Gates, P.J., Gebretnsae, S.Y., Vleggaar, R., 2010. Structure elucidation and stereoselective total synthesis of pavettamine, the causal agent of gousiekte. Tetrahedron 66, 2026-2036.
- Bodede, O., More, G.K., Prinsloo, G., 2021. Antimicrobial, cytotoxic and oxidative stress inhibitory activities of terpenoids and flavonols from *Senegalia nigrescens* (Oliv.) PJH Hurter. Iranian Journal of Pharmaceutical Research 20, 329-338.
- Bodede, O., Shaik, S., Chenia, H., Singh, P., Moodley, R., 2018. Quorum sensing inhibitory potential and in silico molecular docking of flavonoids and novel

- terpenoids from *Senegalia nigrescens*. Journal of Ethnopharmacology 216, 134-146.
- Boff, L., de Sousa Duarte, H., Kraychete, G.B., de Castro Santos, M.G., Vommaro, R.C., Lima, C.O.G.X., Lima-Morales, D., Wink, P.L., de Oliveira Ferreira, E., Picao, R.C., 2021. Characterization of an emergent high-risk KPC-producing *Klebsiella pneumoniae* lineage causing a fatal wound infection after spine surgery. Infection, Genetics and Evolution 96, 105122.
- Bogari, H.A., Rashied, R.M., Abdelfattah, M.A., Malatani, R.T., Khinkar, R.M., Hareeri, R.H., Wink, M., Sobeh, M., 2022. *Euclea divinorum* hiern: chemical profiling of the leaf extract and its antioxidant activity in silico, *in vitro* and in Caenorhabditis elegans model. Metabolites 12, 1031.
- Bolleddu, R., Venkatesh, S., Rao, M., Shyamsunder, R., 2019. Investigation of the pharmacognostical, phytochemical, and antioxidant studies of various fractions of *Dichrostachys cinerea* root. Journal of Nature and Science of Medicine 2, 141-146.
- Bonamonte, D., De Marco, A., Giuffrida, R., Conforti, C., Barlusconi, C., Foti, C., Romita, P., 2020. Topical antibiotics in the dermatological clinical practice: Indications, efficacy, and adverse effects. Dermatologic Therapy 33, 13824.
- Bongo, G., Inkoto, C., Masengo, C., Tshiama, C., Lengbiye, E., Djolu, R., Kapepula, M., Ngombe, K., Mbemba, T., Tshilanda, D., 2017. Antisickling, antioxidant and antibacterial activities of *Afromomum alboviolaceum* (Ridley) K. Schum, *Annona senegalensis* Pers. and *Mondia whitei* (Hook. f.) Skeels. American Journal of Laboratory Medicine 2, 52-59.
- Borelli, T., Hunter, D., Powell, B., Ulian, T., Mattana, E., Termote, C., Pawera, L., Beltrame, D., Penafiel, D., Tan, A., Taylor, M., Engels, J., 2020. Born to eat wild: An integrated conservation approach to secure wild food plants for food security and nutrition. Plants 9, 1299.
- Brohi, N., 2021. Prevalence of bacterial infection and fungal skin infections and their mode of treatment in Hyderabad. Pakistan Journal of Science 73, 546-558.

- Brown, L.R., Magagula, I.P., Barrett, A.S., 2022. A vegetation classification and description of Telperion Nature Reserve, Mpumalanga, South Africa. Vegetation Classification and Survey 3, 199-219.
- Bukuluki, P., Luwangula, R. and Walakira, E.J., 2014. Harvesting of medicinal plants in Uganda: Practices, conservation and implications for sustainability of supplies. Online International Journal of Medicinal Plant Research 3(1), 1-10.
- Bum, E.N., Ngah, E., Mune, R.N., Minkoulou, D.Z., Talla, E., Moto, F., Ngoupaye, G., Taiwe, G., Rakotonirina, A., Rakotonirina, S., 2012. Decoctions of *Bridelia micrantha* and *Croton macrostachyus* may have anticonvulsant and sedative effects. Epilepsy and Behavior 24, 319-323.
- Bunney, K., Robertson, M., Bond, W., 2019. The historical distribution of megaherbivores does not determine the distribution of megafaunal fruit in southern Africa. Biological Journal of the Linnean Society 128, 1039-1051.
- Cabada-Aguirre, P., López López, A.M., Mendoza, K.C.O., Garay Buenrostro, K.D., Luna-Vital, D.A., Mahady, G.B., 2023. Mexican traditional medicines for women's reproductive health. Scientific Reports 13, 2807.
- Calvo, M.J., Navarro, C., Durán, P., Galan-Freyle, N.J., Parra Hernández, L.A., Pacheco-Londoño, L.C., Castelanich, D., Bermúdez, V., Chacin, M., 2024. Antioxidants in Photoaging: From molecular insights to clinical applications. International Journal of Molecular Sciences 25, 2403.
- Campos, R.I., Vasconcelos, H.L., Andersen, A.N., Frizzo, T.L., Spena, K.C., 2011.

 Multi-scale ant diversity in savanna woodlands: An intercontinental comparison. Austral Ecology 36, 983-992.
- Cao, C., Xiao, Z., Wu, Y., Ge, C., 2020. Diet and skin aging—From the perspective of food nutrition. Nutrients 12, 870.
- Castro, M., Butler, M., Thompson, A.N., Gee, S., Posporelis, S., 2024. Effectiveness and safety of intravenous medications for the management of acute disturbance (agitation and other escalating behaviours): A systematic review of prospective interventional studies. Journal of the Academy of Consultation-Liaison Psychiatry, 1-16.

- Chaachouay, N., Benkhnigue, O., Zidane, L., 2022. Ethnobotanical and Ethnomedicinal study of medicinal and aromatic plants used against dermatological diseases by the people of Rif, Morocco. Journal of Herbal Medicine 32, 100542.
- Chalannavar, R.K., Baijnath, H., Odhav, B., 2011. Chemical constituents of the essential oil from *Syzygium cordatum* (Myrtaceae). African Journal of Biotechnology 10, 2741-2745.
- Chanda, S., Kaneria, M., 2011. Indian nutraceutical plant leaves as a potential source of natural antimicrobial agents. Science against microbial pathogens. Communicating Current Research and Technological Advances 2, 1251-1259.
- Chao, C.-H., Cheng, J.-C., Hwang, T.-L., Shen, D.-Y., Wu, T.-S., 2014. Trinorditerpenes from the roots of *Flueggea virosa*. Bioorganic and Medicinal Chemistry Letters 24, 447-449.
- Chatepa, L.E.C., Masamba, K., Jose, M., 2018. Proximate composition, physical characteristics and mineral content of fruit, pulp and seeds of *Parinari curatellifolia* (Maula) from Central Malawi. African Journal of Food Science 12, 238-245.
- Chaudhary, M.K., Tripathi, D., Misra, A., Singh, S.P., Srivastava, P.K., Gupta, V., Acharya, R., Srivastava, S., 2024. Nutritional characteristics of Stereospermum chelonoides (Lf) DC., an underutilized edible wild fruit of dietary interest. Heliyon. 24193.
- Cheikhyoussef, A., Naomab, E., Potgieter, S., Kahaka, G.K., Raidron, C.V., MuAshekele, H., 2010. Phytochemical properties of a Namibian indigenous plant; Eembe (*Berchemia discolor*). National Research Symposium.
- Chemane, I., Cumbane, P., Sitoe, A.R., 2022. The Effects of solvents polarity on the phenolic contents and ferric reducing antioxidant power of *Cassytha filiformis*, *Commiphora schlechteri*, *Ochna natalitias* and *Pavetta assimilis*. Asian Journal of Agriculture and Food Sciences 10, 55-64.

- Chemane, S.S., Ribeiro, M., Pinto, E., Pinho, S.C., Martins, Z.S., Almeida, A., Ferreira, I.M., Khan, M., Pinho, O., Casal, S., 2022. Nutritional characterization of *Strychnos madagascariensis* fruit flour produced by mozambican communities and evaluation of its contribution to nutrient adequacy. Foods 11, 616.
- Chen, J., Liu, Y., Zhao, Z., Qiu, J., 2021. Oxidative stress in the skin: Impact and related protection. International Journal of Cosmetic Science 43, 495-509.
- Chepape, R., Mbatha, K., Luseba, D., 2014. Local use and knowledge validation of fodder trees and shrubs browsed by livestock in Bushbuckridge area, South Africa. Ghanaian Population 77, 20-47.
- Chepkirui, C., Ochieng, P.J., Sarkar, B., Hussain, A., Pal, C., Yang, L.J., Coghi, P., Akala, H.M., Derese, S., Ndakala, A., 2021. Antiplasmodial and antileishmanial flavonoids from *Mundulea sericea*. Fitoterapia 149, 104796.
- Chipinga, J.V., 2018. Efficacy of *Pterocarpus angolensis* crude extracts against *Candida krusei*, *Staphylococcus aureus*, *Streptococcus agalactiae* and *Escherichia coli*. Malawi Medical Journal 30, 219-224.
- Chivandi, E., Cave, E., Davidson, B.C., Erlwanger, K.H., Moyo, D., Madziva, M.T., 2012. Suppression of Caco-2 and HEK-293 cell proliferation by *Kigelia africana*, *Mimusops zeyheri* and *Ximenia caffra* seed oils. In Vivo 26, 99-105.
- Chivandi, E., Davidson, B., Erlwanger, K., 2013. Proximate, mineral, fibre, phytate–phosphate, vitamin E, amino acid and fatty acid composition of *Terminalia sericea*. South African Journal of Botany 88, 96-100.
- Chopra, A.S., Lordan, R., Horbańczuk, O.K., Atanasov, A.G., Chopra, I., Horbańczuk, J.O., Jóźwik, A., Huang, L., Pirgozliev, V., Banach, M., 2022. The current use and evolving landscape of nutraceuticals. Pharmacological Research 175, 106001.
- Chowdhury, S., Pandit, K., Roychowdury, P., Bhattacharya, B., 2003. Role of chromium in human metabolism, with special reference to type 2 diabetes. Journal of the Association of Physicians of India 51, 701-705.

- Chukwujekwu, J., Amoo, S., Van Staden, J., 2013. Antimicrobial, antioxidant, mutagenic and antimutagenic activities of *Distephanus angulifolius* and *Ormocarpum trichocarpum*. Journal of Ethnopharmacology 148, 975-979.
- Chukwujekwu, J.C., De Kock, C.A., Smith, P.J., Van Heerden, F.R., Van Staden, J., 2012. Antiplasmodial and antibacterial activity of compounds isolated from *Ormocarpum trichocarpum*. Planta Medica 78, 1857-1860.
- Chun, K., Kundu, J., 2013. Analgesic, anti-inflammatory and diuretic activity of methanol extract of *Flacourtia indica*. Archives of Basic and Applied Medicine 1, 39-44.
- Claeys, K.C., Lagnf, A.M., Patel, T.B., Jacob, M.G., Davis, S.L., Rybak, M.J., 2015.

 Acute bacterial skin and skin structure infections treated with intravenous antibiotics in the emergency department or observational unit: Experience at the Detroit medical center. Infectious diseases and therapy 4, 173-186.
- Coker, M.E., Adeleke, O.E., Ogegbo, M., 2015. Phytochemical and anti-fungal activity of crude extracts, fractions and isolated triterpenoid from *Ficus thonningii* blume. Nigerian Journal of Pharmaceutical Research 11, 74-83.
- Cordier, W., Gulumian, M., Cromarty, A.D., Steenkamp, V., 2013. Attenuation of oxidative stress in U937 cells by polyphenolic-rich bark fractions of *Burkea africana* and *Syzygium cordatum*. BMC Complementary and Alternative Medicine 13, 1-12.
- Costagliola, G., Nuzzi, G., Spada, E., Comberiati, P., Verduci, E., Peroni, D.G., 2021.

 Nutraceuticals in viral infections: an overview of the immunomodulating properties. Nutrients 13, 2410.
- Crossgrove, J., Zheng, W., 2004. Manganese toxicity upon overexposure. NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance *In Vivo* 17, 544-553.
- Dallo, M., Patel, K., Hebert, A.A., 2023. Topical antibiotic treatment in dermatology. Antibiotics 12, 188.

- Dambe, L., Mogotsi, K., Odubeng, M., Kgosikoma, O., 2015. Nutritive value of some important indigenous livestock browse species in semi-arid mixed Mopane bushveld, Botswana. Livestock Research for Rural Development 27, 1-10.
- Datta, A., Rawat, G., 2003. Foraging patterns of sympatric hornbills during the nonbreeding season in Arunachal Pradesh, Northeast India. Biotropica 35, 208-218.
- Daubotei, U., 2021. Synergistic efficacy of phytochemical, antioxidant and bactericidal properties of the aerial essential oil of *Laggera crispata*. Pharmacognosy Journal 13, 1304-1311.
- De Boer, H.J., Kool, A., Broberg, A., Mziray, W.R., Hedberg, I., Levenfors, J.J., 2005.

 Anti-fungal and anti-bacterial activity of some herbal remedies from Tanzania.

 Journal of Ethnopharmacology 96, 461-469.
- Del Rosso, J.Q., Sachsman, S.M., 2018. Oral antibiotics in dermatology: A practical overview with clinically relevant correlations and management suggestions. Biologic and Systemic Agents in Dermatology, 531-539.
- Deliwe, M., Amabeoku, G., 2013. Evaluation of the antidiarrhoeal and antidiabetic activities of the leaf aqueous extract of *Syzygium cordatum* Hoscht. ex C. Krauss (Mytraceae) in rodents. International Journal of Pharmacology 9, 125-133.
- Dénou, A., Haïdara, M., Diakité, F., Doumbia, S., Dembélé, D.L., Sanogo, R., 2021. Phytochemicals and biological activities of *Flueggea virosa* (Phyllanthaceae) used in the traditional treatment of benign prostatic hyperplasia in mali. Journal of Diseases and Medicinal Plants 7, 119-126.
- Deutschländer, M., Van de Venter, M., Roux, S., Louw, J., Lall, N., 2009. Hypoglycaemic activity of four plant extracts traditionally used in South Africa for diabetes. Journal of Ethnopharmacology 124, 619-624.
- Do, T.K.T., Clark, K., Christen, P., Reich, E., 2020. Quality assessment of *Sclerocarya birrea* leaves and leaves products from Burkina Faso based on fingerprinting using HPTLC. JPC–Journal of Planar Chromatography–Modern TLC 33, 439-448.

- Donalisio, M., Cagno, V., Civra, A., Gibellini, D., Musumeci, G., Rittà, M., Ghosh, M., Lembo, D., 2018. The traditional use of *Vachellia nilotica* for sexually transmitted diseases is substantiated by the antiviral activity of its bark extract against sexually transmitted viruses. Journal of Ethnopharmacology 213, 403-408.
- Donhouedé, J.C., Salako, K.V., Assogbadjo, A.E., Ribeiro-Barros, A.I., Ribeiro, N., 2023. The relative role of soil, climate, and genotype in the variation of nutritional value of *Annona senegalensis* fruits and leaves. Heliyon 9, 1902.
- Du, K., 2011. Isolation of bioactive constituents from seeds of *Schotia brachypetala* (Fabaceae) and *Colophospermum mopane* (Fabaceae). University of the Free State.
- Du, K., Marston, A., van Vuuren, S.F., van Zyl, R.L., Coleman, C., Zietsman, P.C., Bonnet, S.L., Ferreira, D., van der Westhuizen, J.H., 2014. Flavonolacyl glucosides from the aril of *Schotia brachypetala* Sond. and their antioxidant, antibacterial and antimalarial activities. Phytochemistry letters 10, 123-128.
- Dzoyem, J.P., Eloff, J.N., 2015. Anti-inflammatory, anticholinesterase and antioxidant activity of leaf extracts of twelve plants used traditionally to alleviate pain and inflammation in South Africa. Journal of Ethnopharmacology 160, 194-201.
- Ebada, S., Ayoub, N., Singab, A.N., Al-Azizi, M., 2008. Phytophenolics from *Peltophorum africanum* Sond. (Fabaceae) with promising hepatoprotective activity. Pharmacognosy Magazine 4, 287.
- Ebbo, A., Mammam, M., Suleiman, M., Ahmed, A., Bello, A., 2014. Preliminary phytochemical screening of *Diospyros mespiliformis*. Anatomy and Physiology 4, 1-3.
- Ebbo, A., Sani, D., Suleiman, M., Ahmad, A., Hassan, A., 2022. Assessment of antioxidant and wound healing activity of the crude methanolic extract of *Diospyros mespiliformis* Hochst. ex A. DC. (Ebenaceae) and its fractions in Wistar rats. South African Journal of Botany 150, 305-312.
- Ebbo, A.A., Sani, D., Suleiman, M.M., Ahmed, A., Hassan, A.Z., 2019. Phytochemical composition, proximate analysis and antimicrobial screening of the methanolic

- extract of *Diospyros mespiliformis* Hochst Ex a. Dc (Ebenaceae). Pharmacognosy Journal 11, 362-368.
- Ebrahimnejad, N., Jaafar, D., Goodarzi, H., 2024. The past, present, future: Pathophysiology, diagnosis, and treatment of human skin diseases. Physiologia 4, 81-99.
- Eckmann, C., Sunderkötter, C., Becker, K., Grabein, B., Hagel, S., Hanses, F., Wichmann, D., Thalhammer, F., 2024. Left ventricular assist device-associated driveline infections as a specific form of complicated skin and soft tissue infection/acute bacterial skin and skin structure infection–issues and therapeutic options. Current Opinion in Infectious Diseases 37, 95-104.
- Edewor, T., Akintola, A., Ogundola, A., Ibikunle, G., Adepoju, A., Mmuo, A., Owa, S., 2021. Phytochemical constituents, total flavonoid and phenolic contents and antioxidant activity of leaves of *Syzygium guineense*. Journal of Pharmacognosy and Phytochemistry 10, 127-132.
- El-Hawary, E., Abdel-Aziz, E., Labib, R., Esmat, A., Abdel-Naim, A., Khalifa, A., Singab, A., Ayoub, N., 2015. Anti-inflammatory activity of the phenolic-rich extract of *Schotia brachypetalea* Sond. Fam. Fabaceae, cultivated in Egypt. European Journal of Medicinal Plants 8, 190-201.
- Eldeen, I., Van Heerden, F., Van Staden, J., 2007. Biological activities of cycloart-23-ene-3, 25-diol isolated from the leaves of *Trichilia dregeana*. South African Journal of Botany 73, 366-371.
- Elhassan, G., Yagi, S., 2010. Nutritional composition of *Grewia* species (*Grewia tenax* (Forsk.) Fiori, *G. flavescens* Juss and *G. villosa* Willd) fruits. Advance Journal of Food Science and Technology 2, 159-162.
- ELhassan, G.O.M., Yagi, S., Mesaik, M.A., Mohan, S., Alhazmi, H.A., Al-Bratty, M., Al-Amri, M.M., Khalid, A., 2021. Immunomodulatory and cytotoxic properties of natural triterpenoids isolated from *Grewia flavescens* Juss. Pharmacognosy Magazine 17, 9-14.

- Ellis, C., Naicker, D., Basson, K., Botha, C., Meintjes, R., Schultz, R., 2010. Cytotoxicity and ultrastructural changes in H9c2 (2-1) cells treated with pavetamine, a novel polyamine. Toxicon 55, 12-19.
- Eloff, J., 2001. Antibacterial activity of Marula (*Sclerocarya birrea* (A. rich.) Hochst. subsp. *caffra* (Sond.) Kokwaro) (Anacardiaceae) bark and leaves. Journal of Ethnopharmacology 76, 305-308.
- Endris, A., Asfaw, N., Bisrat, D., 2016. Chemical composition, antimicrobial and antioxidant activities of the essential oil of *Lippia javanica* leaves from Ethiopia. Journal of Essential oil Research 28, 221-226.
- Eramma, N., Gayathri, D., 2021. *In vitro* antioxidant and antifungal activity of methanol root extract of *Flacourtia indica* (Burm. f.) Merr. against selected fungal species. Biomedicine 41, 616-622.
- Eramma, N., Patil, S.J., 2023. Exploration of the biomolecules in roots of *Flacourtia indica* (Burm. F) Merr. methanol extract by chromatography approach. Letters in Applied Nano Bioscience 12, 166-177.
- Ernst, W., 1975. Variation in the mineral contents of leaves of trees in miombo woodland in south central Africa. The Journal of Ecology, 801-807.
- Esfahani, S.N.M., Rostami, S., Amini, Z., 2024. Antibiotic susceptibility pattern of nosocomial and community-acquired *Pseudomonas aeruginosa* in Isfahan: A prospective multicenter study. Journal of Kermanshah University of Medical Sciences 28, 1-7.
- Ezenyi, I.C., Igoli, J.O., 2019. Antidiarrhoeal properties of *Syzygium guineense* leaf extract and identification of chemical constituents in its active column fractions. Journal of Complementary and Integrative Medicine 16, 20160074.
- Ezenyi, I.C., Okechukwu, R.C., Alle, G.A., Fidelis, S.A., Salawu, O.A., 2019. Research article enhanced gastric mucus production by *Syzygium guineense* leaf extract mediates is antiulcer properties. Asian Journal of Biological Sciences 12, 765-771.
- Ezeonwumelu, J., Omar, A., Ajayi, A., Okoruwa, A., Tanayen, J., Kiplagat, D., Okpanachi, O., Abba, S., Ezekiel, I., Onchweri, A., 2012. Phytochemical

- screening, acute toxicity, anti-inflammatory and antipyretic studies of aqueous extract of the root of *Flueggea virosa* (Roxb. ex Willd.) in rats. International Journal of Pharmacy and Biomedical Sciences 3, 128-135.
- Fahad, D., Mohammed, M.T., 2020. Oxidative stress: Implications on skin diseases. Plant Archives 20, 4150-4157.
- Fakai, I., Abdulhamid, A., Dada, A.Y., Anti-inflammatory and analgesic evaluation of *Parinari curatellifolia* methanol leaf extract on albino rats. Asian Journal of Biochemistry, Genetics and Molecular Biology 10, 9-18.
- Fakchich, J., Elachouri, M., 2023. Ethnobotanical methods used for the study of medicinal plants: Approaches for sampling and collecting ethnobotanical data (part I). Journal of Materials and Environmental Science 14, 1253-1265.
- Fakudze, N.T., Sarbadhikary, P., George, B.P., Abrahamse, H., 2023. Ethnomedicinal uses, phytochemistry, and anticancer potentials of African medicinal fruits: A comprehensive review. Pharmaceuticals 16, 1117.
- Falade, M., Akinboye, D., Gbotosho, G., Ajaiyeoba, E., Happi, T., Abiodun, O., Oduola, A., 2014. In vitro and *in vivo* antimalarial activity of *Ficus thonningii* Blume (Moraceae) and *Lophira alata* Banks (Ochnaceae), identified from the ethnomedicine of the Nigerian Middle Belt. Journal of Parasitology Research, 1-6.
- Farrah, G., Tan, E., 2016. The use of oral antibiotics in treating acne vulgaris: A new approach. Dermatologic Therapy 29, 377-384.
- Fatima, A., Singh, P.P., Agarwal, P., Irchhaiya, R., Alok, S., Verma, A., 2013.

 Treatment of various diseases by *Carissa spinarum* L.: A promising shrub.

 International Journal of Pharmaceutical Sciences and Research 4, 2489-2495.
- Fawole, O., Ndhlala, A., Amoo, S., Finnie, J., Van Staden, J., 2009. Anti-inflammatory and phytochemical properties of twelve medicinal plants used for treating gastro-intestinal ailments in South Africa. Journal of Ethnopharmacology 123, 237-243.

- Felgueiras, H.P., 2021. An insight into biomolecules for the treatment of skin infectious diseases. Pharmaceutics 13, 1012.
- Feyissa, D., Melaku, Y., 2016. Phytochemical, antibacterial and antioxidant studies of the leaves of *Carissa spinarum*. International Journal of Chemistry and Pharmaceutical Sciences 7, 25-30.
- Feyssa, D.H., Njoka, J.T., Asfaw, Z., Nyangito, M., 2012. Uses and management of *Ximenia americana*, Olacaceae in semi-arid East Shewa, Ethiopia. Pakistan Journal of Botany 44, 1177-1184.
- Fokunang, E.T., Pougoue, J.K., Njunkio, B., Ngoupayo, J., Gatsing, D., Tomkins, P.T., Fokunang, C.N., 2019. Phytochemical screening and *in vivo* evaluation of antiulcer properties of secondary metabolites in aqueous extracts of *Ficus thonningii* Blume tested on Wistar rats. International Journal of Biological and Chemical Sciences 13, 475-492.
- Fongang, Y.S., Bankeu, J.J., Ali, M.S., Awantu, A.F., Zeeshan, A., Assob, C.N., Mehreen, L., Lenta, B.N., Ngouela, S.A., Tsamo, E., 2015. Flavonoids and other bioactive constituents from *Ficus thonningii* Blume (Moraceae). Phytochemistry Letters 11, 139-145.
- Fotso Tatio, L.F., Nouga Bissoue, A., Tadjong Tcho, A., Akone, S.H., Jounda, N.N., Tsopgni, W.D.T., Kamdem Waffo, A.F., 2023. Bioactive constituents from *Trichilia dregeana* Sond. (Meliaceae). Natural Product Research, 1-11.
- Fouché, G., Cragg, G., Pillay, P., Kolesnikova, N., Maharaj, V., Senabe, J., 2008. *In vitro* anticancer screening of South African plants. Journal of Ethnopharmacology 119, 455-461.
- Fourie, N., Erasmus, G., Schultz, R.A., Prozesky, L., 1995. Isolation of the toxin responsible for gousiekte, a plant-induced cardiomyopathy of ruminants in southern Africa. Onderstepoort Journal of Veterinary Research 62, 77-87.
- Foyet, H.S., Keugong Wado, E., Ngatanko Abaissou, H.H., Assongalem, E.A., Eyong, O.K., 2019. Anticholinesterase and antioxidant potential of hydromethanolic extract of *Ziziphus mucronata* (Rhamnaceae) leaves on scopolamine-induced

- memory and cognitive dysfunctions in mice. Evidence-Based Complementary and Alternative Medicine, 1-14.
- Frez, F.L.V., Querubin, B.E., Rampani, E.M., Teixeira, F., Maschio, I.M.D., Rocha, L.C., Sério, M.E., Guinoza, T.K., De Oliveira, V.H., Frez, F.C.V., 2024. Properties of free and microencapsulated quercetin: A literature review. Seven Editora, 7-24.
- Gallo, F.R., Palazzino, G., Federici, E., Iurilli, R., Delle Monache, F., Chifundera, K., Galeffi, C., 2006. Oligomeric secoiridoid glucosides from *Jasminum abyssinicum*. Phytochemistry 67, 504-510.
- Gangadevi, S., Gnanadeebam, D.S., Kalimuthu, K., Chinnadurai, V., Viswanathan, P., 2021a. Effects of various phytochemical fractions of *Mundulea sericea* on free radical scavenging and inhibition of inflammatory agents. Asian Pacific Journal of Health Sciences 8, 122-130.
- Gangadevi, S., Gnanadeebam, D.S., Kalimuthu, K., Chinnadurai, V., Viswanathan, P., 2021b. Effects of various phytochemical fractions of *Mundulea sericea* on free radical scavenging and inhibition of inflammatory agents. Pharmacognosy Journal 9, 213-220.
- Gangadevi, S., Kalimuthu, K., Viswanathan, P., 2020. Anti-diabetic and cytotoxicity studies of ethanol extract of *Mundulea sericea*: A threatened medicinal plant. Phytomedicine, 139-144.
- Gangadhar, L., Anooj, E., Charumathy, M., BV, V., 2019. Antidiabetic activity of *Sida Rhombifolia* (L) leaf extract. International Journal of Recent Technology and Engineering 8, 726-729.
- Garo, E., Maillard, M., Hostettmann, K., Stdeckti-Evans, H., Mavi, S., 1997. Absolute configuration of a diterpene lactone from *Parinari capensis*. Helvetica Chimica Acta 80, 538-544.
- Gathirwa, J.W., Rukunga, G., Mwitari, P.G., Mwikwabe, N., Kimani, C., Muthaura, C., Kiboi, D., Nyangacha, R., Omar, S., 2011. Traditional herbal antimalarial therapy in Kilifi district, Kenya. Journal of Ethnopharmacology 134, 434-442.

- Gebashe, F.C., Naidoo, D., Amoo, S.O., Masondo, N.A., 2022. Cosmeceuticals: a newly expanding industry in South Africa. Cosmetics 9, 77.
- German, I.J.S., Pomini, K.T., Andreo, J.C., Shindo, J.V.T.C., Castro, M.V.M.D., Detregiachi, C.R.P., Araújo, A.C., Guiguer, E.L., Fornari Laurindo, L., Bueno, P.C.D.S., 2024. New trends to treat muscular atrophy: A systematic review of epicatechin. Nutrients 16, 326.
- Gillani, S.W., Ahmad, M., Zafar, M., Haq, S.M., Waheed, M., Manzoor, M., Shaheen,
 H., Sultana, S., Rehman, F.U., Makhkamov, T., 2024. An insight into indigenous ethnobotanical knowledge of medicinal and aromatic plants from Kashmir Himalayan region. Ethnobotany Research and Applications 28, 1-21.
- Girmaw, F., Engidawork, E., 2022. *In vivo* anti-malarial activity of the aqueous root extract of *Euclea divinorum* hiern (Ebenaceae) against *Plasmodium berghei* ANKA. Evidence-Based Complementary and Alternative Medicine.
- Gomes, A., Revermann, R., Gonçalves, F., Lages, F., Aidar, M., Finckh, M., Jürgens, N., 2019. Tree or not a tree: Differences in plant functional traits among geoxyles and closely related tree species. South African Journal of Botany 127, 176-184.
- Goosen, N.J., Oosthuizen, D., Stander, M.A., Dabai, A., Pedavoah, M.-M., Usman, G., 2018. Phenolics, organic acids and minerals in the fruit juice of the indigenous African sourplum (*Ximenia caffra*, Olacaceae). South African Journal of Botany 119, 11-16.
- Gororo, M., Chimponda, T., Chirisa, E., Mukanganyama, S., 2016. Multiple cellular effects of leaf extracts from *Parinari curatellifolia*. BMC Complementary and Alternative Medicine 16, 1-14.
- Gouda, H.M., Morsy, A.A., Youssef, A.K., Tolba, I.A.E.-M., Hassan, G.O.O., 2022. Phytochemical profile and antimicrobial assessment of *Abutilon fruticosum* Guill. & Perr. growing in Gebel Elba, Egypt. Egyptian Journal of Chemistry 65, 1299-1305.

- Green, E., Samie, A., Obi, C.L., Bessong, P.O., Ndip, R.N., 2010. Inhibitory properties of selected South African medicinal plants against *Mycobacterium tuberculosis*. Journal of Ethnopharmacology 130, 151-157.
- Grierson, D., Afolayan, A., 1999. Antibacterial activity of some indigenous plants used for the treatment of wounds in the Eastern Cape, South Africa. Journal of Ethnopharmacology 66, 103-106.
- Gundidza, M., Sibanda, M., 1991. Antimicrobial activities of *Ziziphus abyssinica* and *Berchemia discolor*. Central african Journal of Medicine 37, 80-83.
- Guo, X., Miao, X., An, Y., Yan, T., Jia, Y., Deng, B., Cai, J., Yang, W., Sun, W., Wang, R., 2024. Novel antimicrobial peptides modified with fluorinated sulfono-γ-AA having high stability and targeting multidrug-resistant bacteria infections. European Journal of Medicinal Chemistry 264, 116001.
- Gupta, R.C., Srivastava, A., Lall, R., 2018. Toxicity potential of nutraceuticals, in: Nicolotti, O. (Ed.) Computational toxicology: methods and protocols. Humana Press, New York, pp. 367-394.
- Gutiérrez-del-Río, I., Fernández, J., Lombó, F., 2018. Plant nutraceuticals as antimicrobial agents in food preservation: Terpenoids, polyphenols and thiols. International Journal of Antimicrobial Agents 52, 309-315.
- Gwatidzo, L., Chowe, L., Musekiwa, C., Mukaratirwa-Muchanyereyi, N., 2018. *In vitro* anti-inflammatory activity of *Vangueria infausta*: An edible wild fruit from Zimbabwe. African Journal of Pharmacy and Pharmacology 12, 168-175.
- Habtamu, Y., Eguale, T., Wubete, A., Sori, T., 2010. *In vitro* antimicrobial activity of selected Ethiopian medicinal plants against some bacteria of veterinary importance. African Journal of Microbiology Research 4, 1230-1234.
- Habte, M., Eshetu, M., Andualem, D., Maryo, M., Legesse, A., 2021. The inventory of camel feed resource and the evaluation of its chemical composition in southeast rangelands of Ethiopia. Veterinary medicine and science 7, 1172-1184.
- Hamisu, A., Muhammad, I.I., Abubakar, M., Abubakar, S., Ibrahim, M., 2023.

 Proximate composition and phytochemical screening of root and leave

- extracts of *Annona senegalensis* Pers. in Aliero, Kebbi state, Nigeria. International Journal of Botany Studies 8, 31-35.
- Haque, T., Muhsin, M.D.A., Akhter, T., Haq, M.E., Begum, R., Chowdhury, S., 2016.
 Antimicrobial and analgesic activity of leaf extracts of *Phyllanthus reticulatus* Poir. (Family-Euphorbiaceae). Jahangirnagar University Journal of Biological
 Sciences 5, 81-85.
- Harwansh, R.K., Garabadu, D., Rahman, M.A., Garabadu, P.S., 2010. In vitro anthelmintic activity of different extracts of root of *Carissa spinarum*. International Journal of Pharmaceutical Sciences and Research 1, 84.
- Hay, R., Augustin, M., Griffiths, C., Sterry, W., Societies, B.o.t.I.L.o.D., groups, t.G.C.C., Abuabara, K., Airoldi, M., Ajose, F., Albert, S., Armstrong, A., 2015. The global challenge for skin health. British Journal of Dermatology 172, 1469-1472.
- Hay, R., Johns, N., Williams, H., Bolliger, I., Dellavalle, R., Margolis, D., Marks, R., Naldi, L., Weinstock, M., Wulf, S., 2014. The global burden of skin disease in 2010: An analysis of the prevalence and impact of skin conditions. Journal of Investigative Dermatology 134, 1527-1534.
- Helal, N.A., Eassa, H.A., Amer, A.M., Eltokhy, M.A., Edafiogho, I., Nounou, M.I., 2019. Nutraceuticals' novel formulations: The good, the bad, the unknown and patents involved. Recent Patents on Drug Delivery and Formulation 13, 105-156.
- Hemamalini, K., Srikanth, A., Sunny, G., Praneethkumar, H., 2011. Phytochemical screening and analgesic activity of methanolic extract of *Ximenia americana*. Journal of Current Pharma Research 1, 153.
- Hembapu, N., Thamina, D., Mpofu, I., Kahumba, A., Lutaaya, E., Nutritive value of selected indigenous legumes for livestock feed in Namibia. Research Application Summary, 609-611.
- Heng, H., Yang, X., Ye, L., Tang, Y., Guo, Z., Li, J., Chan, E.W.-C., Zhang, R., Chen, S., 2024. Global genomic profiling of *Klebsiella pneumoniae*: A spatio-

- temporal population structure analysis. International Journal of Antimicrobial Agents 63, 107055.
- Herrera, F., Mitchell, J.D., Pell, S.K., Collinson, M.E., Daly, D.C., Manchester, S.R., 2018. Fruit morphology and anatomy of the Spondioid Anacardiaceae. The Botanical Review 84, 315-393.
- Hlangwani, E., Hal, P.H.-v., Moganedi, K.L., Dlamini, B.C., 2023. The future of African wild fruits—a drive towards responsible production and consumption of the marula fruit. Frontiers in Sustainable Food Systems 7, 1294437.
- Hlengwa, S.S., 2018. Isolation and characterisation of bioactive compounds from Antidesma venosum E. Mey. ex Tul. and Euphorbia cooperi NE Br. ex A. Berger. University of KwaZulu-Natal.
- Hoang, H.T., Moon, J.-Y., Lee, Y.-C., 2021. Natural antioxidants from plant extracts in skincare cosmetics: Recent applications, challenges and perspectives. Cosmetics 8, 106.
- Hoet, S., Stévigny, C., Hérent, M.-F., Quetin-Leclercq, J., 2006. Antitrypanosomal compounds from the leaf essential oil of *Strychnos spinosa*. Planta medica 72, 480-482.
- Hogan, P.G., Rodriguez, M., Spenner, A.M., Brenneisen, J.M., Boyle, M.G., Sullivan, M.L., Fritz, S.A., 2018. Impact of systemic antibiotics on *Staphylococcus aureus* colonization and recurrent skin infection. Clinical Infectious Diseases 66, 191-197.
- Holdo, R.M., 2003. Woody plant damage by African elephants in relation to leaf nutrients in western Zimbabwe. Journal of Tropical Ecology 19, 189-196.
- Hyslop, G., 2012. Creaming the market: Liqueurs. South African Food Review 39, 46-48.
- Ibibia, E.T., Obaloluwa, A.P., Olasunkanmi, A.M., Ijeoma, M.A., Olugbemiga, O.S., 2023a. Total phenolic, flavonoid and mineral contents of the methanolic leaf extract of *Parinari curatellifolia* Planc. ex Benth. International Journal of Chemistry Research 7, 13-18.

- Ibibia, E.T., Obaloluwa, A.P., Olasunkanmi, A.M., Ijeoma, M.A., Olugbemiga, O.S., 2023b. Total phenolic, flavonoid and mineral contents of the methanolic leaf extract of *Parinari curatellifolia* Planch. Ex Benth. International Journal of Chemistry Research 7, 13-18.
- Ibrahim, M.A., Koorbanally, N.A., Kiplimo, J.J., Islam, M.S., 2012. Antioxidative activities of the various extracts of stem bark, root and leaves of *Ziziphus mucronata* (Rhamnaceae) *in vitro*. Journal of Medicinal Plants Research 6, 4176-4184.
- Ifegbesan, A.P., 2009. Forest/woodlands resource conservation and environmental education in rural Africa: A comparative study of Nigeria and South Africa. School of Education, University of the Witwatersrand.
- Igbe, I., Eboka, C., Alonge, P., Osazuwa, Q., 2012. Analgesic and anti-inflammatory activity of the aqueous leaf extract of *Piliostigma thonningii* (Caesalpinoideae). Journal of Pharmaceutical Bioresourses 9, 34-38.
- Ighodaro, O., Agunbiade, S., Omole, J., Kuti, O., 2012. Evaluation of the chemical, nutritional, antimicrobial and antioxidant-vitamin profiles of *Piliostigma thonningii* leaves. Research Journal of Medicinal Plant 6, 537-543.
- Ilboudo, S., Some, H., Ouedraogo, G.G., Kini, F.B., Ouedraogo, S., Guissou, I.P., 2019. Phytochemical, acute and subacute toxicity studies of *Annona senegalensis* Pers. (Annonaceae) root wood extracts. African Journal of Biochemistry Research 13, 44-55.
- Inan, S., 2019. The potential role of nutraceuticals in inflammation and oxidative stress. Nutraceuticals-Past, Present and Future 8, 1-20.
- lor, I., Otimenyin, I., Umar, M., 2012. Anti-inflammatory and analgesic activities of the ethanolic extract of the leaf of *Syzygium guineense* in rats and mice. IOSR Journal of Pharmacy 2, 33-36.
- Isa, A.I., Awouafack, M.D., Dzoyem, J.P., Aliyu, M., Magaji, R.A., Ayo, J.O., Eloff, J.N., 2014. Some *Strychnos spinosa* (Loganiaceae) leaf extracts and fractions have good antimicrobial activities and low cytotoxicities. BMC Complementary and Alternative Medicine 14, 456.

- Islam, M.A.F., Masuma, R., Rahman, A.R., Shohel, M., Hossain, M.N.H., Jubayer, A., 2023. Evaluation of analgesic, anti-inflammatory and antipyretic properties of the *Flacourtia indica* extract in laboratory animal. Journal of Phytomolecules Pharmacology 10, 66-74.
- Issa-Zacharia, A., Majaliwa, N.K., Nyamete, F.A., Chove, L.M., 2024. Diversity of underutilised vegetables in Africa and their potential in the reduction of micronutrient deficiency: A review. World 8, 1-13.
- Jabeen, S., Arshad, F., Harun, N., Waheed, M., Alamri, S., Haq, S.M., Vitasović-Kosić, I., Fatima, K., Chaudhry, A.S., Bussmann, R.W., 2024. Folk knowledge and perceptions about the use of wild fruits and vegetables—cross-cultural knowledge in the Pipli Pahar reserved forest of Okara, Pakistan. Plants 13, 832.
- Jacqueline, I., Okemo, P., Maingi, J., Bii, C., 2018. Antifungal and antibacterial activity of some medicinal plants used traditionally in Kenya. Asian Journal of Ethnobiology 1, 75-90.
- Jensen, I.S., Lodise, T.P., Fan, W., Wu, C., Cyr, P.L., Nicolau, D.P., DuFour, S., Sulham, K.A., 2016. Use of oritavancin in acute bacterial skin and skin structure infections patients receiving intravenous antibiotics: A US hospital budget impact analysis. Clinical Drug Investigation 36, 157-168.
- Jimoh, F., Oladiji, A., 2005. Preliminary studies on *Piliostigma thonningii* seeds: Proximate analysis, mineral composition and phytochemical screening. African Journal of Biotechnology 4, 1439-1442.
- Kahimbi, H., Kichonge, B., Kivevele, T., 2023. The potential of underutilized plant resources and agricultural wastes for enhancing biodiesel stability: The role of phenolic-rich natural antioxidants. International Journal of Energy Research, 30.
- Kamanula, M., Munthali, C.Y., Kamanula, J.F., 2022. Nutritional and phytochemical variation of Marula (*Sclerocarya birrea*) (subspecies *caffra* and *birrea*) fruit among nine International Provenances tested in Malawi. International Journal of Food Science, 1-12.

- Kamdoum, B.C., Simo, I., Wouamba, S.C.N., Tchatat Tali, B.M., Ngameni, B., Fotso, G.W., Ambassa, P., Fabrice, F.B., Lenta, B.N., Sewald, N., 2022. Chemical constituents of two Cameroonian medicinal plants: *Sida rhombifolia* L. and *Sida acuta* Burm. f. (Malvaceae) and their antiplasmodial activity. Natural Product Research 36, 5311-5318.
- Kanaujia, K.A., Mishra, N., Rajinikanth, P., Saraf, S.A., 2024. Antimicrobial peptides as antimicrobials for wound care management: A comprehensive review. Journal of Drug Delivery Science and Technology 95, 105570.
- Kanimozhi, M., Rose, C., 2023. Screening and evaluation of potential antifungal plant extracts against skin infecting fungus *Trichophyton rubrum*. Pharmacognosy Research 15, 328-337.
- Kanyemba, S., Walter, S., Iikasha, A., Bock, R., 2022. Antimicrobial and anti-biofilm activities of *Diospyros lycioides* root, leaf and twig extracts against *Staphylococcus aureus* and *Mycobacterium avium*. International Science and Technology Journal of Namibia 15, 5-15.
- Karau, G.M., Njagi, E.N., Machocho, A.K., Wangai, L.N., 2012. Phytonutrient, mineral composition and *in vitro* antioxidant activity of leaf and stem bark powders of *Pappea capensis* (L.). Pakistan Journal of Nutrition 11, 123.
- Kareem, P.A., Alsammak, E.G., 2017. The effect of silver and titanium dioxide nanoparticles on *Klebsiella pneumoniae* isolates multi resistant to antibiotics and observed by scanning electron microscopy, 4th International Conference of Cihan University-Erbil on Biological Sciences.
- Kasemsarn, P., Bosco, J., Nixon, R.L., 2016. The role of the skin barrier in occupational skin diseases. Skin Barrier Function 49, 135-143.
- Kaushik, P., Gramazio, P., Vilanova, S., Raigón, M.D., Prohens, J., Plazas, M., 2017.
 Phenolics content, fruit flesh colour and browning in cultivated eggplant, wild relatives and interspecific hybrids and implications for fruit quality breeding.
 Food Research International 102, 392-401.
- Kebonye, M., Lekalake, R., Sekwati-Monang, B., Selebatso, T., Setlalekgomu, M., Sonno, K., Gwamba, J., Tsaone, P., Haki, G., 2021. Proximate composition

- and determination of the physicochemical characteristics of Mmilo (*Vangueria infausta*) oil from Botswana. Greener Journal of Biological Sciences 11, 30-36.
- Kelishomi, F.Z., Nikkhahi, F., Amereh, S., Ghayyaz, F., Marashi, S.M.A., Javadi, A., Shahbazi, G., Khakpour, M., 2024. Evaluation of the therapeutic effect of a novel bacteriophage in the healing process of infected wounds with *Klebsiella pneumoniae* in mice. Journal of Global Antimicrobial Resistance 36, 371-378.
- Kelsey, N.A., Wilkins, H.M., Linseman, D.A., 2010. Nutraceutical antioxidants as novel neuroprotective agents. Molecules 15, 7792-7814.
- Kemboi, F., Ondiek, J., King'ori, A., Onjoro, P., 2021. Evaluation of nutritive value of local browses from drylands of Kenya. Livestock Research for Rural Development 33.
- Khalid, S.A., 2009. Decades of phytochemical research on African biodiversity. Natural Product Communications 4, 1431-1446.
- Khatun, H., Nesa, L., Alam, B., Nahar, L., 2013. Anti-inflammatory, antinociceptive and CNS depressant activities of the methanolic extract of *Phyllanthus reticulatus* leaves. Global Journal of Pharmacology 7, 172-178.
- Khumalo, G., Sadgrove, N., Van Vuuren, S., Van Wyk, B.-E., 2019. Antimicrobial lupenol triterpenes and a polyphenol from *Elaeodendron transvaalense*, a popular southern African medicinal bark. South African Journal of Botany 122, 518-521.
- Khyade, M.S., Waman, M.B., 2017. Chemical profile and antioxidant properties of *Mundulea sericea*. Pharmacognosy Journal 9, 213-220.
- Killian, C., 2009. Antioxidant properties of *Gymnosporia buxifolia* Szyszyl. North-West University.
- Kilonzo, M., Rubanza, C., Richard, U., Sangiwa, G., 2019. Antimicrobial activities and phytochemical analysis of extracts from *Ormocarpum trichocarpum* (Taub.) and *Euclea divinorum* (Hiern) used as traditional medicine in Tanzania. Tanzania Journal of Health Research 21, 1-12.

- Kiteme, M.P., Onyango, B., Njagi, E.C., Ogolla, F.O., 2023. Screening of antimicrobial activity of poly herbal extracts against bacterial pathogens causing gastroenteritis in Tharaka Nithi county, Kenya. South Asian Journal of Research in Microbiology 15, 26-40.
- Konaté, K., Sanou, A., Aworet-Samseny, R.R., Benkhalti, F., Sytar, O., Brestic, M., Souza, A., Dicko, M.H., 2021. Safety profile, in vitro anti-inflammatory activity, and in vivo antiulcerogenic potential of root barks from Annona senegalensis Pers. (Annonaceae). Evidence-based Complementary and Alternative Medicine, 1-12.
- Konaté, K., Yomalan, K., Sytar, O., Brestic, M., 2015. Antidiarrheal and antimicrobial profiles extracts of the leaves from *Trichilia emetica* Vahl. (Meliaceae). Asian Pacific Journal of Tropical Biomedicine 5, 242-248.
- Kose, L.S., Moteetee, A., Van Vuuren, S., 2021. Ethnobotany, toxicity and antibacterial activity of medicinal plants used in the Maseru District of Lesotho for the treatment of selected infectious diseases. South African Journal of Botany 143, 141-154.
- Koval, A., Pieme, C.A., Queiroz, E.F., Ragusa, S., Ahmed, K., Blagodatski, A., Wolfender, J.-L., Petrova, T.V., Katanaev, V.L., 2018. Tannins from Syzygium guineense suppress Wnt signaling and proliferation of Wnt-dependent tumors through a direct effect on secreted Wnts. Cancer Letters 435, 110-120.
- Krutmann, J., Humbert, P., 2011. Nutrition for healthy skin. Springer, London New York.
- Kujoana, T., Mugwabana, J., Tyasi, T., Chitura, T., 2023. Knowledge validation and nutritional qualities of fodder trees browsed by goats in the Gumela rural area in Limpopo Province, South Africa. South African Journal of Agricultural Extension 51, 100-124.
- Kumar, S., Sharma, S., Kumar, D., Kumar, T., Arya, R., Kumar, K., 2012. Pharmacognostic study and anti–inflammatory activity of *Phyllanthus reticulatus* Poir. fruit. Asian Pacific Journal of Tropical Disease 2, 332-335.

- Kumar, S., Singh, B., Bajpai, V., 2022. Traditional uses, phytochemistry, quality control and biological activities of genus *Grewia*. Phytomedicine Plus 2, 100290.
- Kumari, A., Naidoo, D., Baskaran, P., Doležal, K., Nisler, J., Van Staden, J., 2018.
 Phenolic and flavonoid production and antimicrobial activity of *Gymnosporia buxifolia* (L.) Szyszyl cell cultures. Plant Growth Regulation 86, 333-338.
- Kwaji, A., Bassi, P.U., Aoill, M., Nneji, C., Ademowo, G., 2010. Preliminary studies on *Piliostigma thonningii* Schum leaf extract: Phytochemical screening and in vitro antimalarial activity. African Journal of Microbiology Research 4, 735-739.
- Kwape, T.E., Chaturvedi, P., Kamau, M., Majinda, R., 2013. Anti-oxidant and hepatoprotective activities of *Ziziphus mucronata* fruit extract against dimethoate-induced toxicity. Journal of Pharmacopuncture 16, 21-29.
- Kweyamba, P.A., Zofou, D., Efange, N., Assob, J.-C.N., Kitau, J., Nyindo, M., 2019.

 In vitro and in vivo studies on anti-malarial activity of Commiphora africana and Dichrostachys cinerea used by the Maasai in Arusha region, Tanzania.

 Malaria Journal 18, 1-6.
- Lall, N., Meyer, J., Taylor, M., van Staden, J., 2005a. Anti-HSV-1 activity of *Euclea natalensis*. South African Journal of Botany 71, 444-446.
- Lall, N., Meyer, J.M., Wang, Y., Bapela, N., Van Rensburg, C., Fourie, B., Franzblau, S., 2005b. Characterization of intracellular activity of antitubercular constituents the roots of *Euclea natalensis*. Pharmaceutical Biology 43, 353-357.
- Lall, N., Van Staden, A.B., Rademan, S., Lambrechts, I., De Canha, M.N., Mahore, J., Winterboer, S., Twilley, D., 2019. Antityrosinase and anti-acne potential of plants traditionally used in the Jongilanga community in Mpumalanga. South African Journal of Botany 126, 241-249.
- Lall, N., Weiganand, O., Hussein, A., Meyer, J., 2006. Antifungal activity of naphthoquinones and triterpenes isolated from the root bark of *Euclea natalensis*. South African Journal of Botany 72, 579-583.

- Langat, B.K., Siele, D.K., Wainaina, C., Mwandawiro, C., Ondicho, J., Tonui, W.K., Anjili, C., Ireri, L.N., Mutai, C.K., 2012. Larvicidal effect of *Mundulea sericea* (Leguminosaea) plant extract against *Aedes aegypti* (L.) (Diptera: Culicidae). African Journal of Pharmacology and Therapeutics 1.
- Lansdown, A.B., 2002. Calcium: A potential central regulator in wound healing in the skin. Wound repair and regeneration 10, 271-285.
- Lawal, F., Bapela, M.J., Adebayo, S.A., Nkadimeng, S.M., Yusuf, A.A., Malterud, K.E., McGaw, L.J., Tshikalange, T.E., 2019. Anti-inflammatory potential of South African medicinal plants used for the treatment of sexually transmitted infections. South African Journal of Botany 125, 62-71.
- Lee, S.E., Lee, S.H., 2018. Skin barrier and calcium. Annals of dermatology 30, 265-275.
- Li, L.-F., Wang, X., Hu, W.-J., Xiong, N.N., Du, Y.-X., Li, B.-S., 2020. Deep learning in skin disease image recognition: A review. IEEE Access 8, 208264-208280.
- Li, L., Gao, X., Li, M., Liu, Y., Ma, J., Wang, X., Yu, Z., Cheng, W., Zhang, W., Sun, H., 2024. Relationship between biofilm formation and antibiotic resistance of *Klebsiella pneumoniae* and updates on antibiofilm therapeutic strategies. Frontiers in Cellular and Infection Microbiology 14, 1324895.
- Liang, W., Yin, H., Chen, H., Xu, J., Cai, Y., 2024. Efficacy and safety of omadacycline for treating complicated skin and soft tissue infections: A meta-analysis of randomized controlled trials. BMC Infectious Diseases 24, 219.
- Lima, D.D.C., Pitorro, T.E.A., Santiago, M.B., Franco, R.R., da Costa Silva, T., Prado, D.G., Cunha, L.C.S., Espindola, F.S., Tavares, D.C., Nicolella, H.D., 2022. In vitro evaluation of the antibacterial and cytotoxic activities of the Euclea natalensis crude extract and fractions against oral infection agents. Archives of Oral Biology 143, 105546.
- Lino, A., Deogracious, O., 2006. The *in vitro* antibacterial activity of *Annona* senegalensis, Securidacca longipendiculata and Steganotaenia araliacea-Ugandan medicinal plants. African Health Sciences 6, 31-35.

- Liu, Y., Zhang, Y., Muema, F.W., Kimutai, F., Chen, G., Guo, M., 2021. Phenolic compounds from *Carissa spinarum* are characterized by their antioxidant, anti-inflammatory and hepatoprotective activities. Antioxidants 10, 652.
- Logeswari, P., Dineshkumar, V., Kumar, S.P., Usha, P., 2013. *In-vivo* anti-inflammatory effect of aqueous and ethanolic extract of *Sida rhombifolia* I. root. International Journal of Pharmaceutical Sciences and Research 4, 316.
- Lötter, M., Mucina, L., Witkowski, E., 2014. Classification of the indigenous forests of Mpumalanga Province, South Africa. South African Journal of Botany 90, 37-51.
- Mabadahanye, K., Bhembe, N.L., Green, E., 2022. Crude extracts activity of three selected medicinal plants from the Venda region against some pathogenic organisms. African Health Sciences 22, 717-727.
- Mabhaudhi, T., Chimonyo, V.G., Modi, A.T., 2017. Status of underutilised crops in South Africa: Opportunities for developing research capacity. Sustainability 9, 1569.
- Mabuza, J.M., Kaiser, M., Bapela, M.J., 2022. *In vitro* antiplasmodial activity and cytotoxicity of extracts and chromatographic fractions of twigs from *Pappea capensis* Eckl & Zeyh. (Sapindaceae). Journal of Ethnopharmacology 298, 115659.
- Machaba, T.C., Mahlo, S., Eloff, J., 2024. Antifungal and antioxidant properties of medicinal plants used against fungal infections. Journal of Medicinal Plants for Economic Development 8, 1-8.
- Madkour, H.M., Ghareeb, M.A., Abdel-Aziz, M.S., Khalaf, O.M., Saad, A.M., El-Ziaty, A.K., Abdel-Mogib, M., 2017. Gas chromatography-mass spectrometry analysis, antimicrobial, anticancer and antioxidant activities of n-hexane and methylene chloride extracts of *Senna italica*. Journal of Applied Pharmaceutical Science 7, 23-32.
- Magama, S., Pretorius, J., Zietsman, P., van Wyk, B.-E., 2003. Antimicrobial properties of extracts from *Euclea crispa* subsp. *crispa* (Ebenaceae) towards human pathogens. South African Journal of Botany 69, 193-198.

- Mah, S.H., Teh, S.S., Ee, G.C.L., 2017. Anti-inflammatory, anti-cholinergic and cytotoxic effects of *Sida rhombifolia*. Pharmaceutical biology 55, 920-928.
- Mahapatra, A.K., Mishra, S., Basak, U.C., Panda, P.C., 2012. Nutrient analysis of some selected wild edible fruits of deciduous forests of India: An explorative study towards non conventional bio-nutrition. Advance Journal of Food Science and Technology 4, 15-21.
- Maharaj, V., Ezeofor, C.C., Naidoo Maharaj, D., Muller, C.J., Obonye, N.J., 2022. Identification of antidiabetic compounds from the aqueous extract of *Sclerocarya birrea* leaves. Molecules 27, 8095.
- Maiha, B., Mohammed, B., Magaji, M., 2013. Psychopharmacological potential of methanol leaf extract of *Ficus thonningii* (Blume) in mice. Nigerian Journal of Pharmaceutical Sciences 12, 30-34.
- Makhafola, T.J., 2012. Five *Ochna* species have high antibacterial activity and more than ten antibacterial compounds. South African Journal of Science 108, 1-6.
- Makhafola, T.J., McGaw, L.J., Eloff, J.N., 2014. *In vitro* cytotoxicity and genotoxicity of five *Ochna* species (Ochnaceae) with excellent antibacterial activity. South African Journal of Botany 91, 9-13.
- Makoye, P.M., Daniel, I.J., Masota, M.E., Sempombe, J., Mugoyela, V., 2020. Phytochemical screening, antibacterial activity and bioautography of *Sorindeia madagascariensis*, *Mucuna stans*, and *Albizia harveyi*. Journal of Diseases and Medicinal Plants 6, 65-71.
- Malaisse, F., Parent, G., 1985. Edible wild vegetable products in the Zambezian woodland area: A nutritional and ecological approach. Ecology of Food and Nutrition 18, 43-82.
- Maliehe, S.T., 2015. An evaluation of nutraceutical components of Syzygium cordatum fruits for the treatment of gastrointestinal tract infections, Department of Biochemistry and Microbiology. University of Zululand.
- Maluleke, M.K., Ralulimi, T.S., Machete, M., 2024. Biochemical constituents and the role of African wild medlar (*Vangueria infausta*) in human nutrition: A review. Discover Sustainability 5, 37.

- Mamba, P., Adebayo, S.A., Tshikalange, T.E., 2016. Anti-microbial, anti-inflammatory and HIV-1 reverse transcriptase activity of selected South African plants used to treat sexually transmitted diseases. International Journal of Pharmacognosy and Phytochemical Research 8, 1870-1876.
- Manduna, I., Mashele, S., Ntsoelinyane, P., 2014. The anticancer, antioxidant and phytochemical screening of *Philenoptera violacea* and *Xanthocercis zambesiaca* leaf, flower and twig extracts.
- Manganyi, F.L., Tjelele, J., Mbatha, K.R., Letsoalo, N., Müller, F., 2023. The potential for endozoochorous dispersal of *Vachellia nilotica* seeds by goats: Implications for bush encroachment. Agronomy 13, 1599.
- Manzo, L.M., Bako, H.D., Idrissa, M., 2017. Phytochemical screening and antibacterial activity of stem bark, leaf and root extract of *Sclerocarya birrea* (A. Rich.) Hochst. International Journal of Enteric Pathogens 5, 127-131.
- Maposa, S., Afolayan, A., Otunola, G., 2020. Toxicity assessment of *Vachellia karro* (Hayne) Banfi and Galasso pods using brine shrimp assay. Pharmacognosy Journal 12, 1-5.
- Mapunda, E.P., Mligo, C., 2019. Nutritional content and antioxidant properties of edible indigenous wild fruits from miombo woodlands in Tanzania. International Journal of Biological and Chemical Sciences 13, 849-860.
- Maregesi, S., Kagashe, G., Messo, C.W., Mugaya, L., 2016. Determination of mineral content, cytotoxicity and anthelmintic activity of *Syzygium guineense* fruits. Saudi Journal of Medicinal and Pharmaceutical Sciences 2, 95-99.
- Maregesi, S.M., Pieters, L., Ngassapa, O.D., Apers, S., Vingerhoets, R., Cos, P., Berghe, D.A.V., Vlietinck, A.J., 2008. Screening of some Tanzanian medicinal plants from Bunda district for antibacterial, antifungal and antiviral activities. Journal of Ethnopharmacology 119, 58-66.
- Maroyi, A., 2021. Evaluation of medicinal uses, phytochemistry and pharmacological properties of *Strychnos madagascariensis* Poir. Medicinal Plants-International Journal of Phytomedicines and Related Industries 13, 369-377.

- Maroyi, A., Semenya, S.S., 2019. Medicinal uses, phytochemistry and pharmacological properties of *Elaeodendron transvaalense*. Nutrients 11, 545.
- Marquardt, P., Vissiennon, C., Schubert, A., Birkemeyer, C., Ahyi, V., Fester, K., 2020. Phytochemical analysis, *in vitro* anti-inflammatory and antimicrobial activity of Piliostigma thonningii leaf extracts from Benin. Planta Medica 86, 1269-1277.
- Marwat, S.K., Rehman, F., Usman, K., Khakwani, A., Ghulam, S., Anwar, N., Sadiq, M., 2011. Medico-ethnobotanical studies of edible wild fruit plants species from the flora of North Western Pakistan (DI Khan district). Journal of Medicinal Plants Research 5, 3679-3686.
- Mashile, S., Tshisikhawe, M., Masevhe, N., 2019a. Fuelwood profile of the mapulana of Ehlanzeni district in Mpumalanga province, South Africa. Indian Journal of Ecology 46, 340-346.
- Mashile, S., Tshisikhawe, M., Masevhe, N., 2019b. Indigenous fruit plants species of the Mapulana of Ehlanzeni district in Mpumalanga province, South Africa. South African Journal of Botany 122, 180-183.
- Masoko, P., Gololo, S.S., Mokgotho, M.P., Eloff, J.N., Howard, R., Mampuru, L., 2010. Evaluation of the antioxidant, antibacterial, and antiproliferative activities of the acetone extract of the roots of *Senna italica* (Fabaceae). African Journal of Traditional, Complementary and Alternative Medicines 7, 138-148.
- Mathipa, M.M., Mphosi, M.S., Masoko, P., 2022. Phytochemical profile, antioxidant potential, proximate and trace elements composition of leaves, stems and ashes from 12 *Combretum* spp. used as food additives. International Journal of Plant Biology 13, 561-578.
- Mausse, B.J., Munyemana, F., Uamusse, A., Manjate, A., 2021a. Determination of total phenols and evaluation of the antioxidant activity of pulps and fruit derivatives of *Vangueria infausta* and *Strychnos spinosa*. Journal of Medicinal Plants 9, 6-13.
- Mausse, B.J., Munyemana, F., Uamusse, A., Manjate, A., 2021b. Determination of total phenols and evaluation of the antioxidant activity of pulps and fruit

- derivatives of *Vangueria infausta* and *Strychnos spinosa*. Journal of Medicinal Plant Studies 9, 6-13.
- Mavanza, S.A., Omwenga, G.I., Ngugi, M.P., Antibacterial and phytochemical effects of ethanol extracts of *Syzygium guineense* (Willd.) DC barks and Mangifera indica L seeds. Journal of Advanced Biotechnology and Experimental Therapeutics 6, 337-349.
- Mawire, P., Mozirandi, W., Heydenreich, M., Chi, G.F., Mukanganyama, S., 2021. Isolation and antimicrobial activities of phytochemicals from *Parinari curatellifolia* (Chrysobalanaceae). Advances in Pharmacological and Pharmaceutical Sciences, 1-18.
- Mazimba, O., Masesane, I.B., Majinda, R.R., 2012a. A flavanone and antimicrobial activities of the constituents of extracts from *Mundulea sericea*. Natural Product Research 26, 1817-1823.
- Mazimba, O., Masesane, I.B., Majinda, R.R., Muzila, A., 2012b. GC-MS analysis and antimicrobial activities of the non-polar extracts of *Mundulea sericea*. South African Journal of Chemistry 65, 50-52.
- Mbabazia, I., Wangila, P., K'Owinoc, I.O., 2020. Comparison of the phytochemical composition of *Euclea divinorum* Hiern (Ebenaceae) leaves, tender stems and root bark. Advanced Journal of Chemistry-Section B 3, 218-242.
- Mbanga, J., Ncube, M., Magumura, A., 2013. Antimicrobial activity of *Euclea undulata, Euclea divinorum* and *Diospyros lycioides* extracts on multi-drug resistant *Streptococcus mutans*. Journal of Medicinal Plants Research 7, 2741-2746.
- Mbunde, M.V.N., Mabiki, F., Innocent, E., Andersson, P.G., 2019. Antifungal activity of single and combined extracts of medicinal plants from Southern Highlands of Tanzania. Journal of Pharmacognosy and Phytochemistry 8, 181-187.
- McGaw, L., Eloff, J., Meyer, J., 2005. Screening of 16 poisonous plants for antibacterial, anthelmintic and cytotoxic activity in vitro. South African Journal of Botany 71, 302-306.

- McGaw, L., Jäger, A., Van Staden, J., 2000. Antibacterial, anthelmintic and antiamoebic activity in South African medicinal plants. Journal of Ethnopharmacology 72, 247-263.
- McGaw, L., Jäger, A., Van Staden, J., Eloff, J., 2002. Variation in antibacterial activity of *Schotia* species. South African Journal of Botany 68, 41-46.
- McGaw, L.J., Van der Merwe, D., Eloff, J.N., 2007. *In vitro* anthelmintic, antibacterial and cytotoxic effects of extracts from plants used in South African ethnoveterinary medicine. The Veterinary Journal 173, 366-372.
- Mdungazi, K., Maluleke, T.S.R., Machete, M., 2024. Biochemical constituents and the role of African wild medlar (*Vangueria infausta*) in human nutrition: A review. Discover Sustainability 5.
- Megersa, M., Woldetsadik, S., 2022. Ethnobotanical study of medicinal plants used by local communities of Damot Woyde district, Wolaita zone, southern Ethiopia. Nusantara Bioscience 14, 10-24.
- Megwas, A.U., Akuodor, G.C., Chukwu, L.C., Aja, D.O., Okorie, E.M., Ogbuagu, E.C., Eke, D.O., Chukkwumobi, A.N., 2020. Analgesic, anti-inflammatory and antipyretic activities of ethanol extract of Annona senegalensis leaves in experimental animal models. International Journal of Basic and Clinical Pharmacology 9, 1477.
- Mfengwana, P.-M.-A.H., Mashele, S.S., 2016. Antimicrobial activity screening of *Philenoptera violacea* (Klotzsch) schrire and *Xanthocercis zambesiaca* (Baker) Dumaz-Le-Grand. Journal of Pharmaceutical Sciences and Research 8, 1132-1135.
- Michalak, M., Pierzak, M., Kręcisz, B., Suliga, E., 2021. Bioactive compounds for skin health: A review. Nutrients 13, 203.
- Misra, S., Misra, M.K., 2016. Ethnobotanical and nutritional evaluation of some edible fruit plants of southern Odisha, India. International Journal of Advances in Agricultural Science and Technology 3, 1-30.
- Mlambo, V., Smith, T., Owen, E., Mould, F., Sikosana, J., Mueller-Harvey, I., 2004. Tanniniferous *Dichrostachys cinerea* fruits do not require detoxification for

- goat nutrition: in sacco and *in vivo* evaluations. Livestock Production Science 90, 135-144.
- Mngadi, S.V., 2017. Elemental composition and nutritional value of the edible fruits of coastal red milkwood (*Mimusops caffra*) and Transvaal red milkwood (*Mimusops zeyheri*) and the impact of soil quality.
- Mochizuki, M., Hasegawa, N., 2007. Anti-inflammatory effect of extract of *Terminalia* sericea roots in an experimental model of colitis. Journal of Health Science 53, 329-331.
- Mohd Zaid, N.A., Sekar, M., Bonam, S.R., Gan, S.H., Lum, P.T., Begum, M.Y., Mat Rani, N.N.I., Vaijanathappa, J., Wu, Y.S., Subramaniyan, V., 2022. Promising natural products in new drug design, development, and therapy for skin disorders: An overview of scientific evidence and understanding their mechanism of action. Drug Design, Development and Therapy 16, 23-66.
- Mongalo, N., Opoku, A., Zobolo, A., 2013. Antibacterial activity of root and leaf extracts of *Jatropha zeyheri* Sond (Euphorbiaceae). African Journal of Biotechnology 12, 476-480.
- Mongalo, N.I., Soyingbe, O.S., Makhafola, T., 2019. Antimicrobial, cytotoxicity, anticancer and antioxidant activities of *Jatropha zeyheri* Sond. roots (Euphorbiaceae). Asian Pacific Journal of Tropical Biomedicine 9, 307-314.
- Mophuting, B.C., 2015. Ethnobotanical database development and screening of medicinal plants in villages under the Jongilanga Traditional Council, Mpumalanga. University of Pretoria.
- Moraswi, I., Bamigboye, S.O., Tshisikhawe, M.P., 2019. Conservation status and threats to vascular plant species endemic to Soutpansberg Mountain range in Limpopo Province, South Africa. International Journal of Plant Biology 10, 7978.
- More, G.K., Chokwe, C.R., Meddows-Taylor, S., 2021a. The attenuation of antibiotic resistant non-albicans Candida species, cytotoxicity, anti-inflammatory effects and phytochemical profiles of five Vachellia species by FTIR and UHPLC–Q/Orbitrap/MS. Heliyon 7, 8425.

- More, G.K., Meddows-Taylor, S., Prinsloo, G., 2021b. Metabolomic profiling of antioxidant compounds in five *Vachellia* species. Molecules 26, 6214.
- Moshi, M., Kamuhabwa, A., Mbwambo, Z., De Witte, P., 2003. Cytotoxic screening of some Tanzania medicinal plants. East and Central African Journal of Pharmaceutical Sciences 6, 52-56.
- Moshi, M., Mbwambo, Z., 2005. Some pharmacological properties of extracts of Terminalia sericea roots. Journal of Ethnopharmacology 97, 43-47.
- Mothapo, M.J., 2014. Physico-chemical properties and selected nutritional components of Wild Medlar (*Vangueria Infausta*) fruit harvested at two harvesting time, School of Agriculture and Environmental Science. University of Limpopo.
- Motlhanka, D., Motlhanka, P., Selebatso, T., 2008. Edible indigenous wild fruit plants of eastern Botswana. International Journal of Poultry Science 7, 457-460.
- Mshengu, B., Dube, S., Khathi, A., Musabayane, C., Van Heerden, F., 2023. Phytochemical constituents from the roots and lignotubers of *Rhoicissus tridentata* and their *in vitro* uterotonic activity. Natural Product Research, 1-6.
- Mthethwa, N.S., 2009. Antimicrobial activity testing of traditionally used plants for treating wounds and sores at Ongoye area KwaZulu-Natal, South Africa. University of Zululand.
- Mthethwa, N.S., Oyedeji, B.A., Obi, L.C., Aiyegoro, O.A., 2014. Anti-staphylococcal, anti-HIV and cytotoxicity studies of four South African medicinal plants and isolation of bioactive compounds from *Cassine transvaalensis* (Burtt. Davy) codd. BMC Complementary and Alternative Medicine 14, 1-9.
- Mthi, S., Rust, J., Morgenthal, T., 2016. Partial nutritional evaluation of some browser plant species utilized by communal livestock in the Eastern Cape Province, South Africa. Applied Animal Husbandry and Rural Development 9, 25-30.
- Mubarak, A., Keta, J.N., Tilli, A.M., Musa, S., 2022. Phytochemical and proximate compositions of *Annona senegalensis* flower. Journal of Innovative Agriculture 9, 1-5.

- Mudau, H.S., Mokoboki, H.K., Ravhuhali, K.E., Mkhize, Z., 2021. Nutrients profile of 52 browse species found in semi-arid areas of South Africa for livestock production: Effect of harvesting site. Plants 10, 2127.
- Mudau, H.S., Mokoboki, H.K., Ravhuhali, K.E., Mkhize, Z., 2022. Effect of soil type: Qualitative and quantitative analysis of phytochemicals in some browse species leaves found in savannah biome of South Africa. Molecules 27, 1462.
- Mugari, E., Nethengwe, N.S., Gumbo, A.D., 2024. The utilization and contribution of timber and non-timber forest products to livelihoods under a changing climate in the Limpopo River Basin. Environmental Research Communications 6, 025005.
- Muhammad, A., Haruna, S.Y., Birnin-Yauri, A.U., Muhammad, A.H., Elinge, C.M., 2019. Nutritional and anti-nutritional composition of *Ximenia americana* fruit. American Journal of Applied Chemistry 7, 123-129.
- Mukundi, M.J., Mwaniki, N.E., Ngugi, M.P., Njagi, J.M., Agyirifo, S.D., Gathumbi, K.P., Muchugi, N.A., 2015. *In vivo* anti-diabetic effects of aqueous leaf extracts of *Rhoicissus tridentata* in alloxan induced diabetic mice. Journal of Developing Drugs 4, 1000131.
- Mulaudzi, N., Anokwuru, C.P., Tankeu, S.Y., Combrinck, S., Chen, W., Vermaak, I., Viljoen, A.M., 2021. Phytochemical profiling and quality control of *Terminalia sericea* Burch. ex DC. Using HPTLC metabolomics. Molecules 26, 432.
- Mulaudzi, R., Ndhlala, A., Kulkarni, M., Van Staden, J., 2012. Pharmacological properties and protein binding capacity of phenolic extracts of some Venda medicinal plants used against cough and fever. Journal of Ethnopharmacology 143, 185-193.
- Mulyangote, L.T., 2016. Ethnobotany and bioactivity of medicinal plants used to treat symptoms associated with gastro-intestinal infections in Namibia. University of Namibia.
- Munoz, N., Posthauer, M.E., Cereda, E., Schols, J.M., Haesler, E., 2020. The role of nutrition for pressure injury prevention and healing: The 2019 international

- clinical practice guideline recommendations. Advances in Skin and Wound care 33, 123-136.
- Muruthi, C.W., Ngugi, M.P., Runo, S.M., Mwitari, P.G., 2023. *In vitro* antiproliferative effects and phytochemical characterization of *Carissa edulis* ((Forssk) Vahl) and *Pappea capensis* (Eckyl and Zeyh) extracts. Journal of Evidence-Based Integrative Medicine 28, 1-17.
- Muthaura, C., Keriko, J., Mutai, C., Yenesew, A., Gathirwa, J., Irungu, B., Nyangacha, R., Mungai, G., Derese, S., 2015. Antiplasmodial potential of traditional antimalarial phytotherapy remedies used by the Kwale community of the Kenyan Coast. Journal of Ethnopharmacology 170, 148-157.
- Mutshekwa, N., Mphosi, M., Shadung, K., 2019. Influence of time-based hot air-drying method on total polyphenols, total antioxidants and tannins of *Jatropha zeyheri* tea leaves. Research on Crops 20, 195-198.
- Mutuwa, M.J., 2021. The ethnobotany of marula (*Sclerocarya birrea*, Anacardiaceae) in South Africa. University of Johannesburg.
- Mwangomo, D.T., Moshi, M.J., Magadula, J.J., 2012. Antimicrobial activity and phytochemical screening of *Antidesma venosum* root and stem bark ethanolic extracts. International Journal of research in Phytochemistry and Pharmacology 2, 90-95.
- Mwinga, J.L., Asong, J.A., Amoo, S.O., Nkadimeng, S.M., McGaw, L.J., Aremu, A.O., Otang-Mbeng, W., 2019. *In vitro* antimicrobial effects of *Hypoxis hemerocallidea* against six pathogens with dermatological relevance and its phytochemical characterization and cytotoxicity evaluation. Journal of Ethnopharmacology 242, 112048.
- Mworia, J., Gitahi, S., Juma, K., Njagi, J., Mwangi, B., Aliyu, U., Njoroge, W., Mwonjoria, K., Nyamai, D., Ngugi, M., 2015. Antinociceptive activities of acetone leaf extracts of *Carissa spinarum* in mice. Medicinal and Aromatic Plants 10, 2167-0412.

- Naidoo, V., Chikoto, H., Bekker, L., Eloff, J., 2006. Antioxidant compounds in *Rhoicissus tridentata* extracts may explain their antibabesial activity: Research in action. South African Journal of Science 102, 198-200.
- Najeeb, T.M., Issa, T.O., Mohamed, Y.S., Ahmed, R.H., Makhawi, A.M., Khider, T.O., 2018. Phytochemical screening, antioxidant and antimicrobial activities of *Dalberegia melanoxylon* tree. World Applied Sciences Journal 36, 826-833.
- Nascimento, K.S., Silva, M.T.L., Oliveira, M.V., Lossio, C.F., Pinto-Junior, V.R., Osterne, V.J.S., Cavada, B.S., 2020. Dalbergieae lectins: A review of lectins from species of a primitive Papilionoideae (leguminous) tribe. International Journal of Biological Macromolecules 144, 509-526.
- Nazar, S., Jeyaseelan, M., Jayakumararaj, R., 2022. Local health traditions, cultural reflections and ethno-taxonomical information on wild edible fruit yielding medicinal plants in Melur region of Madurai District, TamilNadu, India. Journal of Drug Delivery and Therapeutics 12, 138-157.
- Nciki, S., Vuuren, S., van Eyk, A., de Wet, H., 2016. Plants used to treat skin diseases in northern Maputaland, South Africa: Antimicrobial activity and *in vitro* permeability studies. Pharmaceutical Biology 54, 2420-2436.
- Ndhlala, A., Muchuweti, M., Mupure, C., Chitindingu, K., Murenje, T., Kasiyamhuru, A., Benhura, M., 2008. Phenolic content and profiles of selected wild fruits of Zimbabwe: Ximenia caffra, Artobotrys brachypetalus and Syzygium cordatum. International Journal of Food Science and Technology 43, 1333-1337.
- Ndhlovu, P.T., Asong, J.A., Omotayo, A.O., Otang-Mbeng, W., Aremu, A.O., 2023. Ethnobotanical survey of medicinal plants used by indigenous knowledge holders to manage healthcare needs in children. Plos One 18, 0282113.
- Nel, A.L., Murhekar, S., Matthews, B., White, A., Cock, I.E., 2020. The interactive antimicrobial activity of *Terminalia sericea* Burch ex DC. leaf extracts and conventional antibiotics against bacterial triggers of selected autoimmune inflammatory diseases. South African Journal of Botany 133, 17-29.

- Nemudzivhadi, V., Masoko, P., 2015. Antioxidant and antibacterial properties of Ziziphus mucronata and Ricinus communis leaves extracts. African Journal of Traditional, Complementary and Alternative Medicines 12, 81-89.
- Netshituni, V.T., Cuthbert, R.N., Dondofema, F., Dalu, T., 2022. Effects of wildfire ash from native and alien plants on phytoplankton biomass. Science of the Total Environment 834, 155265.
- Ngadze, R.T., Verkerk, R., Nyanga, L.K., Fogliano, V., Linnemann, A.R., 2017. Improvement of traditional processing of local monkey orange (*Strychnos* spp.) fruits to enhance nutrition security in Zimbabwe. Food Security 9, 621-633.
- Ngane, R.A.N., 2019. Antibacterial activity of methanol extract and fractions from stem bark of *Bridelia micrantha* (Hochst.) Baill. (Phyllanthaceae). EC Pharmacology and Toxicology 7, 609-616.
- Ngari, F.W., Gikonyo, N.K., Wanjau, R.N., Njagi, E.M., 2013. Safety and antimicrobial properties of *Euclea divinorum* Hiern, chewing sticks used for management of oral health in Nairobi County, Kenya. Journal of Pharmaceutical and Biomedical Sciences 3, 1-8.
- Ngubane, S., De Wet, H., Van Vuuren, S., 2024. Unveiling the potential toxicity and mutagenicity of traditional remedies used for gynaecological and obstetric ailments in Maputaland, South Africa. South African Journal of Botany 168, 165-174.
- Nhaca, I.A.A., Chissico, H.M., Massango, P.A., Hermínio, F., Muiambo, Focke, W.W., Munyemana, F., 2020. Evaluation of larvicidal activity of selected plant extracts and essential oil against *Musca domestica* and *Anopheles arabiensis*. International Journal of Medicinal Plants and Natural Products 6, 9-19.
- Ningthoujam, R., Deo, C., Phurailatpam, A., Hazarika, B., Bhutia, N.D., Heisnam, P., Chandrakumar, M., Singh, Y.D., 2024. Nutritional, anti-nutritional and morphological characterization of wild edible species of *Solanum* found in North East India. Genetic Resources and Crop Evolution 71, 579-588.

- Nitiéma, M., Belemnaba, L., Kaboré, B., Ouédraogo, P.E., Ouédraogo, W.R.C., Noura, O.M., Bélem-Kabré, W.L.M.E., Traoré, T.K., Compaoré, S., Koala, M., 2023a. Acute oral toxicity and antispasmodic effects of two extracts of *Diospyros mespiliformis* Hochst. Ex A. DC. (Ebenaceae) immature fruits on the isolated rat duodenum. Journal of Pharmaceutical Research International 35, 31-43.
- Nitiéma, M., Ouédraogo, P.E., Traoré, T.K., Noura, O.M., Kaboré, B., Bélem-Kabré, W., Ouédraogo, W., Koala, M., Nébié, B., Ouoba, A.M.A., 2023b. Phytochemical profile, antioxidant, and anti-Inflammatory activities, safety of use and spasmolytic effects of aqueous decoction extract of *Diospyros mespiliformis* leaves Hochst. ex A. DC. (Ebenaceae) on the isolated duodenum of rat. Pharmacology and Pharmacy 14, 513-529.
- Nkobole, N., Houghton, P.J., Hussein, A., Lall, N., 2011. Antidiabetic activity of *Terminalia sericea* constituents. Natural Product Communications 6, 1934578X1100601106.
- Nkosi, N.J., Shoko, T., Manhivi, V.E., Slabbert, R.M., Sultanbawa, Y., Sivakumar, D., 2022. Metabolomic and chemometric profiles of ten southern African indigenous fruits. Food Chemistry 381, 132244.
- Nkosi, N.N., Mostert, T.H.C., Dzikiti, S., Ntuli, N.R., 2020. Prioritization of indigenous fruit tree species with domestication and commercialization potential in KwaZulu-Natal, South Africa. Genetic Resources and Crop Evolution 67, 1567-1575.
- Noufou, O., Thiombiano, A.E., Richard, S.W., André, T., Kiendrebeogo, M., Marius,
 L., Marc, D., Pierre, G.I., 2016. In vitro pharmacological properties and phenolic contents of stem barks extracts of *Piliostigma reticulatum* (DC)
 Hochst and *Piliostigma thonningii* (Schum) Milne-Redh.(Caesalpiniaceae).
 European Journal of Medicinal Plants 17, 1-8.
- Novotna, B., Polesny, Z., Pinto-Basto, M.F., Van Damme, P., Pudil, P., Mazancova, J., Duarte, M.C., 2020. Medicinal plants used by 'root doctors', local traditional healers in Bié province, Angola. Journal of Ethnopharmacology 260, 112662.
- Ntshidi, Z., Dzikiti, S., Mobe, N.T., Ntuli, N.R., Du Preez, R., Nkosi, N.N., Buthelezi, L.N., Ncapai, L., Wilkens, L., Gush, M.B., 2022. Water use and yield of

- selected indigenous fruit tree species in South Africa. Water Research Commission.
- Ntsoelinyane, P.-M.-A., 2014. Investigation of anticancer properties of *Philenoptera violacea* (Klotzsch) Schrire and *Xanthocercis zambesiaca* (Baker) Dumaz-Le-Grand. Central University of Technology.
- Nxusani, Z.N., Zuma, M.K., Mbhenyane, X.G., 2023. A systematic review of indigenous food plant usage in Southern Africa. Sustainability 15, 8799.
- Nyambe, M.M., Hakwenye, H., Benyamen, M., 2019a. Nutritional and anti-nutritional composition of *Diospyros mespiliformis* and *Hyphaene petersiana* fruits from Namibia. International Science and Technology Journal of Namibia 13, 2-12.
- Nyambe, M.M., Hakwenye, H., Benyamen, M., 2019b. Nutritional and anti-nutritional composition of *Diospyros mespiliformis* and *Hyphaene petersiana* fruits from Namibia. International Science and Technology Journal of Namibia 13, 2-11.
- Oboh, M., Zharare, G., Osunsanmi, F., Mosa, R., Opoku, A., 2023. Nutritional composition and cytotoxicity studies of black monkey (*Strychnos madagascariensis*) ripe fruit. African Journal of Food, Agriculture, Nutrition and Development 23, 22585-22601.
- Oboh, M.O., Osunsanmi, F.O., Zharare, G.E., Mosa, R.A., Ojo, M.C., Opoku, A.R., 2020. In vitro antioxidant and antidiabetic potential of crude extracts from the seed coat and fruit pulp of *Strychnos madagascariensis*. Pharmacognosy Journal 12, 1504-1511.
- Odusanmi, J., 2017. Phytoconstituents, proximate and mineral investigations of the ethanol extracts of the bark and leaves of *Ficus sur* Forssk. Journal of Scientific Research and Development 17, 9-14.
- Ogbadoyi, E.O., Abdulganiy, A.O., Adama, T.Z., Okogun, J.I., 2007. *In vivo* trypanocidal activity of *Annona senegalensis* Pers. leaf extract against Trypanosoma brucei brucei. Journal of Ethnopharmacology 112, 85-89.
- Ogunlaja, O.O., Moodley, R., Baijnath, H., Jonnalagadda, S.B., 2022. Antioxidant activity of the bioactive compounds from the edible fruits and leaves of *Ficus sur* Forssk. (Moraceae). South African Journal of Science 118, 1-5.

- Ohn, J., Jang, M., Kang, B.M., Yang, H., Hong, J.T., Kim, K.H., Kwon, O., Jung, H., 2021. Dissolving candlelit microneedle for chronic inflammatory skin diseases. Advanced Science 8, 2004873.
- Ojewole, J.A., 2003. Evaluation of the anti-inflammatory properties of *Sclerocarya birrea* (A. Rich.) Hochst. (family: Anacardiaceae) stem-bark extracts in rats. Journal of Ethnopharmacology 85, 217-220.
- Ojewole, J.A., 2007. Anticonvulsant effect of *Sclerocarya birrea* (A. Rich.) Hochst. subsp. *caffra* (Sond.) Kokwaro (Anacardiaceae) stem-bark aqueous extract in mice. Journal of Natural Medicines 61, 67-72.
- Okeleye, B., Nongogo, V., Mkwetshana, N.T., Ndip, R.N., 2015. Polyphenolic content and *in vitro* antioxidant evaluation of the stem bark extract of *Peltophorum africanum* Sond (Fabaceae). African Journal of Traditional, Complementary and Alternative Medicines 12, 1-8.
- Okeleye, B.I., Mkwetshana, N.T., Ndip, R.N., 2013. Evaluation of the antibacterial and antifungal potential of *Peltophorum africanum*: Toxicological effect on human chang liver cell line. The Scientific World Journal, 1-9.
- Okeleye, B.I., Mkwetshana, N.T., Ndip, R.N., 2017. *In vitro* assessment of the antiproliferative and apoptotic potential of the ethyl acetate extract of *Peltophorum africanum* on different cancer cell lines. Iranian Journal of Pharmaceutical Research 16, 714.
- Okeleye, B.I., Ntwampe, S.K.O., Okudoh, V.I., 2019. Analysis of metals and persistent organic pollutants in ethyl acetate extract of *Peltophorum africanum*. Indian Journal of Natural Products and Resources 10, 143-149.
- Okhale, S., Nnachor, A., Bassey, U., 2017. Evaluation of HPLC-UV-DAD and antiproliferative characteristics of the leaf infusion of *Ximenia americana*. Micro Medicine 5, 45-52.
- Okoli, C., Onyeto, C., Akpa, B., Ezike, A., Akah, P., Okoye, T., 2010.

 Neuropharmacological evaluation of *Annona senegalensis* leaves. African

 Journal of Biotechnology 9, 8435-8444.

- Okoro, S., Kawo, A., Arzai, A., 2014. Phytochemical screening, antibacterial and toxicological activities of *Acacia nilotica* extracts. Bayero Journal of Pure and Applied Sciences 7, 105-115.
- Okoth, D.A., Akala, H.M., Johnson, J.D., Koorbanally, N.A., 2014. Phytochemistry and Biocatibe Natural Products from Lannea alata, *Lannea rivae*, *Lannea schimperi* and *Lannea Schweinfurthii* (Acardiaceae). University of KwaZulu-Natal.
- Olabissi, O.A.-f., Moussa, O., Moustapha, O., Edgard, Z.F., Eleonore, K., Marius, L., Pierre, G.I., 2011. Acute toxicity and anti-inflammatory activity of aqueous ethanol extract of root bark of *Ximenia americana* L. (Olacaceae). African Journal of Pharmacy and Pharmacology 5, 806-811.
- Oladosu, I., Lawson, L., Aiyelaagbe, O., Emenyonu, N., Afieroho, O., 2017. Antituberculosis lupane-type isoprenoids from *Syzygium guineense* Wild DC. (Myrtaceae) stem bark. Future Journal of Pharmaceutical Sciences 3, 148-152.
- Olajuyigbe, O., Afolayan, A., 2012. Antimicrobial potency of the ethanolic crude bark extract of *Ziziphus mucronata* Willd. subsp. *mucronata* Willd. African Journal of Pharmacy and Pharmacology 6, 724-730.
- Olajuyigbe, O.O., Afolayan, A.J., 2011. Phenolic content and antioxidant property of the bark extracts of *Ziziphus mucronata* Willd. subsp. *mucronata* Willd. BMC Complementary and Alternative medicine 11, 1-8.
- Olanlokun, J.O., Bodede, O., Prinsloo, G., Olorunsogo, O.O., 2021. Comparative antimalarial, toxicity and mito-protective effects of *Diospyros mespiliformis* Hochst. ex A. DC. and *Mondia whitei* (Hook. f.) skeels on *Plasmodium berghei* infection in mice. Journal of Ethnopharmacology 268, 113585.
- Olaokun, O.O., Manonga, S.A., Zubair, M.S., Maulana, S., Mkolo, N.M., 2022.

 Molecular docking and molecular dynamics studies of antidiabetic phenolic compound isolated from leaf extract of *Englerophytum magalismontanum* (Sond.) TD Penn. Molecules 27, 3175.

- Olela, B., Mbaria, J., Wachira, T., Moriasi, G., 2020. Acute oral toxicity and antiinflammatory and analgesic effects of aqueous and methanolic stem bark extracts of *Piliostigma thonningii* (Schumach.). Evidence-Based Complementary and Alternative Medicine, 1-10.
- Olorukooba, A.B., Hamza, A.N., Musa, A.O., 2023. Mechanism of antinociceptive activity of the methanol leaf extract of *Senna italica* (Mill) in murine model of pain. Journal of Medicinal Herbs 14, 85-95.
- Omoniwa, B.P., Okaiyeto, K., Omoniwa, D.O., Olorunyomi, O.A., 2021. *In vitro* antiplasmodial evaluation of ethanolic and n-hexane extracts of *Parinari* curatellifolia stem bark. Journal of Pharmacy and Bioresources 18, 103-112.
- Omotayo, A.O., Ijatuyi, E.J., Ogunniyi, A.I., Aremu, A.O., 2020. Exploring the resource value of transvaal red milk wood (*Mimusops zeyheri*) for Food Security and Sustainability: An Appraisal of Existing Evidence. Plants 9, 1486.
- Omwenga, E., Okemo, P., Mbugua, P., Ogol, C., 2009. Ethnobotanical survey and antimicrobial evaluation of medicinal plants used by the Samburu community (Kenya) for treatment of diarrhorea. Pharmacognosy Magazine 5, 165-176.
- Ondiek, J., Abdulrazak, S., Njoka, E.N., 2010. Chemical and mineral composition, invitro gas production, in-sacco degradation of selected indigenous Kenyan browses. Livestock Research for Rural Development 22, 2010.
- Onoja, S.O., Ukwueze, C.O., Ezeja, M.I., Udeh, N., 2014. Antinociceptive and antioxidant effects of hydromethanolic extract of *Bridelia micrantha* stem bark. Journal of Experimental and Integrative Medicine 4, 273.
- Osuga, I., Abdulrazak, S., Nishino, N., Ichinohe, T., Fujihara, T., 2006. Potential nutritive value of selected browse species from Kenya using *in vitro* gas production technique and polyethylene glycol. Livestock Research for Rural Development 18, 171.
- Osunsanmi, F.O., Zharare, G.E., Opoku, A.R., 2019. Phytochemical constituents and antioxidant potential of crude extracts from *Lippia Javanica* (Burm. f.) Spreng leaves. Pharmacognosy Journal 11, 803-807.

- Otimenyin, S., Uguru, M., Atang, B., 2004. Antiinflamatory and analgesic activities of *Ficus thonningii* and *Pseudocedrela kotschyi* extracts. Nigerian Journal of Pharmaceutical Research 3, 82-85.
- Otunola, G.A., Afolayan, A.J., 2019. Proximate and elemental composition of leaf, corm, root and peel of *Hypoxis hemerocallidea*: A Southern African multipurpose medicinal plant. Pakistan Journal of Pharmaceutical Sciences 32, 535-539.
- Oyugi, J.O., 2016. Analysis of proximate, micronutrients and determination of phytochemicals in selected medicinal plants in Mbita-Homabay county, Department of Chemistry. Kenyatta University.
- Paksio, M., Samson, M., 2021. In vitro anticancer activity of *Pappea capensis* medicinal plant from Mokopane. Pharmacology Online 2, 234-241.
- Palanisamy, C., Selvarajan, R., Balogun, F., Kanakasabapathy, D., Ashafa, A., 2019.

 Antioxidant and antimicrobial activities of (6E, 10E)-2, 6, 24-trimethyl pentacosa-2, 6, 10-triene from *Euclea crispa* leaves. South African Journal of Botany 124, 311-319.
- Palanisamy, C.P., Cui, B., Zhang, H.-x., Trung, N.T., Tran, H.-D., Khanh, T.D., Quan, N.V., Xuan, T.D., 2020. Characterization of (2e, 6e)-3, 7, 11-trimethyldodeca-2, 6, 10-trien-1-ol with antioxidant and antimicrobial potentials from *Euclea crispa* (thunb.) leaves. International Letters of Natural Sciences 80, 51-63.
- Palanisamy, C.P., Cui, B., Zhang, H., Jayaraman, S., Rajagopal, P., Veeraraghavan, V.P., 2022. (5E, 7E)-4, 5, 6 Trihydroxy-3-(hydroxymethyl) tetrahydro-2H-pyran-2-ylheptadeca-5, 7-dienoate from *Euclea crispa* (L.) inhibits ovarian cancer cell growth by controlling apoptotic and metastatic signaling mechanisms. Bioinorganic Chemistry and Applications 2022.
- Palanisamy, C.P., Kanakasabapathy, D., Ashafa, A.O.T., 2018. In vitro antioxidant potential of *Euclea crispa* (Thunb.) leaf extracts. Pharmacognosy Research 10, 296-300.

- Palvai, V.R., Mahalingu, S., Urooj, A., 2014. Abrus precatorius leaves: antioxidant activity in food and biological systems, pH, and temperature stability. International Journal of Medicinal Chemistry, 1-7.
- Pandel, R., Poljšak, B., Godic, A., Dahmane, R., 2013. Skin photoaging and the role of antioxidants in its prevention. International Scholarly Research Notices, 1-11.
- Pandey, A.K., Pradhan, S., Bux, F., 2024. Quantitative ethnobotany of medicinal plants used by indigenous communities of Gandhamardan mountain chains at Bargarh District of Odisha, India. Ethnobotany Research and Applications 28, 1-29.
- Paniagua-Zambrana, N.Y., Bussmann, R.W., Hart, R.E., Moya-Huanca, A.L., Ortiz-Soria, G., Ortiz-Vaca, M., Ortiz-Álvarez, D., Soria-Morán, J., Soria-Morán, M., Chávez, S., 2018. Who should conduct ethnobotanical studies? Effects of different interviewers in the case of the Chácobo ethnobotany project, Beni, Bolivia. Journal of Ethnobiology and Ethnomedicine 14, 1-14.
- Papo, L., Van Vuuren, S., Moteetee, A., 2022. The ethnobotany and antimicrobial activity of selected medicinal plants from Ga-Mashashane, Limpopo Province, South Africa. South African Journal of Botany 149, 196-210.
- Pare, D., N'do, J.Y.-p., Guenne, S., Nikiema, M., Hilou, A., 2019. Phytochemical study and biological activities of two medicinal plants used in Burkina faso: *Lannea velutina* a. Rich (Anacardiaceae) and *Ximenia americana* L. (Olacaceae). Asian Journal of Chemical Sciences 6, 1-9.
- Pascaline, J., Charles, M., George, O., Lukhoba, C., 2011. An inventory of medicinal plants that the people of Nandi use to treat malaria. Journal of Animal and Plant Sciences 9, 1192-1200.
- Paul, E., Sangodare, R., Uroko, R., Agbaji, A., Dakare, M., 2013. Chemical analysis of leaves of *Abrus precatorius*. International Journal of Plant Physiology and Biochemistry 5, 65-67.
- Paul-Chima, U.O., Ugwu, C.N. and Alum, E.U., 2024. Integrated approaches in nutraceutical delivery systems: Optimizing ADME dynamics for enhanced

- therapeutic potency and clinical impact. RPS Pharmacy and Pharmacology Reports 3, 1-10.
- Pawlos, Z., Chandravanshi, B.S., Yohannes, W., Embiale, A., 2021. Levels of selected metals in *Ficus sur* Forssk fruit and soil of the plant grown in different parts of Ethiopia. SINET: Ethiopian Journal of Science 44, 1-12.
- Peloewetse, E., Thebe, M., Ekoss, G., Ngila, J., 2007. Efficacy of aqueous extracts of Combretum imberbe (Wawra) wood ash against phytopathogenic and mycotoxigenic fungi. African Crop Science Conference Proceedings 8, 1739-1744.
- Pendota, S., Aderogba, M., Moyo, M., McGaw, L., Mulaudzi, R., Van Staden, J., 2017.

 Antimicrobial, antioxidant and cytotoxicity of isolated compounds from leaves of *Pappea capensis*. South African journal of botany 108, 272-277.
- Peni, I., Elinge, C., Yusuf, H., Itodo, A., Agaie, B., Mbongo, A., Chogo, E., 2010.

 Phytochemical screening and antibacterial activity of *Parinari curatellifolia* stem extract. Journal of Medicinal Plants Research 4, 2099-2102.
- Perumal, A., Krishna, N., Babu, S., Pillay, K., Govender, P., 2020a. Phytochemical composition and biological investigation of *Trichilia emetica* Vahl. seed extracts. Letters in Applied Nanobioscience 9, 1111 1116.
- Perumal, A., Krishna, N., Babu, S., Pillay, K., Govender, P., 2020b. Phytochemical composition and biological investigation of *Trichilia emetica* Vahl. seed extracts. Letters in Applied Nanobioscience 9, 1111-1116.
- Piccardi, N., Manissier, P., 2009. Nutrition and nutritional supplementation: Impact on skin health and beauty. Dermato-Endocrinology 1, 271-274.
- Pickering, T.R., Bunn, H.T., 2007. The endurance running hypothesis and hunting and scavenging in savanna-woodlands. Journal of Human Evolution 53, 434-438.
- Polefka, T., Bianchini, R., Shapiro, S., 2012. Interaction of mineral salts with the skin: A literature survey. International Journal of Cosmetic Science 34, 416-423.
- Polori, K.L., Mashele, S.S., Aremu, A.O., 2021. *In vitro* anti-diabetic effect and cytotoxicity of South African *Ipomoea oblongata*. South African Journal of Botany 142, 96-99.

- Posthauer, M.E., Banks, M., Dorner, B., Schols, J.M., 2015. The role of nutrition for pressure ulcer management: national pressure ulcer advisory panel, European pressure ulcer advisory panel, and pan pacific pressure injury alliance white paper. Advances in Skin and Wound care 28, 175-188.
- Potts, A.J., Hedderson, T.A., Cowling, R.M., 2013. Testing large-scale conservation corridors designed for patterns and processes: Comparative phylogeography of three tree species. Diversity and Distributions 19, 1418-1428.
- Prinsloo, O.S., 2015. The relative influences of gradients in rainfall and landscape position on woody vegetation composition and structure in communal rangelands in Bushbuckridge, Mpumalanga Province. University of the Witwatersrand.
- Pujalte, G.G., Costa, L.M., Clapp, A.D., Presutti, R.J., Sluzevich, J.C., 2023. More than skin deep: Dermatologic conditions in athletes. Sports Health 15, 74-85.
- Qiu-Jie, X., Zhang, W.-Y., Zhen-Long, W., Ming-Tao, X., Qi-Fang, H., Huang, X.-J., Chun-Tao, C., Ying, W., Wen-Cai, Y., 2020. Alkaloid constituents from the fruits of *Flueggea virosa*. Chinese Journal of Natural Medicines 18, 385-392.
- Queiroz, E.F., Kuhl, C., Terreaux, C., Mavi, S., Hostettmann, K., 2003. New dihydroalkylhexenones from *Lannea edulis*. Journal of Natural Products 66, 578-580.
- Quiñones-Vico, M.I., Fernández-González, A., Ubago-Rodríguez, A., Moll, K., Norrby-Teglund, A., Svensson, M., Gutiérrez-Fernández, J., Torres, J.M., Arias-Santiago, S., 2024. Antibiotics against *Pseudomonas aeruginosa* on human skin cell lines: Determination of the highest non-cytotoxic concentrations with antibiofilm capacity for wound healing strategies. Pharmaceutics 16, 117.
- Rademan, S., Anantharaju, P.G., Madhunapantula, S.V., Lall, N., 2019. The antiproliferative and antioxidant activity of four indigenous South African plants. African Journal of Traditional, Complementary and Alternative Medicine 16, 13-23.

- Raina, N., Rani, R., Thakur, V.K., Gupta, M., 2023. New insights in topical drug delivery for skin disorders: from a nanotechnological perspective. ACS Omega 8, 19145-19167.
- Raja, R.R., 2016. Nutraceuticals and cosmeceuticals for human beings—an overview.

 American Journal of Food Science and Health 2, 7-17.
- Raju, S., Das, M., 2024. Medicinal plants industry in India: Challenges, opportunities and sustainability. Medicinal plants 16(1), 1-14.
- Ramachandran, V., 2007. Wild edible plants of the Anamalais, Coimbatore district, western Ghats, Tamil Nadu. Indian Journal of Traditional Knowledge 6, 173-176.
- Ramli, N.Z., Yahaya, M.F., Tooyama, I., Damanhuri, H.A., 2020. A mechanistic evaluation of antioxidant nutraceuticals on their potential against age-associated neurodegenerative diseases. Antioxidants 9, 1019.
- Rangaraj, S., Sasikanth, V., Ammashi, S., Rathinavel, T., 2023. Nutraceuticals and cosmeceuticals: An overview. Nutraceuticals, 99-125.
- Rankoana, S., Potgieter, M., Mothiba, T., Mamogobo, P., Setwaba, M., 2015.

 Traditional health foods of the Northern Sotho: a case study of Mamotintane community in Limpopo Province, South Africa. African Journal for Physical, Health Education, Recreation and Dance 1, 762-772.
- Rao, S.K., Mishra, S., 1997. Anti-inflammatory and hepatoprotective activities of *Sida rhombifolia* Linn. Indian Journal of Pharmacology 29, 110-116.
- Rasethe, M.T., Semenya, S.S., Potgieter, M.J., Maroyi, A., 2013. The utilization and management of plant resources in rural areas of the Limpopo Province, South Africa. Journal of Ethnobiology and Ethnomedicine 9, 1-8.
- Rashid, A., Akram, M., Kayode, O.T., Kayode, A., 2020. Clinical features and epidemiological patterns of infections by multidrug resistance *Staphylococcus aureus* and *Pseudomonas aeruginosa* in patients with burns. Biomedical Journal of Science and Technical Research 25, 19272-19278.
- Ravhuhali, K., Mudau, H., Mokoboki, H., Moyo, B., Motsei, L., 2023. Effect of harvesting site on mineral concentration of browse species found in semi-arid

- areas of South Africa. Journal of the Saudi Society of Agricultural Sciences 22, 165-173.
- Ravhuhali, K.E., Msiza, N.H., Mudau, H.S., 2022. Seasonal dynamics on nutritive value, chemical estimates and *in vitro* dry matter degradability of some woody species found in rangelands of South Africa. Agroforestry Systems 96, 1-11.
- Ray, P., Singh, S., Gupta, S., 2019. Topical antimicrobial therapy: Current status and challenges. Indian Journal of Medical Microbiology 37, 299-308.
- Richard, M.-A., Saint Aroman, M., Baissac, C., Merhand, S., Aubert, R., Audouze, A., Legrand, C., Beausillon, C., Carre, M., Raynal, H., 2023. Burden of visible [face and hands] skin diseases: Results from a large international survey, Annales de Dermatologie et de Vénéréologie. Elsevier.
- Rinnerthaler, M., Streubel, M.K., Bischof, J., Richter, K., 2015. Skin aging, gene expression and calcium. Experimental gerontology 68, 59-65.
- Rukayyah, S.S., Jigam, A.A., Aisha, M.T., 2015. *In vivo* antiplasmodial and effects of subchronic administration of *Trichilia emetica* leaves extracts. International Journal of Natural Sciences Research 3, 1-5.
- Runyoro, D.K., Matee, M.I., Ngassapa, O.D., Joseph, C.C., Mbwambo, Z.H., 2006. Screening of Tanzanian medicinal plants for anti-*Candida* activity. BMC Complementary and Alternative Medicine 6, 1-10.
- Russo, D., Miglionico, R., Carmosino, M., Bisaccia, F., Andrade, P.B., Valentão, P., Milella, L., Armentano, M.F., 2018. A comparative study on phytochemical profiles and biological activities of *Sclerocarya birrea* (A. Rich.) Hochst leaf and bark extracts. International Journal of Molecular sciences 19, 186.
- Saeed, M.E., Meyer, M., Hussein, A., Efferth, T., 2016. Cytotoxicity of South-African medicinal plants towards sensitive and multidrug-resistant cancer cells. Journal of Ethnopharmacology 186, 209-223.
- Sahoo, G., Swamy, S., Rout, S., Wani, A., Mishra, A., 2021. Exploitation of wild leafy vegetables and under-utilized fruits: Consequences for food and nutritional security. Annals of the Romanian Society for Cell Biology 25, 5656-5668.

- Saloufou, K.I., Boyode, P., Simalou, O., Eloh, K., Idoh, K., Melila, M., Toundou, O., Kpegba, K., Agbonon, A., 2018. Chemical composition and antioxidant activities of different parts of *Ficus sur*. Journal of Herbmed Pharmacology 7, 185-192.
- Sambrano, B., Gordon, R., Mays, R., Lapolla, W., Scheinfeld, N., 2012. Intravenous antibiotics used in dermatology. Dermatologic Therapy 25, 70-81.
- Sana, S.S., Vadde, R., Kumar, R., Arla, S.K., Somala, A.R., Rao, K.K., Zhijun, Z., Boya, V.K.N., Mondal, K., Mamidi, N., 2023. Eco-friendly and facile production of antibacterial zinc oxide nanoparticles from *Grewia flavescens* (*G. flavescens*) leaf extract for biomedical applications. Journal of Drug Delivery Science and Technology 80, 104186.
- Sanad, F.A.-A., 2020. Evaluation of the hypolipidemic and antioxidant activities of chloroformic extract from *Vangueria infaustaleaves* in rats with hypercholesterolemia. Current Science International 9(3), 462-471.
- Sanclemente, G., Burgos, C., Nova, J., Hernández, F., González, C., Reyes, M., Córdoba, N., Arèc, Á., Melèc, E., Colmenares, J., 2017. The impact of skin diseases on quality of life: A multicenter study. Actas Dermo-Sifiliográficas (English Edition) 108, 244-252.
- Santini, A., Cammarata, S.M., Capone, G., Ianaro, A., Tenore, G.C., Pani, L., Novellino, E., 2018. Nutraceuticals: Opening the debate for a regulatory framework. British Journal of Clinical Pharmacology 84, 659-672.
- Sanwal, R., Chaudhary, A.K., 2011. Wound healing and antimicrobial potential of *Carissa spinarum* Linn. in albino mice. Journal of Ethnopharmacology 135, 792-796.
- Sarangi, R.R., Mishra, U.S., Choudhury, P.K., 2010. Comparative in vitro antimicrobial activity studies of *Sida rhombifolia* Linn fruit extracts. International Journal of Pharmaceutical and Technology Research 2, 1241-1245.
- Sardeshpande, M., Shackleton, C., 2019. Wild edible fruits: A systematic review of an under-researched multifunctional NTFP (Non-timber forest product). Forests 10, 467.

- Sawada, Y., Saito-Sasaki, N., Mashima, E., Nakamura, M., 2021. Daily lifestyle and inflammatory skin diseases. International Journal of Molecular Sciences 22, 5204.
- Scogings, P.F., Hattas, D., Skarpe, C., Hjältén, J., Dziba, L., Zobolo, A., Rooke, T., 2015. Seasonal variations in nutrients and secondary metabolites in semi-arid savannas depend on year and species. Journal of Arid Environments 114, 54-61.
- Sehlapelo, A., Shadung, K., Mphosi, M., 2021. Influence of time of harvest on essential and non-essential mineral elements of *Jatropha zeyheri* tea leaves. Research on Crops 22, 193-201.
- Seile, B.P., Bareetseng, S., Koitsiwe, M.T., Aremu, A.O., 2022. Indigenous knowledge on the uses, sustainability and conservation of African ginger (*Siphonochilus aethiopicus*) among two communities in Mpumalanga province, South Africa. Diversity 14, 192.
- Seleteng-Kose, L.E., Likoetla, P., Motjotji, L., 2023. Plants of commercial importance in Lesotho: Ethnobotanical and pharmacological insights. Cosmetics 10, 28.
- Selim, S., Akter, N., Nayan, S.I., Chowdhury, F.I., Saffoon, N., Khan, F., Ahmed, K.S., Ahmed, M.I., Hossain, M.M., Alam, M.A., 2021. *Flacourtia indica* fruit extract modulated antioxidant gene expression, prevented oxidative stress and ameliorated kidney dysfunction in isoprenaline administered rats. Biochemistry and Biophysics Reports 26, 101012.
- Semenya, S.S., Madamombe-Manduna, I., Mashele, S.S., Polori, K.L., 2018. Ethnomedical botany and some biological activities of *Ipomoea oblongata* collected in the Free State Province, South Africa. Journal of Biological Sciences 18, 441-449.
- Seyi, O.M., Lydia, F.E., Faderera, O.R., 2022. Phytochemicals, toxicity, antioxidant and antimicrobial activivties of active secondary metabolites of stem bark of *Piliostigma thonningii* (Schum) Milne-Redh. International Journal of Advanced Academic Research 8, 15-27.

- Seyoum, Y., Teketay, D., Shumi, G., Wodafirash, M., 2015. Edible wild fruit trees and shrubs and their socioeconomic significance in central Ethiopia. Ethnobotany Research and Applications 14, 183-197.
- Shackleton, C., Dzerefos, C., Shackleton, S., Mathabela, F., 2000. The use of and trade in indigenous edible fruits in the Bushbuckridge savanna region, South Africa. Ecology of Food and Nutrition 39, 225-245.
- Shah, T., Burrows, J., Darbyshire, I., 2018. A new species of *Ochna* (Ochnaceae) from the Barberton mountains of Mpumalanga, South Africa. Phytotaxa 374, 241–248.
- Shaheen, S.M., Azad, A., Islam, O., Khairazzuman, M., 2017. Hypoglycemic, analgesic and anti-inflammatory activities of methanol extract of *Sida rhombifolia* L. leaves on experimental mice. International Journal of Pharma Sciences and Scientific Research 3, 7-82.
- Shai, K.N., Ncama, K., Ndhlovu, P.T., Struwig, M., Aremu, A.O., 2020. An exploratory study on the diverse uses and benefits of locally-sourced fruit species in three villages of Mpumalanga Province, South Africa. Foods 9, 1581.
- Shai, L., Chauke, M., Magano, S., Mogale, A., Eloff, J., 2013. Antibacterial activity of sixteen plant species from Phalaborwa, Limpopo Province, South Africa. Journal of Medicinal Plants Research 7, 1899-1906.
- Shatri, A.M.N., 2023. Evaluation of the acid-neutralizing and cytotoxicity properties of novel plant mucilage used as an alternative treatment for peptic ulcers and as antacids in Namibia. Biological Sciences 45, 1-10.
- Shayo, C., Udén, P., 1999. Nutritional uniformity of crude protein fractions in some tropical browse plants estimated by two *in vitro* methods. Animal Feed Science and Technology 78, 141-151.
- Shelembe, B.G., Moodley, R., Jonnalagadda, S.B., 2016. Secondary metabolites isolated from two medicinal plant species, *Bridelia micrantha* and *Sideroxylon inerme* and their antioxidant activities. Acta Poloniae Pharmaceutica and Drug Research 73, 1249-1257.

- Shembe, P., Ngobese, N., Siwela, M., Kolanisi, U., 2023. The potential repositioning of South African underutilised plants for food and nutrition security: A scoping review. Heliyon 9, 17232.
- Shettar, A., Sateesh, M., Kaliwal, B., Vedamurthy, A., 2017. *In vitro* antidiabetic activities and GC-MS phytochemical analysis of *Ximenia americana* extracts. South African Journal of Botany 111, 202-211.
- Shettar, A.K., Kotresha, K., Kaliwal, B.B., Vedamurthy, A.B., 2015. Evaluation of *in vitro* antioxidant and anti-inflammatory activities of *Ximenia americana* extracts. Asian Pacific Journal of Tropical Disease 5, 918-923.
- Shewaye, D.G., Kahaliw, W., Mulaw Belete, T., Ahmed, N., 2023. Evaluation of wound healing and anti-inflammatory activities of 80% methanol crude extract and solvent fractions of *Trichilia dregeana* Sond (Meliaceae) leaves in mice. Evidence-Based Complementary and Alternative Medicine, 1-18.
- Shoko, T., Maharaj, V.J., Naidoo, D., Tselanyane, M., Nthambeleni, R., Khorombi, E., Apostolides, Z., 2018. Anti-aging potential of extracts from *Sclerocarya birrea*(A. Rich.) Hochst and its chemical profiling by UPLC-Q-TOF-MS. BMC
 Complementary and Alternative Medicine 18, 1-14.
- Sibandze, G.F., 2018. Antimicrobial and Efflux Inhibiting Activity of Natural Products from Swazi Medicinal Plants, Life Sciences. University College London.
- Sibandze, G.F., Van Zyl, R., Viljoen, A., 2009. Pharmacological properties of Swazi medicinal plants. University of the Witwatersrand, Johannesburg.
- Sibandze, G.F., van Zyl, R.L., van Vuuren, S.F., 2010. The anti-diarrhoeal properties of *Breonadia salicina*, *Syzygium cordatum* and *Ozoroa sphaerocarpa* when used in combination in Swazi traditional medicine. Journal of Ethnopharmacology 132, 506-511.
- Sibiya, N., Kayitesi, E., Moteetee, A., 2020. Mineral composition of selected indigenous wild southern African fruits. South African Journal of Botany 132, 87-94.

- Sibiya, N.P., Kayitesi, E., Moteetee, A.N., 2021. Proximate analyses and amino acid composition of selected wild indigenous fruits of Southern Africa. Plants 10, 721.
- Sieniawska, E., Świątek, Ł., Sinan, K.I., Zengin, G., Boguszewska, A., Polz-Dacewicz, M., Bibi Sadeer, N., Etienne, O.K., Mahomoodally, M.F., 2022. Phytochemical insights into *Ficus sur* extracts and their biological activity. Molecules 27, 1863.
- Sigidi, M., Anokwuru, C., Zininga, T., Tshisikhawe, M., Shonhai, A., Ramaite, I., Traoré, A., Potgieter, N., 2016. Comparative *in vitro* cytotoxic, anti-inflammatory and anti-microbiological activities of two indigenous Venda medicinal plants. Translational Medicine Communications 1, 1-7.
- Sigidi, M.T., Traoré, A.N., Boukandou, M.M., Tshisikhawe, M.P., Ntuli, S.S., Potgieter, N., 2017. Anti-HIV, pro-inflammatory and cytotoxicity properties of selected Venda plants. Indian Journal of Traditional Knowledge 16, 545-552.
- Sileshi, G.W., Dagar, J.C., Akinnifesi, F.K., Mng'omba, S.A., 2023. Potentials of indigenous fruit trees in enhancing nutrition, income and biodiversity conservation in African agroforestry, Agroforestry for Sustainable Intensification of Agriculture in Asia and Africa. Springer, 321-361.
- Silva, H.C.H., Caraciolo, R.L.F., Marangon, L.C., Ramos, M.A., Santos, L.L., Albuquerque, U.P., 2014. Evaluating different methods used in ethnobotanical and ecological studies to record plant biodiversity. Journal of Ethnobiology and Ethnomedicine 10, 1-11.
- Simioni, C., Zauli, G., Martelli, A.M., Vitale, M., Sacchetti, G., Gonelli, A., Neri, L.M., 2018. Oxidative stress: Role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget 9, 17181.
- Singh, S.V., Manhas, A., Kumar, Y., Mishra, S., Shanker, K., Khan, F., Srivastava, K., Pal, A., 2017. Antimalarial activity and safety assessment of *Flueggea virosa* leaves and its major constituent with special emphasis on their mode of action. Biomedicine and Pharmacotherapy 89, 761-771.

- Sivakumar, R., Dhivya, A., 2015. GC-MS analysis of bioactive compounds on ethyl acetate extract of *Cordia monoica* Roxb. leaves. International Journal of Research and Development in Pharmacy and Life Sciences, 1, 1328-1333
- Siyum, Z.H., Meresa, T.A., 2021. Physiochemical properties and nutritional values of Carissa spinarum L./" Agam" Fruit. International Journal of Fruit Science 21, 826-834.
- Škovranová, G., Molčanová, L., Jug, B., Jug, D., Klančnik, A., Smole-Možina, S., Treml, J., Žnidarič, M.T., Sychrová, A., 2024. Perspectives on antimicrobial properties of *Paulownia tomentosa* Steud. fruit products in the control of Staphylococcus aureus infections. Journal of Ethnopharmacology 321, 117461.
- Smyth, C., Sheridan, H., 2022. *Carissa spinarum* L.: A case study in ethnobotany and bioprospecting research, Medicinal Plants. InTechOpen.
- Sobeh, M., ElHawary, E., Peixoto, H., Labib, R.M., Handoussa, H., Swilam, N., El-Khatib, A.H., Sharapov, F., Mohamed, T., Krstin, S., 2016. Identification of phenolic secondary metabolites from *Schotia brachypetala* Sond. (Fabaceae) and demonstration of their antioxidant activities in *Caenorhabditis elegans*. Peer Journal 4, 2404.
- Sobeh, M., Mahmoud, M.F., Abdelfattah, M.A., El-Beshbishy, H.A., El-Shazly, A.M., Wink, M., 2017. *Albizia harveyi*: Phytochemical profiling, antioxidant, antidiabetic and hepatoprotective activities of the bark extract. Medicinal Chemistry Research 26, 3091-3105.
- Sobeh, M., Mahmoud, M.F., Hasan, R.A., Abdelfattah, M.A., Osman, S., Rashid, H.o., El-Shazly, A.M., Wink, M., 2019. Chemical composition, antioxidant and
 hepatoprotective activities of methanol extracts from leaves of *Terminalia*bellirica and *Terminalia sericea* (Combretaceae). Peer Journal 7, 6322.
- Sparg, S., Van Staden, J., Jäger, A., 2000. Efficiency of traditionally used South African plants against schistosomiasis. Journal of Ethnopharmacology 73, 209-214.

- Steenkamp, V., Grimmer, H., Semano, M., Gulumian, M., 2005. Antioxidant and genotoxic properties of South African herbal extracts. Mutation Research 581, 35-42.
- Steenkamp, V., Mokoele, T., Jansen van Rensburg, C.E., 2009. Toxicity testing of two medicinal plants, *Bridelia micrantha* and *Antidesma venosum*. The Open Toxicology Journal 3, 35-38.
- Stotts, M.J., Moulder, C.L., 2022. More than just weight loss: Understanding the toll of malnutrition on the body. Practical Gastroenterology, 29.
- Sujarwo, W., Arinasa, I.B.K., Salomone, F., Caneva, G., Fattorini, S., 2014. Cultural erosion of Balinese indigenous knowledge of food and nutraceutical plants. Economic Botany 68, 426-437.
- Sulaiman, N., Aziz, M.A., Stryamets, N., Mattalia, G., Zocchi, D.M., Ahmed, H.M., Manduzai, A.K., Shah, A.A., Faiz, A., Sõukand, R., 2023. The importance of becoming tamed: Wild food plants as possible novel crops in selected food-insecure regions. Horticulturae 9, 171.
- Suleiman, M.M., Dzenda, T., Sani, C., 2008. Antidiarrhoeal activity of the methanol stem-bark extract of *Annona senegalensis* Pers. (Annonaceae). Journal of Ethnopharmacology 116, 125-130.
- Suleiman, M.M., McGaw, L., Naidoo, V., Eloff, J., 2010. Detection of antimicrobial compounds by bioautography of different extracts of leaves of selected South African tree species. African Journal of Traditional, Complementary and Alternative Medicines 7, 64 78.
- Suliman, A., 2010. The antimicrobial activity and chemical profile of traditional medicinal plants indigenous to Southern Africa used to treat respiratory tract infections. University of the Witwatersrand.
- Sunday, O.J., Babatunde, S.K., Ajiboye, A.E., Adedayo, R.M., Ajao, M.A., Ajuwon, B.I., 2016. Evaluation of phytochemical properties and *in-vitro* antibacterial activity of the aqueous extracts of leaf, seed and root of *Abrus precatorius* Linn. against *Salmonella* and *Shigella*. Asian Pacific Journal of Tropical Biomedicine 6, 755-759.

- Süntar, I., 2020. Importance of ethnopharmacological studies in drug discovery: Role of medicinal plants. Phytochemistry Reviews 19, 1199-1209.
- Susithra, E., Jayakumari, S., 2018. Analgesic and anti-inflammatory activities of *Dichrostachys cinerea* (L.) Wight and Arn. Drug Invention Today 10, 361-366.
- Swati, M., Nath, S.G., Yatendra, K., Kanchan, K., Mohan, S.R., Prakash, O., 2009. Phytochemical analysis and free-radical scavenging activity of *Flacourtia indica* (Burm. f.) Merr. Journal of Pharmaceutical Research 8, 81-84.
- Swenson, U., Lepschi, B., Lowry, P.P., Terra-Araujo, M.H., Santos, K., Nylinder, S., Alves-Araújo, A., 2023. Reassessment of generic boundaries in neotropical Chrysophylloideae (Sapotaceae): Eleven reinstated genera and narrowed circumscriptions of *Chrysophyllum* and *Pouteria*. Taxon 72, 307-359.
- Swetha, U., 2017. Antioxidant activity of *Dalbergia melanoxylon* bark extract. International Journal of Applied Pharmaceutical Sciences and Research 2, 114-120.
- Sylvanus, U., Olakunle, F., Amos, J., Olutayo, O., 2014. Antibacterial activity and phytochemical evaluation of the leaf root and stem bark extracts of *Parinari curatellifolia* (planch. ex benth). International Journal of Advanced Chemistry 2, 178-181.
- Tadesse, S.A., Wubneh, Z.B., 2017. Antimalarial activity of Syzygium guineense during early and established Plasmodium infection in rodent models. BMC Complementary and Alternative Medicine 17, 1-7.
- Tadiwos, Y., Nedi, T., Engidawork, E., 2017. Analgesic and anti-inflammatory activities of 80% methanol root extract of *Jasminum abyssinicum* Hochst. ex. Dc. (Oleaceae) in mice. Journal of Ethnopharmacology 202, 281-289.
- Tajuddeen, N., Swart, T., Hoppe, H.C., van Heerden, F.R., 2021. Antiplasmodial and cytotoxic flavonoids from *Pappea capensis* (Eckl. & Zeyh.) leaves. Molecules 26, 3875.
- Tajuddeen, N., Swart, T., Hoppe, H.C., van Heerden, F.R., 2022. Phytochemical, antiplasmodial, and cytotoxic investigation of *Euclea natalensis* A. DC. subsp. natalensis leaves. Chemistry and Biodiversity 19, 202200150.

- Talukdar, D., 2013. Leguminosae, in: Maloy, S., Hughes, K. (Eds.), Brenner's Encyclopedia of Genetics (Second Edition). Academic Press, San Diego, pp. 212-216.
- Tanko, E., Ajai, A., Lafiya-Araga, R., Dauda, B., Mathew, J., Omozokpia, J., 2017.
 Physico-chemical, fatty acid profile and amino acid composition of the fruit pulp and seeds of *Ximenia americana* L. (Tallow Plum) obtained in Niger State, Nigeria. Niger International Journal of Food Chemistry 1, 30-34.
- Tauchen, J., Doskocil, I., Caffi, C., Lulekal, E., Marsik, P., Havlik, J., Van Damme, P., Kokoska, L., 2015. *In vitro* antioxidant and anti-proliferative activity of Ethiopian medicinal plant extracts. Industrial Crops and Products 74, 671-679.
- Tegbe, T., Adeyinka, I., Baye, K., Alawa, J., 2006. Evaluation of feeding graded levels of dried and milled *Ficus thonningii* leaves on growth performance, carcass characteristics and organs of Weaner Rabbits. Pakistan Journal of Nutrition 5, 548-550.
- Tegegne, E.D., 2008. Importance of *Ficus thonningii* Blume in soil fertility improvement and animal nutrition in Gondar Zuria, Ethiopia. University of Natural Resources and Applied Life Science, pp. 1-86.
- Teichman, I.V., Van Wyk, A.E., 1993. Ontogeny and structure of the drupe of Ozoroa paniculosa (Anacardiaceae). Botanical Journal of the Linnean Society 111, 253-263.
- Termote, C., Everaert, G., Bwama Meyi, M., Dhed'a Djailo, B., Van Damme, P., 2012.

 Wild edible plant markets in Kisangani, Democratic Republic of Congo.

 Human Ecology 40, 269-285.
- Tesfay, A., Tewolde-Berhan, S., Birhane, E., Rannestad, M.M., Gebretsadik, A., Hailemichael, G., Haile, M., Gebrekirstos, A., 2024. Edible indigenous fruit trees and shrubs in Tigray, Ethiopia. Trees, Forests and People, 100525.
- Theo, A., Masebe, T., Suzuki, Y., Kikuchi, H., Wada, S., Obi, C.L., Bessong, P.O., Usuzawa, M., Oshima, Y., Hattori, T., 2009. *Peltophorum africanum*, a traditional South African medicinal plant, contains an anti HIV-1 constituent, betulinic acid. The Tohoku Journal of Experimental Medicine 217, 93-99.

- Tiwari, V.J., 2017. Assessment of ethnopharmacological uses of *Flacourtia indica* (Burm. F.) merrill., by baiga tribe of Mandla district of Madhya Pradesh, India. Research Journal of Pharmacognosy and Phytochemistry 9, 23-30.
- Togbossi, L.A., Lawson-Evi, P., Diallo, A., Eklu-Gadegbeku, K., Aklikokou, K., 2020. Evaluation of antioxidant and antidepressant activity of hydro-alcoholic extract of Ximenia americana stem bark. Journal Phytopharmacology 9, 323-328.
- Tolossa, K., Debela, E., Athanasiadou, S., Tolera, A., Ganga, G., Houdijk, J.G., 2013. Ethno-medicinal study of plants used for treatment of human and livestock ailments by traditional healers in South Omo, Southern Ethiopia. Journal of Ethnobiology and Ethnomedicine 9, 1-15.
- Tongco, M.D.C., 2007. Purposive sampling as a tool for informant selection. Ethnobotany Research and Applications 5, 147-158.
- Tor-Anyiin, T., Igoli, J., Anyam, J., Anyam, J., 2015. Isolation and antimicrobial activity of sarracenin from root bark of *Strychnos spinosa* Journal of Chemical Society of Nigeria 40, 71-75.
- Tresina, P.S., ramasamy Mohan, V., 2012. Comparative assessment on the nutritional and antinutritional attributes of the underutilized legumes, Canavalia gladiata (Jacq.) DC, *Erythrina indica* Lam. and *Abrus precatorius* L. Tropical and Subtropical Agroecosystems 15, 539 556.
- Treydte, A.C., Bernasconi, S.M., Kreuzer, M., Edwards, P.J., 2006. Diet of the common warthog (*Phacochoerus africanus*) on former cattle grounds in a Tanzanian savanna. Journal of Mammalogy 87, 889-898.
- Trüeb, R.M., 2021. Oxidative stress and its impact on skin, scalp and hair. International Journal of Cosmetic Science 43, 9-13.
- Tshikalange, T.E., Modishane, D.C., Tabit, F.T., 2017. Antimicrobial, antioxidant, and cytotoxicity properties of selected wild edible fruits of traditional medicinal plants. Journal of Herbs, Spices and Medicinal Plants 23, 68-76.
- Tshikalange, T.E., Mophuting, B.C., Mahore, J., Winterboer, S., Lall, N., 2016. An ethnobotanical study of medicinal plants used in villages under Jongilanga

- tribal council, Mpumalanga, South Africa. African Journal of Traditional, Complementary and Alternative Medicine 13, 83-89.
- Tsomele, G.F., Venter, E., Wokadala, O.C., Jooste, E., Dlamini, B.C., Ngobese, N.Z., Siwela, M., 2021. Structural (gross and micro), physical and nutritional properties of *Trichilia emetica* and *Trichilia dregeana* seeds. CyTA-Journal of Food 19, 483-492.
- Tsopgni, W.D.T., Happi, G.M., Stammler, H.-G., Neumann, B., Mbobda, A.S.W., Kouam, S.F., Frese, M., Azébazé, A.G.B., Lenta, B.N., Sewald, N., 2019. Chemical constituents from the bark of the Cameroonian mahogany *Trichilia emetica* Vahl (Meliaceae). Phytochemistry Letters 33, 49-54.
- Tugume, P., Nyakoojo, C., 2019. Ethno-pharmacological survey of herbal remedies used in the treatment of paediatric diseases in Buhunga parish, Rukungiri District, Uganda. BMC Complementary and Alternative Medicine 19, 1-10.
- Tukur, A., Musa, N.M., Bello, H.A., Sani, N.A., 2020. Determination of the phytochemical constituents and antifungal properties of *Annona senegalensis* leaves (African custard apple). Chem Search Journal 11, 16-24.
- Tyagi, S., Singh, M., Singh, D., Yadav, I., Singh, S., Mansoori, M.H., 2011. Antiasthmatic potential of *Flacourtia indica* Merr. African Journal of Basic and Applied Sciences 3, 201-204.
- Tyavambiza, C., 2018. The antimicrobial and immunomodulatory effects of *Cotyledon orbiculata* extracts. Cape Peninsula University of Technology.
- Uku, U.P., Fokunang, T.E., Grace, M., Borgia, N.N., Mogue, I., Bathelemy, N., Nchafor, N.V., Fonmboh, J.D., Nyuki, A.B., Yves, T.O., 2020. Phytochemical screening and antiulcer activity, of *Ficus thonningii* (Moraceae) aqueous fruits extract in Wistar rats. Asian Journal of Research in Medical and Pharmaceutical Sciences 9, 41-59.
- Uys, A.C., Malan, S.F., van Dyk, S., van Zyl, R.L., 2002. Antimalarial compounds from *Parinari capensis*. Bioorganic and Medicinal Chemistry Letters 12, 2167-2169.

- Van Rayne, K.K., Adebo, O.A., Ngobese, N.Z., 2020. Nutritional and physicochemical characterization of *Strychnos madagascariensis* Poir (Black monkey orange) seeds as a potential food source. Foods 9, 1060.
- Van Vuuren, S.F., Nkwanyana, M.N., De Wet, H., 2015. Antimicrobial evaluation of plants used for the treatment of diarrhoea in a rural community in northern Maputaland, KwaZulu-Natal, South Africa. BMC Complementary and alternative medicine 15, 1-8.
- Van Wyk, B.-E., 2019. The diversity and multiple uses of southern African legumes. Australian Systematic Botany 32, 519-546.
- Verani, J.R., Blau, D.M., Gurley, E.S., Akelo, V., Assefa, N., Baillie, V., Bassat, Q., Berhane, M., Bunn, J., Cossa, A.C., 2024. Child deaths caused by *Klebsiella pneumoniae* in sub-Saharan Africa and south Asia: a secondary analysis of child health and mortality prevention surveillance (CHAMPS) data. The Lancet Microbe 5, 131-141.
- Voelkl, B., Altman, N.S., Forsman, A., Forstmeier, W., Gurevitch, J., Jaric, I., Karp, N.A., Kas, M.J., Schielzeth, H., Van de Casteele, T. and Würbel, H., 2020. Reproducibility of animal research in light of biological variation. Nature Reviews Neuroscience 21(7), 384-393.
- Vogl, C.R., Vogl-Lukasser, B., Puri, R.K., 2004. Tools and methods for data collection in ethnobotanical studies of homegardens. Field Methods 16, 285-306.
- Vyas, S., Naik, A., 2019. Pharmacognostical study on leaf of *Dalbergia melanoxylon* guill and perry. Journal of Pharmacognosy and Phytochemistry 8, 1404-1407.
- Wado, E.K., Kubicki, M., Ngatanko, A.H.H., Blondelle, K.D.L., Roland, R.N., Balbine, K., Lamshoeft, M., Assongalem, A.E., Foyet, H.S., 2020. Anxiolytic and antidepressant effects of *Ziziphus mucronata* hydromethanolic extract in male rats exposed to unpredictable chronic mild stress: Possible mechanisms of actions. Journal of Ethnopharmacology 260, 112987.
- Wallnöfer, B., 2001. The biology and systematics of Ebenaceae: A review. Annalen des Naturhistorischen Museums in Wien. Serie B für Botanik und Zoologie 103, 485-512.

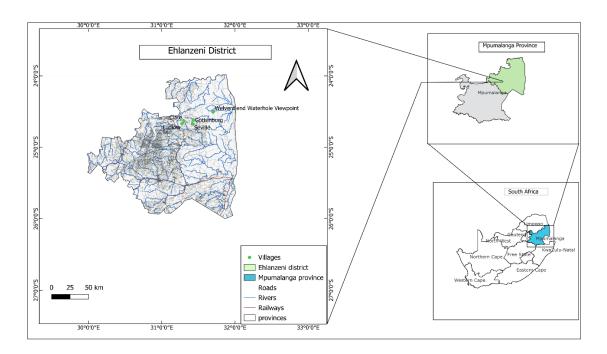
- Wamuyu, K.R., Machocho, A.K., Wafula, A.W., 2020. Antimicrobial and phytochemical screening of *Lannea schweinfurthii* (Engl.) Engl. Asian Journal of Tropical Biotechnology 17, 1-13.
- Weckerle, C.S., de Boer, H.J., Puri, R.K., van Andel, T., Bussmann, R.W., Leonti, M., 2018. Recommended standards for conducting and reporting ethnopharmacological field studies. Journal of Ethnopharmacology 210, 125-132.
- Wehmeyer, A., 1966. The nutrient composition of some edible wild fruits found in the Transvaal. South African Medical Journal 40, 1102-1104.
- Wehmeyer, A.S., 1986. Edible wild plants of Southern Africa: Data on the nutrient contents of over 300 species. NFRI Report, 46.
- Weigenand, O., Hussein, A.A., Lall, N., Meyer, J.J., 2004. Antibacterial activity of naphthoquinones and triterpenoids from *Euclea natalensis* root bark. Journal of natural products 67, 1936-1938.
- Williams, V., Victor, J., Crouch, N., 2013. Red listed medicinal plants of South Africa: Status, trends, and assessment challenges. South African Journal of Botany 86, 23-35.
- Wilson, A.-L., Downs, C., 2012. Fruit nutritional composition and non-nutritive traits of indigenous South African tree species. South African Journal of Botany 78, 30-36.
- Wójciak, M., Drozdowski, P., Ziemlewska, A., Zagórska-Dziok, M., Nizioł-Łukaszewska, Z., Kubrak, T., Sowa, I., 2024. ROS scavenging effect of selected isoflavones in provoked oxidative stress conditions in human skin fibroblasts and keratinocytes. Molecules 29, 955.
- Woldemedhin, B., Nedi, T., Shibeshi, W., Sisay, M., 2017. Evaluation of the diuretic activity of the aqueous and 80% methanol extracts of the root of *Euclea divinorum* Hiern (Ebenaceae) in Sprague Dawley rats. Journal of Ethnopharmacology 202, 114-121.

- Würger, G., McGaw, L.J., Eloff, J.N., 2014. Tannin content of leaf extracts of 53 trees used traditionally to treat diarrhoea is an important criterion in selecting species for further work. South African Journal of Botany 90, 114-117.
- Yahaya, M.F., Osemeahon, S.A., Shagal, M.H., Maitera, O.N., Dass, P.M., Yelwa, J.M., 2021. Antimicrobial, antioxidant, cytotoxicity profiles and chemical compositions of ethanolic extracts of *Ficus polita* and *Ficus thonningii* plant. Journal of Research in Chemistry 2, 4-10.
- Yanadaiah, J., 2013. Assessment of antidiabetic activity of ethanol extract of *Grewia flavescens* juss leaves against alloxan induced diabetes in rats. Journal of Global Trends in Pharmaceutical Sciences 4, 1086-1090.
- Yang, Y.-Y., Meng, Y., Wen, J., Sun, H., Nie, Z.-L., 2016. Phylogenetic analyses of *Searsia* (Anacardiaceae) from eastern Asia and its biogeographic disjunction with its African relatives. South African Journal of Botany 106, 129-136.
- Yaouba, S., Koch, A., Guantai, E.M., Derese, S., Irungu, B., Heydenreich, M., Yenesew, A., 2018. Alkenyl cyclohexanone derivatives from *Lannea rivae* and *Lannea schweinfurthii*. Phytochemistry Letters 23, 141-148.
- Yosipovitch, G., DeVore, A., Dawn, A., 2007. Obesity and the skin: Skin physiology and skin manifestations of obesity. Journal of the American Academy of Dermatology 56, 901-916.
- Zhan, Y., Hu, H., Yu, Y., Chen, C., Zhang, J., Jarnda, K.V., Ding, P., 2024. Therapeutic strategies for drug-resistant *Pseudomonas aeruginosa*: Metal and metal oxide nanoparticles. Journal of Biomedical Materials Research Part A.
- Zhang, H., Zhang, C.-R., Han, Y.-S., Wainberg, M.A., Yue, J.-M., 2015. New Securinega alkaloids with anti-HIV activity from *Flueggea virosa*. Royal Society of Chemistry Advances 5, 107045-107053.
- Zininga, T., Anokwuru, C.P., Sigidi, M.T., Tshisikhawe, M.P., Ramaite, I.I., Traoré, A.N., Hoppe, H., Shonhai, A., Potgieter, N., 2017. Extracts obtained from *Pterocarpus angolensis* DC and *Ziziphus mucronata* exhibit antiplasmodial activity and inhibit heat shock protein 70 (Hsp70) function. Molecules 22, 1224.

Chapter 3.0: Antibacterial and antioxidant activities of the leaves of six wild fruit plant species

Summary

Antimicrobial drug resistance and side effects of conventional medicines necessitate research on the use of medicinal plants as alternatives. This study investigated the antibacterial and antioxidant properties of the leaves of wild fruit trees Carissa spinarum, Diospyros mespiliformis, Euclea crispa, Ficus thonningii, Strychnos madagascariensis, and Strychnos spinosa. The six wild fruit plant species were selected based on their frequent citation in existing literature, traditional uses, research gaps in bioassays, and the availability and ease of access for collection as shown in chapter 2. Hexane, acetone, and methanol leaf extracts were tested for antimicrobial activity against Klebsiella pneumoniae and Pseudomonas aeruginosa since they are common pathogens of the skin associated with antimicrobial drug resistance. The hexane, acetone, and methanol extracts of the selected plants were tested for antibacterial activity using disc diffusion and microdilution assays, and for antioxidant activity using 2,2-diphenyl-1-picryhydrazyl (DPPH) and ferric-reducing power (FRAP) assays. The methanol extract yielded the highest quantities of crude extract. The extracts of *D. mespiliformis*, *E. crispa*, and *F. thonningii* showed strong antimicrobial activity against P. aeruginosa with inhibition zones of up to 28 mm and minimum inhibitory concentrations (MICs) from 0.781–1.563 mg/mL. The acetone extract of D. mespiliformis also exhibited activity against K. pneumoniae (MIC: 3.125 mg/mL). The methanol extract of E. crispa displayed potent antioxidant activity, achieving a halfmaximal inhibitory concentration (IC₅₀) of 1., which was comparable to ascorbic acid at concentrations of 62.5–250 μ g/mL (p > 0.05). Acetone extracts of S. spinosa and methanol extracts of *C. spinarum* demonstrated good ferric-reducing power, however, all the plant extracts were significantly different (p < 0.05) from ascorbic acid and butylated hydroxytoluene (BHT) at 250 µg/mL. The acetone extract of *D. mespiliformis* had the most potent antibacterial activity while the methanol extracts of both D. mespiliformis and E. crispa had the strongest antioxidant activity, making them possible sources of novel compounds for combating skin infections and degenerative skin conditions.


3.1 Introduction

There is a significant burden on global healthcare systems and economic well-being due to the prevalence of both communicable and non-communicable diseases (Enfiyeci and Çavlin, 2023; Masanovic et al., 2023). Globally, these diseases have been linked to numerous mortalities (Shu and Jin, 2023), with non-communicable diseases accounting for 71 % of deaths per year (Ishak et al., 2023). Furthermore, Manyazewal et al. (2023) found that in Africa, the number of deaths caused by communicable and non-communicable diseases is on the rise. Oxidative stress generates free radicals which are associated with aging, inflammatory, and degenerative diseases (Mangrulkar et al., 2023). Degenerative diseases are non-communicable diseases (Basilicata et al., 2023). Inflammation, cancer, and skin irritations can all be attributed to high levels of free radicals oxidizing biomolecules, resulting in tissue damage and cell death (Bursal and Köksal, 2011). Antioxidants aid in the prevention of oxidation by scavenging free radicals in the human system (Adeshina et al., 2011; Rahaman et al., 2023).

Degenerative diseases and disorders are often associated with or accompanied by microbial infections. For instance, atopic dermatitis is a skin condition linked to oxidative stress and microbial infections by bacteria such as Staphylococcus aureus in the cutaneous tissue (Alessandrello et al., 2024; Hulme, 2023). Klebsiella pneumoniae and Pseudomonas aeruginosa are some of the common bacterial pathogens affecting the human skin and associated with antimicrobial drug resistance (Rashid et al., 2020). Importantly, skin diseases cover a wide range of conditions that present major challenges in healthcare delivery and management, impacting people of all ages and demographics worldwide (Ryguła et al., 2024). Additionally, microbial pathogens can be triggers of oxidative stress due to the overproduction of free radicals during an infection (Canakci et al., 2005). Moreover, microbial infections are among the most common causes of death across the globe, regardless, the choice of antimicrobial treatment is limited owing to the occurrence of antimicrobial drugresistant strains (Afrasiabi et al., 2020). This has caused researchers to resort to the utilisation of natural products as sources of novel antimicrobial drugs (Yang et al., 2023). Plant-based antioxidants are used to hinder and manage degenerative maladies (Akbari et al., 2022). Plant-based antioxidants include anthocyanins, betacarotene, flavonoids, lutein, polyphenols, organosulfur compounds, and vitamins A, C, and E among others (Rahmayanti and Ridwanto, 2023).

Plant secondary metabolites have been used to treat a wide variety of diseases since ancient times. These compounds have also been used as drug precursors, prototypes, and probes for pharmacology (Elshafie et al., 2023). Firoozbahr et al. (2023) also highlighted the importance of plants as a significant source of novel antimicrobials. Six plant species were selected based on the frequency of citation, traditional uses, and research gaps as highlighted in Chapter 2. The selected plant species include Carissa spinarum L. (Apocynaceae), Diospyros mespiliformis Hochst. Ex A. DC., Euclea crispa (Thunb.) Gürke (Ebenaceae), Ficus thonningii Blume (Moraceae), Strychnos madagascariensis Poir, and Strychnos spinosa Lam. (Loganiaceae). Chauke et al. (2024) also emphasized the importance of the six plant species as sources of medicine in the Mpumalanga Province. Hawas et al. (2022) reported that *D. mespiliformis* leaves exerted antioxidant and antimicrobial activities against Escherichia coli and Staphylococcus aureus. E. crispa leaves possess antioxidant activity (Palanisamy et al., 2018) and antimicrobial activities against *Haemophilus influenzae* and *S. aureus* (Magama et al., 2003). Previous studies have shown that *F. thonningii* roots possess potent antioxidant activity and antimicrobial properties against *E. coli* and *Salmonella* typhi (Yahaya et al., 2021). Diospyros mespiliformis, S. spinosa, and S. madagascariensis fruit have good antioxidant activity (Mausse et al., 2021; Ndhlala et al., 2008; Oboh et al., 2020). Therefore, this study introduces new insights into the antioxidant and antimicrobial properties of selected plant species from Mpumalanga Province, highlighting the influence of environmental and climatic conditions on plant phytochemistry. Unlike most research, which often focuses on fruit, this study examines the antioxidant potential of leaves. The study evaluates the antimicrobial activity of C. spinarum, D. mespiliformis, E. crispa, F. thonningii, S. spinosa, and S. madagascariensis, determining the minimum concentrations at which they are effective. It also investigates their antioxidant properties, including their respective half-maximal inhibitory concentrations. The findings highlight the potential of indigenous plants from Mpumalanga Province as sources of antibacterial agents and antioxidants, offering promising applications in addressing antimicrobial resistance, combating oxidative stress, and managing dermatological conditions such as atopic dermatitis and skin aging.

3.2 Materials and methods

Figure 3.1 A map indicating the villages from which the selected plant species were collected. *C. spinarum* and *D. mespiliformis* (Gottenburg village), *E. crispa* (Clare), *F. thonningii* (Seville), and *S. spinosa* and *S. madagascariensis* (Welverdiend).

3.2.1 Plant collection

The leaves of *C. spinarum*, *D. mespiliformis*, *E. crispa*, *F. thonningii*, *S. madagascariensis*, and *S. spinosa* were collected from various villages in the Bushbuckridge local municipality, under Chief Mnisi's Tribal Council (Figure 3.1). Exploring leaves offers valuable insights into their medicinal properties, potentially revealing new therapeutic benefits and enhancing the overall understanding of the plant's healing potential. The plant species identities were confirmed at the University of Mpumalanga with the help of Dr L.J Ramarumo. Voucher specimens for each plant species were prepared and labelled with the following voucher numbers: *S. spinosa* (SC001), *C. spinarum* (SC002), *F. thonningii* (SC003), *D. mespiliformis* (SC004), *E. crispa* (SC005), and *S. madagascariensis* (SC006) and stored in the Indigenous Flora Research Laboratory at the University of Mpumalanga.

3.2.2 Plant extraction

Plant leaves were washed with distilled water, dried at room temperature, and ground into a fine powder with a heavy-duty blender (Zhongshan City Haitai Electrical Co. Ltd, China). Powdered plant material has an increased surface area that allows efficient

contact of the extraction solvent with the target phytochemicals (Azwanida, 2015). The ground plant material (100 g) was sequentially extracted with solvents in order of increasing polarity as described by Ahmed et al. (2017) with minor modifications. The ground plant material was macerated in 400 mL of acetone, methanol, and hexane. Extraction involved shaking the plant material for 48 hours at room temperature using an orbital shaker. The extract was filtered using Whatman's No. 1 filter paper and a rotary evaporator was used to remove the solvent. The resulting crude extract was weighed and kept at room temperature until further use.

3.2.3 Determination of antimicrobial activity

3.2.3.1 Bacterial strains and inoculum quantification

The plant extracts were screened against gram-positive American Type of Culture Collection (ATCC) of *Klebsiella pneumoniae* (ATCC-700603) and *Pseudomonas aeruginosa* (ATCC-27853) obtained from Davies Diagnostics (Pty) Limited, Gauteng. Standard isolates were used to ensure reproducibility and facilitate result comparison, given that susceptibility can vary significantly among different isolates of the same microbial species (Eloff, 2019). The microbial strains were resuscitated in a Nutrient agar medium and incubated overnight at 37°C before biological assays. For disc diffusion, the overnight bacterial cultures were spread into a Mueller-Hinton (MH) agar and for microdilution assay, the overnight cultures were transferred into the MH broth and quantified to a 0.5 McFarland standard. The inoculum was adjusted to roughly 5×10^5 CFU/mL for the microdilution assay. Furthermore, acetone served as the negative control, and amoxicillin trihydrate was the positive control. Amoxicillin is a broad-spectrum antibiotic used against various organisms including *K. pneumoniae* and *P. aeruginosa* (Abdulfatai et al., 2023).

3.2.3.2 Disc diffusion assay

The assay was conducted according to Sayeed et al. (2012) with some modifications. This technique has been applied as a preliminary step to measure the inhibition diameter produced around the disk. Petri dishes were loaded with 25 mL of Mueller-Hinton (MH) agar medium, allowed to solidify at room temperature in a biosafety cabinet, and then inoculated with overnight cultures of selected test bacteria using the spread plate method. Sterile Whatman filter paper discs (4 mm- diameter) were dipped into 10 μ L of 100 mg/mL of each plant extract and allowed to stand for a few seconds to remove the excess extract. The discs were placed equidistant on the MH agar

inoculated with the pathogen and incubated overnight at 37 °C. The diameter of the inhibition zone, including the disc's diameter, was measured in millimetres (mm) around the disc.

3.2.3.3 Microdilution assay

The minimum inhibitory concentrations (MICs) of plant extracts were evaluated using the serial microplate method (Ramadwa et al., 2024). Plant extracts with a concentration of 100 mg/mL were serially diluted two-fold from well A to H of a 96-well microtiter plate. Each plant extract was tested in triplicates. A hundred microlitre (100 μ L) of bacterial culture was added into the wells and incubated at 37°C overnight. After incubation, 40 μ L of Iodonitrotetrazolium chloride (Sigma Aldrich, USA) dye at 0.2 mg/mL was added to the wells for visual assessment of microbial viability. The MIC was recorded as the lowest concentration of extract that inhibited bacterial growth.

3.2.4 Determination of antioxidant activity

3.2.4.1 DPPH (2,2-diphenyl-1-picryhydrazyl) free radical scavenging activity
The antioxidant potential of the plant extracts was determined in triplicate according to Mwinga et al. (2019) with slight modifications. A volume of 750 µL of 0.1 mM DPPH solution dissolved in methanol was added to plant extracts dissolved in their respective solvents at 250, 125, 62.5, 31.3, and 15.6 µg/mL. The total volume of the mixture of plant extract and DPPH solution was 5 mL. The control was prepared in a similar manner by replacing the plant extract with methanol. The reaction mixture was kept in the dark at room temperature for 30 minutes, after which the absorbance was measured at 517 nm using an E-SP1100-UV-P spectrophotometer (Biocom Biotech, Gauteng, South Africa). The decrease in absorbance indicated the presence of antioxidant activity (Masoko et al., 2010). L-ascorbic acid was used as a standard and a solvent in which each plant extract was dissolved as a blank. Equation (1) was used to calculate the percentage of free radical scavenging activity (% RSA).

% RSA =
$$\left[\frac{\text{(Absorbance of control - Absorbance of test sample)}}{\text{Absorbance of control}}\right] \times 100$$
 (1)

Where RSA is free radical scavenging activity.

The RSA was graphed against the concentration of the plant extract, and the half-maximal inhibitory concentration (IC₅₀) was calculated from the normalised logarithmic

regression curve. Plant extracts with the lowest IC₅₀ have the greatest radical scavenging effect (Asadujjaman et al., 2013).

3.2.4.2 Ferric-reducing antioxidant power (FRAP) assay

The reducing power of plant extracts was assessed following the method of Otang-Mbeng et al. (2012). Various concentrations of each plant extract (250, 125, 62.5, 31.3, and 15.6 µg/mL) in distilled water were combined with 2.5 mL of 0.2 M phosphate buffer (pH 6.6) and 2.5 mL potassium ferricyanide (1 % w/v). The mixture was incubated for 20 minutes at 50°C, after which 2.5 mL trichloroacetic acid (10 % w/v) was added. The mixture was then centrifuged for 10 minutes at 300 rpm. A 2.5 mL volume of the supernatant was mixed with 2.5 mL of distilled water and 0.5 mL of Iron (III) chloride (0.1 % w/v), and the absorbance was measured at 700 nm. Butylated hydroxytoluene and L-ascorbic acid were used as positive controls.

3.2.5 Data analysis

The results of plant extraction were reported using descriptive statistics, expressed as percentages. The disc diffusion, microdilution, DPPH, and FRAP assays were performed in triplicates, with the outcomes expressed as the mean and standard deviation of these three replicates. Significant differences in the DPPH and FRAP results (inhibition percentages and absorbance values, respectively) were analysed using one-way ANOVA followed by Tukey's post hoc tests in SPSS version 27, with a significance threshold set at p < 0.05. The comparisons between positive controls and different solvent extracts (acetone, hexane, and methanol) were conducted independently for each plant species and for each assay to evaluate differences in antioxidant activity between the solvent extracts within the respective assay.

3.3 Results

3.3.1 Plant extraction

Table 3.1 Extraction yield of six wild edible fruit species leaves using various solvents.

Solvent	Yield (%)								
	C. spinaru m	D. mespiliformi s	E. crispa	F. thonningii	S. madagascariens is	S. spinosa			
Hexane	2.12	0.9	1.22	1.38	4.19	2.04			
Acetone	2.06	2.8	2.77	1.84	1.41	1.06			
Methanol	5.79	10.39	10.09	1.53	2.99	1.96			

Dried *C. spinarum*, *S. spinosa*, *E. crispa*, *F. thonningii*, *S. madagascariensis*, and *D. mespiliformis* leaves from the Bushbuckridge Local Municipality, Mpumalanga Province were serially extracted using, acetone, hexane, and methanol. The extraction efficiency of different solvents from the dried leaves is presented in Table 3.1. Methanol extracted the highest quantity of crude extracts from *D. mespiliformis* (10.39%), *E. crispa* (10.09%), and *C. spinosa* (5.79%). This suggests that methanol has a strong affinity for compounds in these plants compared to acetone and hexane. Acetone and hexane extracted extremely low crude extract quantities, with less than 5% obtained from all plant samples.

3.3.2 Disc diffusion assay

Table 3.2 Antibacterial activity of plant extracts against *Klebsiella pneumoniae* and *Pseudomonas aeruginosa* assessed through disc diffusion and broth microdilution assays.

Plant species	Extractants	Klebsiella pneumoniae		Pseudomonas aeruginosa	
		Disc diffusion Inhibition zone (mm) ^b	Broth microdilution Minimum inhibitory concentration (mg/mL)	Disc diffusion Inhibition zone (mm) ^b	Broth microdilution Minimum inhibitory concentration (mg/mL)
C. spinarum	Hexane	NA	50	22	6.25
	Acetone	NA	NA	25	3.125
	Methanol	NA	NA	15	6.25
D. mespiliformis	Hexane	NA	NA	28	6.25
	Acetone	NA	3.125	20	0.781
	Methanol	NA	6.25	19	1.563
E. crispa	Hexane	NA	NA	28	1.563
	Acetone	NA	12.5	22	1.563
	Methanol	NA	12.5	21	1.563
F. thonningii	Hexane	NA	NA	20	6.25
	Acetone	NA	25	21	1.563
	Methanol	NA	50	22	3.125
S.	Hexane	NA	100	25	12.5
madagascariensis	Acetone	NA	25	25	3.125
	Methanol	NA	100	25	12.5
S. spinosa	Hexane	NA	50	18	3.125
-	Acetone	NA	25	19	3.125
	Methanol	NA	100	20	12.5
Amoxicill	35	0.781	45	0.781	

Results are expressed as means ± SD of three independent measurements; NA: no activity. ^b Diameter of inhibition zone including disc diameter of 4 mm (10 µL of 100 mg/mL).

The disc diffusion assay method was employed to assess the antimicrobial properties of dried *C. spinarum*, *D. mespiliformis*, *E. crispa*, *F. thonningii*, *S. madagascariensis*, and *S. spinosa* leaves against *Pseudomonas aeruginosa and Klebsiella pneumoniae*. As detailed in Table 3.2, most of the plant extracts did not exhibit activity against *Klebsiella pneumoniae*, as indicated by "NA" (No activity). These results suggest that these plant extracts do not have antimicrobial activity against this strain. In contrast, *P. aeruginosa* was susceptible to all the plant extracts especially hexane extracts of *D. mespiliformis* and *E. crispa* with the highest inhibition zone of 28 mm, and *C.*

spinarum acetone extract and *S. madagascariensis* acetone, hexane, and methanol extracts with inhibition of 25 mm. Amoxicillin showed strong antimicrobial activity with inhibition zones of 35 mm and 45 mm for *K. pneumoniae and P. aeruginosa,* respectively.

3.3.3 Microdilution assay

The acetone and methanol extracts of *D. mespiliformis* showed high antibacterial activity against *K. pneumoniae*, with minimum inhibitory concentrations (MICs) of 3.125 mg/mL and 6.25 mg/mL, respectively (Table 3.2). In contrast, the hexane extract of *F. thonningii*, *E. crispa*, and *D. mespiliformis*, along with the acetone and methanol extracts of *C. spinarum*, showed no inhibitory effect on *K. pneumoniae*. However, all plant extracts displayed varying levels of inhibitory activity against *P. aeruginosa*. Particularly, the acetone extract of *D. mespiliformis* demonstrated excellent activity with an MIC of 0.781 mg/mL. Additionally, other extracts, including the methanol extract of *D. mespiliformis* and the methanol, hexane, and acetone extracts of *E. crispa* and *F. thonningii*, showed potent antibacterial activity with an MIC of 1.563 mg/mL. Amoxicillin, a positive control showed strong antimicrobial activity with low MIC values (0.781 and 0.781 mg/mL) for *K. pneumoniae and P. aeruginosa*, respectively.

3.3.4 DPPH assay

The dose-dependent radical scavenging activity of methanol, acetone, and hexane leaf extracts of six wild fruit plants is illustrated in Figure 3.2 and their relative half-maximal inhibitory concentration (IC50) in Table 3.3. The IC50 of the most potent extracts were in the order: L-ascorbic acid< *E. crispa* methanol extract< *D. mespiliformis* methanol extract< *C. spinarum* methanol extract< *D. mespiliformis* acetone extract< *E. crispa* acetone extract< *S. madagascariensis* methanol extract< *S. spinosa* methanol extract (Table 3.3). None of the plant extracts demonstrated antioxidant activity higher than L-ascorbic acid, which showed 96.93% inhibition at a concentration of 250 µg/mL and the lowest IC50 of 0.07 µg/mL. However, some plant extracts demonstrated antioxidant activities comparable to ascorbic acid. Notably, the methanol extracts of *C. spinarum* and *D. mespiliformis* exhibited a perfect similarity (p = 1.00), followed by the methanol extract of *E. crispa* (p = 0.995). The methanol extracts of *S. madagascariensis* (p = 0.450) and *S. spinosa* (p = 0.0859) also showed comparable antioxidant potential.

Table 3.3 Half-maximal inhibitory concentration (IC_{50}) of acetone, hexane, and methanol extracts of the leaves of six wild edible fruit species.

Plant species	Extractants	IC ₅₀ (µg/mL)
L-ascorbic acid	Methanol	0.07
C. spinarum	Hexane	814231.50
	Acetone	228661.95
_	Methanol	1.51
D. mespiliformis	Hexane	474 491.98
_	Acetone	1.92
_	Methanol	1.42
E. crispa	Hexane	82.27
_	Acetone	3.19
_	Methanol	1.42
F. thonningii	Hexane	49.40
_	Acetone	20.49
_	Methanol	11.14
S. madagascariensis	Hexane	34.81
_	Acetone	13.07
_	Methanol	3.29
S. spinosa	Hexane	134.29
	Acetone	10.38
_	Methanol	3.60

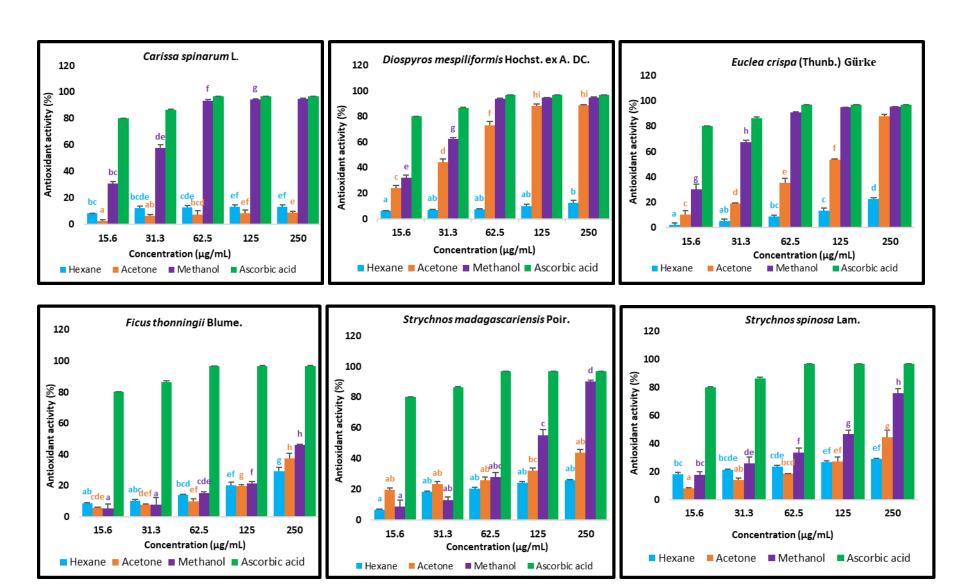


Figure 3.2 Antioxidant activity of hexane, acetone, and methanol leaf extracts from C. spinarum, D. mespiliformis, E. crispa, F. thonningii, S. spinosa, and S. madagascariensis, evaluated against the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. Letter labels on the bar graphs indicate significant differences (p < 0.05) in the antioxidant activities of each plant extract compared to the positive control (ascorbic acid). Different letters indicate a significant difference (p < 0.05) between the antioxidant activities of plant extracts.

3.3.5 FRAP assay

The curves (Figure 3.3) show the dose-response reducing powers of methanol, hexane, and acetone extracts of selected plant species. The higher the absorbance of the reaction mixture at 700 nm the stronger the reducing power. The reducing power of the plant extracts and standards were as follows at 250 μ g/mL: BHT> *S. madagascariensis* acetone extract> *S. spinosa* acetone extract> L-ascorbic acid> *C. spinarum* methanol extract> *E. crispa* methanol extract> *D. mespiliformis* methanol extract. The hexane, acetone, and methanol extracts of *C. spinarum*, *D. mespiliformis*, *E. crispa*, *F. thonningii*, and *S. spinosa* showed statistically significant variations (p < 0.001) when evaluated independently within each plant species and compared to the positive controls, ascorbic acid and BHT. However, there was no significant difference between the hexane and acetone extracts of *S. madagascariensis* (p = 0.058).

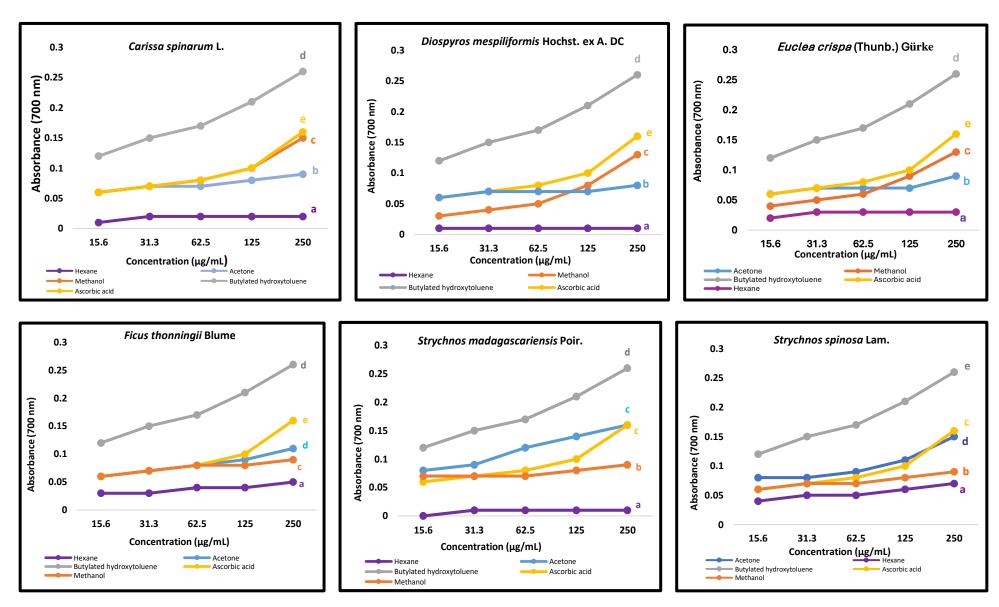


Figure 3.3 Ferric reducing power of hexane, acetone, and methanol leaf extracts from C. spinarum, D. mespiliformis, E. crispa, F. thonningii, S. spinosa, and S. madagascariensis. Distinct letters on the line graphs indicate significant differences (p < 0.05) in the reducing power of each extract compared to the positive controls (ascorbic acid and butylated hydroxytoluene) at 250 μ g/mL, whereas the same letter denotes no significant difference (p > 0.05).

4.4 Discussion

4.4.1 Plant extraction

Extraction yield is affected by the type of solvent, the solvation power, and the affinity (Sagili et al., 2023). Polar compounds are most commonly extracted using a polar solvent such as methanol (Samaraweera et al., 2023). Similar to the results of the present study, previous studies have proven methanol as the best solvent for high plant extract yield (Egra et al., 2023).

4.4.2 Disc diffusion

Contrary to the current findings, Tiruneh et al. (2022) found that the methanol extract of *C. spinarum* leaves exhibited antimicrobial activity against *K. pneumoniae* with an inhibition zone of 11.0 ± 0.23 mm at 100 mg/mL. The butanol fraction of *E. crispa* leaves at 10 mg/mL had an inhibition zone of 18 mm against K. pneumoniae and 16 mm against *P. aeruginosa* (Alayande et al., 2017) which is comparable to the 21 mm inhibition zone obtained from the methanol and acetone extracts of E. crispa (Table 3.3). A study conducted by (Ijoma and Ajiwe, 2023) revealed that the hexane and methanol leaf extracts of F. thonningii had an inhibition zone of 19.2 and 20 mm respectively against K. pneumoniae which is contrary to the findings (Table 3.2) wherein the plant extracts showed no activity against *K. pneumoniae*. The variations in the antimicrobial activities in the current study as compared to the literature may be resulting from differences in the geographical location, seasonality, and climatic conditions from which the plant species were collected since geographical and climatic conditions affect the phytochemistry of plants and thereby their biological activity (Adeosun et al., 2022). Furthermore, different types of cultures of the same bacterial strain may have different susceptibilities to plant extracts. For instance, Alayande et al. (2017) found differences in the antibacterial activity of *E. crispa* leaves against *K.* pneumoniae (ATCC 13047) and K. pneumoniae.

3.4.3 Microdilution assay

Hexane leaf extracts of *D. mespiliformis* demonstrated strong antibacterial activity against *P. aeruginosa* with MICs ranging from 156.25 to 312.5 µg/mL (Ebbo et al., 2019) like the hexane, acetone, and methanol leaf extracts (Table 3.2). The current study found that the methanol and acetone extracts of *E. crispa* had much higher MICs of 12.5 mg/mL against *K. pneumoniae*. Interestingly, the methanol, hexane, and acetone extracts of *E. crispa* (Table 3.2) each had an MIC of 1.563 mg/mL against *P.*

aeruginosa which may indicate that all the plant extracts contain antimicrobial phytochemicals whose mechanism of action needs to be studied. Ultimately, *E. crispa* and *D. mespiliformis* exhibited very similar activities with MIC of 1.563 mg/mL against *P. aeruginosa* which may result from the fact that both species belong to the Ebenaceae family and may contain similar compounds. For instance, Pretorius et al. (2003) identified a flavonoid with antibacterial activity known as rutin from the leaves of *E. crispa*. Hawas et al. (2022) also isolated rutin from the leaves of *D. mespiliformis*. The current research indicates that the methanol and acetone extracts of *F. thonningii* had poor antimicrobial activities with MICs of 25 and 50 mg/mL against *K. pneumoniae*. The findings of the current study also displayed that the acetone and methanol extracts of *S. madagascariensis* and *S. spinosa* had similar activity against *P. aeruginosa* (Table 3.2), due to shared phytoconstituents responsible for antimicrobial activity among plants of the same family and genus (Islam et al., 2024).

3.4.4 Comparison between disc diffusion and microdilution assay

The disc diffusion assay was used for preliminary screening to obtain qualitative results in the form of inhibition zones while the microdilution assay was used to determine the quantitative results in the form of the MIC of plant extracts (Palladini et al., 2023). The current findings proved the microdilution assay to be the most sensitive method of determining the antibacterial activities of plant extracts. Similarly, Scorzoni et al. (2007) found that plant extracts did not show antifungal activity in disc diffusion but showed activity in microdilution assay. Scorzoni et al. (2007) further elaborated that the antimicrobial effectiveness of different samples may not always be accurately detected due to variances in physical properties like solubility, volatility, and diffusion in agar. Moreover, factors such as agar volume, microbial strains, disk adsorption, disk size, quantity of compound applied, type and strength of agar, and pH, can all impact the size of inhibition zones. The disc diffusion method is a simple, cost-effective technique that allows multiple antimicrobial agents to be tested on a single plate, with results easily interpreted through visible bacterial growth since bacterial growth can be directly observed on the plate (Salam et al., 2023).

3.4.5 DPPH assay

Diospyros mespiliformis and *Euclea crispa* are members of the Ebenaceae family with excellent antioxidant activities. Previous studies show that Ebenaceae plant species have good antioxidant activities including *Diospyros ebenum* (Baravalia et al., 2009).

The results (Figure 3.3) indicate that methanol extracts of *E. crispa*, *C. spinarum*, *D.* mespiliformis, and S. madagascariensis had excellent antioxidant activities at >90% which is comparable to ascorbic acid which was the most potent with 96.93% radical scavenging ability. Furthermore, the results (Figure 3.3) show that the acetone extracts of *D. mespiliformis* and *E. crispa* exhibited considerable antioxidant activities with 88.51% and 87.9%, respectively. Hexane extracts had the least antioxidative effect in each plant species with the highest antioxidative effect with IC₅₀ of 34.81 μg/mL observed in S. madagascariensis. The current findings (Table 3.3) indicate that D. mespiliformis methanol and acetone extracts of leaves possess good antioxidant activity with an IC₅₀ of 1.42 and 1.92 µg/mL respectively. Hegazy et al. (2019) also found the fruit of *D. mespiliformis* to exhibit good antioxidant activity with percentage inhibition of up to 87.36% comparable to the 88.51% inhibition by the leaves obtained in the current study (Figure 3.2). E. crispa also showed great antioxidant activities with IC₅₀ of 1.42 μg/mL (Table 3.3). However, Palanisamy et al. (2018) found a much higher IC_{50} value of 135.4 ± 0.7 µg/mL from the ethanolic extract of *E. crispa* leaves. *C.* spinarum methanol extract also showed notable activities against DPPH with an IC₅₀ of 1.51 µg/mL. Liu et al. (2021) isolated ten phytochemicals from the ethanol fraction of the root bark of C. spinarum that displayed antioxidant activities against DPPH, especially one unidentified compound with an IC₅₀ value of 16.5 \pm 1.2 μ M. The methanol extracts of two plant species belonging to the Loganiaceae family, S. spinosa and S. madagascariensis had IC₅₀ of 3.29 and 3.60 µg/mL, respectively. The IC₅₀ values are almost equal which may be because they belong to the same family and genus (Strychnos). Isa et al. (2014) evaluated the antioxidant potential of the leaf of S. spinosa using DPPH radical assay and the results showed free radical scavenging activities of acetone, methanol, and dichloromethane/methanol extracts with IC₅₀ values ranging from 33.66–230.15 µg/mL. From their study, methanol extract had the most noteworthy activity with IC50 of 36.56 µg/mL which is much lower compared to the current findings. F. thonningii had the least antioxidant activity with the highest scavenging activity of 46.19% exhibited by methanol extract at 250 µg/mL. However, Fongang et al. (2015) reported that the methanolic stem roots extract has good free radical scavenging activity (68.30, 75.20, and 81.26%) at 10, 50, and 100 μg/10 μL, respectively.

3.4.6 FRAP assay

Ferric-reducing power (FRAP) assays measure the ability of plant extracts to reduce ferric ion (Fe³⁺) to ferrous (Fe²⁺) due to their reductive properties. When iron (III) chloride (FeCl₃) is added to a solution containing the ferrous (Fe²⁺) form, a chemical reaction whereby the Fe³⁺ ions from FeCl₃ react with the Fe²⁺ ions to form Prussian, blue-coloured complex forms. Thus, the extent of reduction can be assessed by measuring the formation of Perl's Prussian blue at 700 nm. Greater absorbance signifies a stronger ferric-reducing power (Bursal and Köksal, 2011). In the current study (Figure 3.3), hexane extracts showed the least ferric-reducing power in all the selected plant species. However, the positive control (BHT) had the most potent reducing power incomparable to the rest of the plant extracts. Interestingly, the reducing power of *S. madagascariensis* was comparable to ascorbic acid. The study also showed a dose-dependent relationship between the plant extract concentration and the ferric-reducing power. The increase in concentration results in an increase in the reducing power. The current study showed that the ferric-reducing power of plant extracts was good at 125 and 250 µg/mL. The present findings indicate that the methanol extract of *E. crispa* exhibits strong ferric-reducing power, consistent with the findings of Palanisamy et al. (2018), who reported similar activity in the ethanolic extract of E. crispa leaves. Additionally, previous studies by Liu et al. (2021) have shown that the root bark of *C. spinarum* possesses significant ferric-reducing power, which aligns with the current results observed for the methanol extract of *C. spinarum* (Figure 3.3). The ferric-reducing abilities of *S. madagascariensis* and *S. spinosa*, and D. mespiliformis and E. crispa were closely related since they belong to the Loganiaceae and Ebenaceae families respectively. The findings of the present study are further supported by Achika et al. (2023), who reported that the stem bark of Strychnos innocua Del., a member of the Loganiaceae family, exhibited strong ferricreducing power that increased with concentration.

3.4.7 Comparison between DPPH and FRAP assays

The current study revealed that some plant extracts exhibited a high scavenging effect against DPPH but low reducing power. For example, methanol extracts of both *S. madagascariensis* and *S. spinosa* showed high DPPH radical scavenging activity but weaker ferric-reducing power than acetone extracts. Conversely, methanol extracts of *D. mespiliformis*, *E. crispa*, and *C. spinarum* demonstrated strong DPPH radical scavenging activity and ferric-reducing power. Prakash et al. (2011) found that some

plant extracts exhibit good DPPH radical scavenging activity and good ferric-reducing power. Additionally, high antioxidant activity is linked to high total phenolic content (El Kamari et al., 2024). Methanol extracts showed the best activity in both assays compared to acetone and hexane (Figures 3.2 and 3.3), indicating that methanol is an excellent solvent for extracting antioxidant compounds. Hexane extracts, however, showed less activity in both assays. Hossain and Shah (2015) reported that hexane extracts exhibited the lowest antioxidant activity when compared to more polar solvents such as ethanol, butanol, and chloroform. They further emphasized that the higher antioxidant activity observed in polar solvent extracts was linked to their phenolic content. Similarly, Johari and Kong (2019) found that hexane extracts had the lowest phenolic content, which corresponded to the weakest antioxidant activity, particularly in comparison to methanol extracts.

3.5 Concluding remarks

The study demonstrates that the leaves of selected wild fruit plant species exhibit significant antimicrobial and antioxidant properties, influenced by the choice of extraction solvent. These findings scientifically support the traditional use of these plants in managing infectious skin conditions and oxidative stress-related skin disorders. The leaves of C. spinarum, D. mespiliformis, E. crispa, F. thonningii, S. madagascariensis, and S. spinosa exhibited strong antimicrobial activity, highlighting their potential in treating bacterial skin infections. Additionally, the leaves of selected plant species especially C. spinarum, D. mespiliformis, E. crispa, S. spinosa, and S. madagascariensis showed notable antioxidant activity, suggesting their role in combating oxidative damage linked to skin aging and inflammation. These results underscore the therapeutic potential of wild fruit plant species from Bushbuckridge Local Municipality, Mpumalanga Province, as valuable sources of bioactive compounds. Further research should focus on isolating and characterising the active compounds responsible for these antimicrobial and antioxidant effects. Additionally, in vivo studies are necessary to validate the efficacy of the leaves of the studied wild fruit plant species observed in vitro, and future investigations should expand antimicrobial testing to a wider range of bacterial strains for a more comprehensive assessment. Cytotoxicity evaluations are also crucial to ensure the safe application of these plant extracts in healthcare, dermatology, and skin care product development. The study

indicates that the leaves of wild plant species possess antimicrobial and antioxidant properties, which are influenced by the solvents used for extraction. These findings provide scientific support for the traditional use of these plants in treating infectious skin conditions and oxidative stress.

References

- Abdulfatai, K., Sanusi, S., Usman, A., Lawal, S., Idris, H., 2023. Prevalence and antimicrobial susceptibility pattern of *Klebsiella pneumoniae* and *Pseudomonas aeruginosa* among women with urinary tract infections attending antenatal care in Kaduna, Nigeria. Scientific World Journal 18, 114-119.
- Achika, J.I., Ayo, R.G., Khan, E.M, Shehu, A., 2023. Identification of antioxidant compounds from the stem bark fraction of *Strychnos innocua* Del. Journal of Agriculture and Food Research 14, 100833.
- Adeosun, W.B., Bodede, O., Prinsloo, G., 2022. Effect of different climatic regions and seasonal variation on the antibacterial and antifungal activity, and chemical profile of *Helichrysum aureonitens* Sch. Bip. Metabolites 12, 758.
- Adeshina, Y., Ayoola, G., Adegoke, A., Adepoju-Bello, A., 2011. Investigation of the antioxidant properties of *Chrysophyllum albidum* leaves. Nigerian Journal of Health and Biomedical Sciences 10, 45-49.
- Afrasiabi, S., Pourhajibagher, M., Raoofian, R., Tabarzad, M., Bahador, A., 2020.

 Therapeutic applications of nucleic acid aptamers in microbial infections.

 Journal of Biomedical Science 27, 6.
- Ahmed, R., Jumah, S., Arekemase, M., Agbabiaka, T., Adam, A., Adejoro, D., 2017. Serial exhaustive extraction: Influence of solvent polarity on antibacterial activity of extracts of leaves of *Tithonia diversifolia*. Nigerian Journal of Pure and Applied Science 30, 1-10.
- Akbari, B., Baghaei-Yazdi, N., Bahmaie, M., Mahdavi Abhari, F., 2022. The role of plant-derived natural antioxidants in reduction of oxidative stress. Biofactors 48, 611-633.
- Alayande, K.A., Pohl, C.H., Ashafa, A.O.T., 2017. Time-kill kinetics and biocidal effect of *Euclea crispa* leaf extracts against microbial membrane. Asian Pacific Journal of Tropical Medicine 10, 390-399.

- Alessandrello, C., Sanfilippo, S., Minciullo, P.L., Gangemi, S., 2024. An overview on atopic dermatitis, oxidative stress, and psychological stress: Possible role of nutraceuticals as an additional therapeutic strategy. International Journal of Molecular Sciences 25, 5020.
- Asadujjaman, M., Hossain, M.A., Karmakar, U.K., 2013. Assessment of DPPH free radical scavenging activity of some medicinal plants. Pharmacologyonline 1, 161-165.
- Azwanida, N., 2015. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Medicinal and Aromatic Plants 4, 2167-0412.
- Baravalia, Y., Kaneria, M., Vaghasiya, Y., Parekh, J., Chanda, S., 2009. Antioxidant and antibacterial activity of *Diospyros ebenum* Roxb. leaf extracts. Turkish Journal of Biology 33, 159-164.
- Basilicata, M., Pieri, M., Marrone, G., Nicolai, E., Di Lauro, M., Paolino, V., Tomassetti, F., Vivarini, I., Bollero, P., Bernardini, S., 2023. Saliva as biomarker for oral and chronic degenerative non-communicable diseases. Metabolites 13, 889.
- Bursal, E., Köksal, E., 2011. Evaluation of reducing power and radical scavenging activities of water and ethanol extracts from sumac (*Rhus coriaria* L.). Food Research International 44, 2217-2221.
- Canakci, C., Cicek, Y., Canakci, V., 2005. Reactive oxygen species and human inflammatory periodontal diseases. Biochem (Moscow) 70, 619-628.
- Chauke, S., Shelembe, B.G., Otang-Mbeng, W., Ndhlovu, P.T., 2024. Ethnobotanical appraisal of wild fruit species used in Mpumalanga Province, South Africa: A systematic review. South African Journal of Botany171, 602-633.
- Ebbo, A.A., Sani, D., Suleiman, M.M., Ahmed, A., Hassan, A.Z., 2019. Phytochemical composition, proximate analysis and antimicrobial screening of the methanolic extract of *Diospyros mespiliformis* Hochst Ex a. Dc (Ebenaceae). Pharmacognosy Journal 11, 362-368.
- Egra, S., Kuspradini, H., Kusuma, I.W., Batubara, I., Imra, I., Nurjannah, N., Wahyuni, E., Yamauchi, K., Mitsunaga, T., 2023. Potential of prospective medicinal

- plants of Rhizophoraceae from North Kalimantan, Indonesia. Biodiversitas 24, 1346-1355.
- El Kamari, F., El Omari, H., El-Mouhdi, K., Chlouchi, A., Harmouzi, A., Lhilali, I., El Amrani, J., Zahouani, C., Hajji, Z., Ousaaid, D., 2024. Effects of different solvents on the total phenol content, total flavonoid content, antioxidant, and antifungal activities of *Micromeria graeca* L. from middle Atlas of Morocco. Biochemistry Research International 1, 1-8.
- Eloff, J.N., 1998. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Medica 64, 711-713.
- Eloff, J.N., 2019. Avoiding pitfalls in determining antimicrobial activity of plant extracts and publishing the results. BMC Complementary and Alternative Medicine 19, 1-8.
- Elshafie, H.S., Camele, I., Mohamed, A.A., 2023. A Comprehensive review on the biological, agricultural and pharmaceutical properties of secondary metabolites based-plant origin. International Journal of Molecular Sciences 24, 3266.
- Enfiyeci, Z.Y., Çavlin, A., 2023. Causes of death in Turkey: How the increase in the burden of communicable diseases vary by sex and age? ESTUDAM Public Health Journal 8, 1-19.
- Firoozbahr, M., Kingshott, P., Palombo, E.A., Zaferanloo, B., 2023. Recent advances in using natural antibacterial additives in bioactive wound dressings. Pharmaceutics 15, 644.
- Fongang, Y.S., Bankeu, J.J., Ali, M.S., Awantu, A.F., Zeeshan, A., Assob, C.N., Mehreen, L., Lenta, B.N., Ngouela, S.A., Tsamo, E., 2015. Flavonoids and other bioactive constituents from *Ficus thonningii* Blume (Moraceae). Phytochemistry Letters 11, 139-145.
- Hawas, U.W., El-Ansari, M.A., El-Hagrassi, A.M., 2022. A new acylated flavone glycoside, *in vitro* antioxidant and antimicrobial activities from Saudi *Diospyros*

- *mespiliformis* Hochst. ex A.DC (Ebenaceae) leaves. Zeitschrift für Naturforschung C 77, 387-393.
- Hegazy, A.K., Mohamed, A.A., Ali, S.I., Alghamdi, N.M., Abdel-Rahman, A.M., Al-Sobeai, S., 2019. Chemical ingredients and antioxidant activities of underutilised wild fruits. Heliyon 5, e01874.
- Hossain, M.A., Shah, M.D., 2015. A study on the total phenols content and antioxidant activity of essential oil and different solvent extracts of endemic plant *Merremia borneensis*. African Journal of Chemistry 8, 66-71.
- Hulme, J., 2023. *Staphylococcus infection*: Relapsing atopic dermatitis and microbial restoration. Antibiotics 12, 222.
- Ijoma, I., Ajiwe, V.I.E., 2023. Antibacterial activity of phytochemicals in *Ficus thonningii* leaves extracts against some selected pathogenic bacterial prevalent in sickle cell anemia. Jordan Journal Pharmaceutical Sciences 16, 345-355.
- Isa, A.I., Awouafack, M.D., Dzoyem, J.P., Aliyu, M., Magaji, R.A., Ayo, J.O., Eloff, J.N., 2014. Some *Strychnos spinosa* (Loganiaceae) leaf extracts and fractions have good antimicrobial activities and low cytotoxicities. BMC Complementary and Alternative Medicine 14, 456.
- Ishak, A.R., Hsieh, Y.C., Srinivasan, H., See, K.C., 2023. Review of vaccination recommendations in guidelines for non-communicable diseases with highest global disease burden among adults 75 years old and above. Vaccines 11, 1076.
- Islam, Z., Caldeira, G.I., Caniça, M., Islam, N., Silva, O., 2024. *Vitex* genus as a source of antimicrobial agents. Plants 13, 401.
- Johari, M.A., Khong, H.Y., 2019. Total phenolic content and antioxidant and antibacterial activities of *Pereskia bleo*. Advances in Pharmacological Sciences, 1-4.
- Liu, Y., Zhang, Y., Muema, F.W., Kimutai, F., Chen, G., Guo, M., 2021. Phenolic compounds from *Carissa spinarum* are characterized by their antioxidant, anti-inflammatory and hepatoprotective activities. Antioxidants 10, 652.

- Magama, S., Pretorius, J., Zietsman, P., van Wyk, B.-E., 2003. Antimicrobial properties of extracts from *Euclea crispa* subsp. *crispa* (Ebenaceae) towards human pathogens. South African Journal of Botany 69, 193-198.
- Mangrulkar, S.V., Wankhede, N.L., Kale, M.B., Upaganlawar, A.B., Taksande, B.G., Umekar, M.J., Anwer, M.K., Dailah, H.G., Mohan, S., Behl, T., 2023. Mitochondrial dysfunction as a signaling target for therapeutic intervention in major neurodegenerative disease. Neurotoxicity Research 41, 708-729.
- Manyazewal, T., Ali, M.K., Kebede, T., Magee, M.J., Getinet, T., Patel, S.A., Hailemariam, D., Escoffery, C., Woldeamanuel, Y., Makonnen, N., 2023. Mapping digital health ecosystems in Africa in the context of endemic infectious and non-communicable diseases. NPJ Digital Medicine 6, 97.
- Masanovic, B., Akpinar, S., Halasi, S., Stupar, D., Popovic, S., 2023. Physical activity as a natural cure for non-communicable diseases. Frontiers in Public Health 11, 1209569.
- Masoko, P., Gololo, S.S., Mokgotho, M.P., Eloff, J.N., Howard, R., Mampuru, L., 2010.
 Evaluation of the antioxidant, antibacterial, and antiproliferative activities of the acetone extract of the roots of *Senna italica* (Fabaceae). African Journal of Traditional, Complementary and Alternative Medicines 7, 138-148.
- Masoko, P., Picard, J., Eloff, J., 2005. Antifungal activities of six south African *Terminalia* species (Combretaceae). Journal of Ethnopharmacology 99, 301-308.
- Mausse, B.J., Munyemana, F., Uamusse, A., Manjate, A., 2021. Determination of total phenols and evaluation of the antioxidant activity of pulps and fruit derivatives of *Vangueria infausta* and *Strychnos spinosa*. Journal of Medicinal Plant Studies 9, 6-13.
- Mwinga, J.L., Asong, J.A., Amoo, S.O., Nkadimeng, S.M., McGaw, L.J., Aremu, A.O., Otang-Mbeng, W., 2019. *In vitro* antimicrobial effects of *Hypoxis hemerocallidea* against six pathogens with dermatological relevance and its phytochemical characterization and cytotoxicity evaluation. Journal of Ethnopharmacology 242, 112048.

- Ndhlala, A.R., Chitindingu, K., Mupure, C., Murenje, T., Ndhlala, F., Benhura, M.A., Muchuweti, M., 2008. Antioxidant properties of methanolic extracts from *Diospyros mespiliformis* (jackal berry), *Flacourtia indica* (Batoka plum), *Uapaca kirkiana* (wild loquat) and *Ziziphus mauritiana* (yellow berry) fruits. International Journal of Food Science and Technology 43, 284-288.
- Oboh, M.O., Osunsanmi, F.O., Zharare, G.E., Mosa, R.A., Ojo, M.C., Opoku, A.R., 2020. *In vitro* antioxidant and antidiabetic potential of crude extracts from the seed coat and fruit pulp of *Strychnos madagascariensis*. Pharmacognosy Journal 12, 1504-1511.
- Otang-Mbeng, W., Grierson, D.S., Ndip, R.N., 2012. Phytochemical studies and antioxidant activity of two South African medicinal plants traditionally used for the management of opportunistic fungal infections in HIV/AIDS patients. BMC Complementary Alternative Medicine 12, 43.
- Palanisamy, C.P., Kanakasabapathy, D., Ashafa, A.O.T., 2018. *In vitro* antioxidant potential of *Euclea crispa* (Thunb.) leaf extracts. Pharmacognosy Research 10, 296-300.
- Palladini, G., Garbarino, C., Luppi, A., Russo, S., Filippi, A., Arrigoni, N., Massella, E., Ricchi, M., 2023. Comparison between broth microdilution and agar disk diffusion methods for antimicrobial susceptibility testing of bovine mastitis pathogens. Journal of Microbiological Methods 212, 106796.
- Prakash, D., Upadhyay, G., Pushpangadan, P., Gupta, C., 2011. Antioxidant and free radical scavenging activities of some fruits. Journal of Complementary and Integrative Medicine 8, 1-16.
- Pretorius, J., Magama, S., Zietsman, P., 2003. Purification and identification of antibacterial compounds from *Euclea crispa* subsp. *crispa* (Ebenaceae) leaves. South African Journal of Botany 69, 579-586.
- Rahaman, M.M., Hossain, R., Herrera-Bravo, J., Islam, M.T., Atolani, O., Adeyemi, O.S., Owolodun, O.A., Kambizi, L., Daştan, S.D., Calina, D., 2023. Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits: An update. Food Science and Nutrition 11, 1657-1670.

- Rahmayanti, P., Ridwanto, R., 2023. Antioxidant activity of ethanol extract of Chinese Petai peel (Leucaena leucocephala (Lam.) de Wit) using DPPH (1, 1-diphenil-2-picrylhydrazyl) method. Pharmaceutical and Clinical Journal of Nusantara 3, 1-12.
- Ramadwa, T.E., Makhubu, F.N., Eloff, J.N., 2024. The activity of leaf extracts, fractions, and isolated compounds from *Ptaeroxylon obliquum* against nine phytopathogenic fungi and the nematode Meloidogyne incognita. Heliyon 10, 28920.
- Rashid, A., Akram, M., Kayode, O.T., Kayode, A., 2020. Clinical features and epidemiological patterns of infections by multidrug resistance *Staphylococcus* aureus and *Pseudomonas aeruginosa* in patients with burns. Biomedical Journal of Science and Technical Research 25, 19272-19278.
- Ryguła, I., Pikiewicz, W., Grabarek, B.O., Wójcik, M., Kaminiów, K., 2024. The role of the gut microbiome and microbial Dysbiosis in common skin diseases. International Journal of Molecular Sciences 25, 1984.
- Sagili, S.U.K.R., Addo, P.W., MacPherson, S., Shearer, M., Taylor, N., Paris, M., Lefsrud, M., Orsat, V., 2023. Effects of particle size, solvent type, and extraction temperature on the extraction of crude *Cannabis* oil, cannabinoids, and terpenes. ACS Food Science and Technology 3, 1203–1215.
- Salam, M.A., Al-Amin, M.Y., Pawar, J.S., Akhter, N., Lucy, I.B., 2023. Conventional methods and future trends in antimicrobial susceptibility testing. Saudi Journal of Biological Sciences 30, 103582.
- Samaraweera, T., Samaraweera, T., Senadeera, N., Ranaweera, C.B., 2023. Evaluation of antibacterial activity of endemic *Jeffreycia zeylanica* plant found in Sri Lanka. South Asian Journal of Research in Microbiology 16, 1-9.
- Sayeed, M.A., Hossain, M.S., Chowdhury, M.E.H., Haque, M., 2012. *In vitro* antimicrobial activity of methanolic extract of *Moringa olieifera* Lam. fruits. Journal of Pharmacognosy and Phytochemistry 1, 94-98.
- Scorzoni, L., Benaducci, T., Almeida, A., Silva, D.H.S., Bolzani, V.d.S., Mendes-Giannini, M.J.S., 2007. Comparative study of disk diffusion and microdilution

- methods for evaluation of antifungal activity of natural compounds against medical yeasts *Candida* spp and *Cryptococcus* sp. Journal of Basic and Applied Pharmaceutical Science 28, 25-34.
- Shu, J., Jin, W., 2023. Prioritizing non-communicable diseases in the post-pandemic era based on a comprehensive analysis of the GBD 2019 from 1990 to 2019. Scientific Reports 13, 13325.
- Tiruneh, A.T., Tiruneh, A.G., Abebe, C.E., Ayele, M.T., 2022. Phytochemical investigation and determination of antibacterial activity of solvent leave extracts of *Carissa spinarum*. Infection and Drug Resistance 15, 807-819.
- Vo, T.T.T., Peng, T.-Y., Nguyen, T.H., Bui, T.N.H., Wang, C.-S., Lee, W.-J., Chen, Y.-L., Wu, Y.-C., Lee, I.-T., 2024. The crosstalk between copper-induced oxidative stress and cuproptosis: A novel potential anticancer paradigm. Cell Communication and Signaling 22, 353.
- Yahaya, M.F., Osemeahon, S.A., Shagal, M.H., Maitera, O.N., Dass, P.M., Yelwa, J.M., 2021. Antimicrobial, antioxidant, cytotoxicity profiles and chemical compositions of ethanolic extracts of *Ficus polita* and *Ficus thonningii* plant. Journal of Research in Chemistry 2, 4-10.
- Yang, Y., Kessler, M.G.C., Marchán-Rivadeneira, M.R., Han, Y., 2023. Combating antimicrobial resistance in the post-genomic rra: Rapid antibiotic discovery. Molecules 28, 4183.

Chapter 4.0: The nutritional and mineral composition of wild fruit plants harvested from Mpumalanga Province

Summary

In both developed and developing countries, food insecurity is an increasing concern often accompanied by various health conditions including skin conditions, which are highly susceptible to malnutrition. The study evaluated the nutritional composition of the fruits of Diospyros mespiliformis, Ficus thonningii, and Strychnos spinosa. Additionally, the study examined the mineral content of both the leaves and fruits of D. mespiliformis, F. thonningii, and S. spinosa. The goal was to investigate their potential applications in combating food insecurity linked to skin health while supporting skin maintenance through dietary use. Nutritional analysis revealed that F. thonningii had the highest moisture (82.07%) and crude fat (3.92%) content, while S. spinosa seeds had the highest crude protein (31.20%). Fibre content was highest in the peels of all species, with *S. spinosa* peel containing 44.21%. Elemental analysis indicated high levels of beneficial minerals, such as calcium, iron, and magnesium, with S. spinosa leaves having notably high manganese (Mn) content (1 728 mg/Kg). D. mespiliformis and F. thonningii leaves efficiently bioaccumulated zinc (Zn) with a bioaccumulation factor (BAF) of 1.25 and 1.58 respectively, while S. spinosa exhibited a high BAF of 25.08 for Mn. The fruits of all three species contained arsenic (As), cadmium (Cd), and chromium (Cr), with elevated carcinogenic risk factors beyond 0.001 mg/Kg/day for As and Cd, and 0.012 mg/Kg/day for Cr. D. mespiliformis fruit had the highest carcinogenic risk factor of 0.0063 for Cr. While these fruits present valuable nutritional benefits, their potential toxicity warrants further investigation. Strategies for mitigating metal contamination could enhance their safe use in food security initiatives and health-related applications.

4.1 Introduction

Global food security is declining as developing countries fail to meet the demands for safe, nutritious, and affordable food in their communities (Mkhize et al., 2023). Nearly half of the world's population cannot afford a healthy diet because the world's food systems are in disarray (Von Braun et al., 2023). This can be attributed to climate change, increased population growth (Mirón et al., 2023; Mutengwa et al., 2023), and the recent outbreak of pandemics such as the COVID-19 virus among others (Alabi

and Ngwenyama, 2023). Conflicts between Gaza and Israel, Russia and Ukraine, have had negative socioeconomic impacts on global food and nutrition security (Hassoun et al., 2024; Lu, 2024; Raposo et al., 2023). Southern Africa is highly prone to food and nutrition insecurity due to climate change (Mutengwa et al., 2023). The concept of food security is defined as "everyone having access, at all times, to enough food to sustain a healthy and active lifestyle", while nutrition security focuses on the impact of nutrition on health, i.e. food insecurity and diet-related diseases (Seligman et al., 2023). Furthermore, a healthy diet is important for good health and nutrition, and the prevention of chronic diseases (Gelaye, 2023).

Food insecurity is broadly associated with malnutrition (Spoede et al., 2021) especially undernutrition, which is caused by an inadequate intake of food. But overnutrition is caused by excessive food intake, or specific nutrient deficiencies (Serra et al., 2018). Nutrition deficits involve varying degrees of deficiencies in energy, protein, vitamins, and trace elements (Dupont et al., 2018). Previous studies have shown that food insecurity leads to undernutrition (Hasan et al., 2023; Lye et al., 2023). Furthermore, many health conditions in South Africa are attributed to malnutrition (Mkhize et al., 2023). Notably, both undernutrition and overnutrition can alter the physiology of the skin (Piccardi and Manissier, 2009). Hence, nutrition plays a critical role in maintaining the health and condition of the skin. For instance, extreme calorie/protein deficiency (Kwashiorkor) causes biochemical changes in the skin (Piccardi and Manissier, 2009). In addition to impaired wound healing, malnutrition increases the likelihood of developing pressure ulcers (Stotts and Moulder, 2022). Other skin defects such as acanthosis nigricans, acrochordons, and keratosis pilaris often result from overnutrition (Yosipovitch et al., 2007). Furthermore, obese individuals experience complications in wound healing because their skin folds, and creates a moist environment that promotes bacterial growth (Munoz et al., 2020). Diets rich in fruits are recommended to prevent chronic inflammatory skin conditions such as psoriasis (Duarte et al., 2012). Importantly, fruits are considered essential components of a highquality diet (Wallace et al., 2020).

Since the skin is the largest human organ with tissue that has high proliferative potential, it is essential to consume sufficient quantities of proteins, carbohydrates, and fats (Michalak et al., 2021). Indigenous fruits are rich sources of nutrients, vitamins, and minerals necessary for human health, supporting skin health and

offering potential benefits for preventing diseases and combating food insecurity (Aguilera and Toledo, 2024). Mytton et al. (2014) highlights that fruit consumption protects against various diseases and recommends strategies to increase fruit consumption. Therefore, this study aims to determine the proximate and elemental composition of three wild fruit plant species harvested from the Mpumalanga Province and to deduce their potential to curb food and economic insecurity while promoting good health.

4.2 Materials and methods

4.2.1 Sample collection and preparation

The leaves and fruit samples of *Diospyros mespiliformis* Hochst. ex A.DC., *Strychnos spinosa* Lam., and *Ficus thonningii* Blume and their corresponding soil samples were collected from various villages (Table 4.1) under the Jurisdiction of the Mnisi Tribal Council in Bushbuckridge Local Municipality, Mpumalanga Province (refer to figure 3.1 in chapter 3). The fruit peel, seeds, and pulp of *D. mespiliformis* and *S. spinosa* were mechanically separated. *F. thonningii* fruits were used whole due to the small size of the fruit. The leaves were rinsed with distilled water, air-dried, and ground into a fine powder. The soil samples were passed through a 2 mm sieve to remove debris and particles.

Table 4.1 Dates of collection of the samples that were collected and analysed for nutritional and elemental content.

Plant species	Sample	Month of collection	Season	Name of village
Diospyros	Soil	August	Winter	Gottenburg
mespiliformis	Leaves			
Hochst. ex A.DC.	Fruit	May	Autumn	
Strychnos	Soil	August	Winter	Welverdiend
spinosa Lam.	Leaves			
	Fruit	May	Autumn	
Ficus thonningii	Soil	August	Winter	Seville
Blume.	Leaves			
	Fruit	May	Autumn	

4.2.2 Proximate analysis

4.2.2.1 Moisture content

A mass of 5 g of fruit samples in triplicates was weighed and placed in pre-weighed crucibles. The samples were dried in an oven set at 60°C to a constant weight. The crucibles with dried samples were transferred to the desiccator and allowed to cool at room temperature and weighed (Jacob et al., 2016). The percentage moisture content was calculated using equation (1) below.

% Moisture content =
$$\frac{W_2 - W_3}{W_2 - W_1} \times 100$$
 (1)

Where W1-mass of a dried empty crucible (add the rest of the masses)

4.2.2.2 Ash content

A mass of 5 g of fruit samples was weighed and placed in the dried and pre-weighed crucibles and reweighed (W2). The samples were dried in a muffle furnace at 500°C for 3 hours until a grey residue was obtained. The crucibles were cooled in a desiccator and weighed (W3) (Jacob et al., 2016). The percentage ash content was calculated using equation (2) below.

$$\% Ash = \frac{W_3 - W_1}{W_2 - W_1} \times 100 \tag{2}$$

4.2.2.3 Crude fat

Round bottom flasks (250 ml) were oven-dried at 105°C for 30 minutes, cooled in a desiccator and weighed. A mass of 2 g (W1) of the samples was weighed into labelled extraction thimbles and lightly plugged with cotton wool. The round bottom flasks were filled with 300 ml of hexane. The thimbles were placed inside the Soxhlet extraction apparatus and allowed to reflux for 8 hours. The heating temperature was adjusted to 50–55°C. The thimbles were removed, and the hexane was recycled. When the flasks were almost free of the hexane, they were removed and dried for 1 hour at 105°C until the solvent was completely dry. The flasks were cooled in desiccators and weighed (W2) (Jacob et al., 2016). The percentage fat content was calculated using equation (3) below.

$$\% Fat = \frac{W_1 - W_2}{W_1} \times 100 \tag{3}$$

4.2.2.4 Crude fibre

A mass of 2 g (Ws) of defatted samples was weighed into a 250 ml conical flask, and 200 ml of 1.25% sulphuric acid was added. The sample was heated for 30 minutes and filtered using poplin cloth in a Buchner funnel and washed with hot water until no traces of acid were observed using the pH litmus paper. The residue was transferred back to the 250 ml conical flask and 200 ml of 1.25% sodium hydroxide was added. The sample was heated for 30 minutes and filtered using poplin cloth and washed with hot water until no base was detected. The sample was transferred into a crucible and dried in an oven, cooled, and weighed (Wcd). The crucible was placed in a muffle furnace and ashed for 6 hours, cooled, and weighed (Wca) (Jacob et al., 2016). Equation (4) below was used to calculate the percentage fibre.

$$\% Fibre = \frac{W_{cd} - W_{ca}}{W_{c}} \times 100 \tag{4}$$

4.2.2.5 Protein

The nitrogen content was estimated using the Kjeldahl model. The crude protein was calculated by multiplying the evaluated nitrogen with 6.25. A mass of 1 g of sample was weighed and transferred into a digestion flask followed by the addition of two selenium tablets as a catalyst. A volume of12 ml of sulphuric acid was added, and the tubes were heated until clear solutions were obtained. The clear solutions were transferred to a 50 mL volumetric flask made to the mark. 10 ml of digest followed by 10 ml of 40% sodium hydroxide (NaOH) solution were pipetted into a Kjeldahl distiller. A conical flask containing 5 ml of 2% boric acid and 3 drops of mixed indicator were placed under the condenser outlet. At the end of distillation, the ammonium sulphate solution was converted to ammonia. The ammonia gas produced condensed and was collected as a liquid into the conical flask containing boric acid and mixed indicator. The nitrogen in the distillates was determined by titrating with 0.01 M of HCL. Colour changes from green to pink marked the endpoint (Jacob et al., 2016). Equation (5) below was used to estimate the % of nitrogen and equation (6) to estimate the % crude protein.

$$\% N = \frac{(S-B) \times N_{acid} \times 0.014 \times D}{Weight of sample \times V} \times 100$$
 (5)

$$%Crude\ protein = 6.25^* \times %N(*\ Correction\ factor)$$
 (6)

S= sample titration reading; B=blank titration reading; N= normality of HCL; D= Dilution of sample after digestion; V= volume taken for distillation; 0.014= milliequivalent weight of nitrogen.

4.2.2.6 Carbohydrate

Carbohydrate estimate was calculated using equation (7) below (Jacob et al., 2016).

$$%Carbohydrate = 100 - (%Ash + %Protein + %Fat + %Fibre)$$
 (7)

4.2.2.7 Energy value (Ev)

The energy/calorific value of fruit samples expressed in kilocalories was calculated by multiplying the values of protein, fat, and available carbohydrate by 4.00, 9.00, and 4.00 respectively, and adding the resulting products (Jacob et al., 2016).

4.2.3 Elemental analysis

The 0.5 g samples were digested using the microwave-assisted closed-vessel method with 10 ml of 70% nitric acid (HNO₃) in ceramic vessels. After a 1 hour pre-digestion and sealing, the samples were subjected to microwave digestion at 500 W for 30 minutes, followed by 650 W for 15 minutes. Forced ventilation was used to cool the bombs for 15 minutes. The sample digests were filtered into 50 ml volumetric flasks, using 0.45 µm filters. The volumetric flasks were filled with double distilled water and transferred to polyethylene bottles for analysis of the elements. The samples were analysed for Arsenic (As), Cadmium (Cd), Chromium (Cr), Cobalt (Co), Calcium (Ca), Copper (Cu), Manganese (Mn), Magnesium (Mg), Iron (Fe), Lead (Pb), Selenium (Se), and Zinc (Zn) by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). The analytical wavelengths were selected based on minimum spectral interferences and maximum analytical performance. Initially, the 3 most sensitive lines were selected (Shelembe, 2014).

4.2.3.1 Quality assurance

Table 4.2 Certified and found values of certified reference material (strawberry leaves).

Elements	Wavelength	Measured	Certified
	(λ)		
Cr	283.563	1.944553	2.15±0.34
Cu	324.752	10.732277	10
Fe	259.939	198.0613	818±48
Mn	257.61	64.68946	171±10
Zn	213.857	39.07021	24±5

The validity of an analytical technique was assessed by examining the certified reference material (CRM, strawberry leaves, LGC-7162, Community Reference Bureau of the Commission of the European Communities, Brussels, Belgium). The wavelength that yielded the most satisfactory CRM outcomes, characterized by high intensity and absence of interfering elements, was chosen. Reagent blanks and calibration standards for each element in double-distilled water (within the estimated ranges) were prepared from 1000 mg/L stock standard solutions (Fluka Analytical, Sigma, Switzerland) to generate five-point calibration curves representing concentration strength (refer to appendix 4, figures A4.1 and A4.2). The most suitable linear fit of the curves was selected. All samples, including calibration standards and blanks, underwent analysis in 70% nitric acid to eliminate matrix effects and minimize spectral interferences. The CRMs were analysed to confirm the accuracy and precision of the calibration curve and were also utilized to accept or reject it. Method accuracy was assessed by comparing the mean experimental values from three replicates to the certified values for each analyte using the CRMs (Table 4.2). A twosample t-test (assuming equal variances) verified accuracy by showing no statistically significant differences between the means (p > 0.05). Method precision, indicating the degree of measurement consistency upon repeated analysis of an analyte, was evaluated by comparing the %RSD for the CRM, which should ideally be within 20% of the true value. The experimental values within the 95% confidence interval fell within the appropriate range specified for the CRM. Hence, the analytical method was deemed acceptable (Shelembe, 2014).

4.2.3.2 Bioaccumulation factor (BAF)

The BAF quantifies the capacity of plants to accumulate and retain heavy metals from the soil. It is determined by comparing the concentration of metals in the plant to the concentration of metals in the soil it grows in as defined in equation (8) below.

$$BAF = \frac{[metal]_{leaves}}{[Metal]_{soil}}$$
(8)

A BAF value of 1.00 is an indication that the plant can only take up elements but cannot accumulate in the tissues. A BAF value >1.00 implies that the plant may have the ability to absorb and accumulate elements in its tissues (Islam et al., 2022).

4.2.3.3 Human health risk assessment

4.2.3.3.1 Estimated daily intake (EDI) indices

The EDI of elements through the consumption of wild fruits was calculated using the element concentrations in mg/Kg (Kavcar et al., 2009), the recommended daily intake (RDI) of fruits (0.4 Kg/day) (Mehri et al., 2024), as well as the average body weight (BW) in kg 70 Kg for an adult (Zergui et al., 2024) as shown in equation 10 below.

$$EDI = \frac{C \times DI}{BW} \tag{10}$$

4.2.3.3.2 Target Hazard Quotient (THQ)

Table 4.3 The oral toxicity reference dose (R_fD) of toxic minerals (Adeagbo et al., 2024).

Mineral	R _f D (mg/Kg/day)
As	0.0003
Со	0.0003
Cd	0.00005
Cr	0.003
Cu	0.04
Fe	0.7
Mn	0.14
Zn	0.3

The health risk associated with consuming wild fruits was evaluated as a noncarcinogenic hazard through the THQ using equation 11 below.

$$THQ = \frac{EDI}{R_f D} \tag{11}$$

The exposed population is assumed to be safe when the THQ < 1, but if the value of THQ > 1, there is an unacceptable risk of adverse non-carcinogenic effects on human health (Adeagbo et al., 2024).

4.2.3.3.3 Target Carcinogenic Risk (TCR)

The potential cancerous health risk via the consumption of wild fruits was estimated using the toxicity index known as slope factor (SF) to compute the potential cancerous health risk of an individual developing cancer over a lifetime as a result of exposure to possible carcinogens using equation 12 below.

$$TCR = SF \times CDI$$
 (12)

Where the oral carcinogenic SF from USEPA (2015) was; 1.7, 0.38, 0.5, and 0.009 (mg/Kg/day)⁻¹ for As, Cd, and Cr respectively converts the chronic daily intake (CDI) to the incremental risk of individual developing cancer. The target carcinogenic risk factors of Co, Cu, Fe, Mn, and Zn were not calculated because their carcinogenic slope factor was not established since the metals have no carcinogenic effect (Kumar, 2021). Slope factor As=1.5 (Mshengu et al., 2023); Cd= 0.38, Cr= 0.5 (Adeagbo et al., 2024). The USEPA recommendation for carcinogenic limit is 1.0 × 10⁻⁴ (Adeagbo et al., 2024).

4.2.4 Data analysis

Data were presented as the mean of three independent replicates \pm standard deviation (SD). The coefficients were obtained using Statistical Package for the Social Sciences (SPSS) version 30.0.0. The correlation ranges between + 1 and -1, where + 0.8 correlation indicates a strong positive relationship, while - 0.8 correlation indicates a negative relationship. The significant difference was determined using Post Hoc's Tukey and LSD tests in SPSS, with the significant difference determined at p < 0.05.

4.3.1 Proximate analysis

4.3 Results

Table 4.4 Nutritional composition of wild fruits harvested from the Mpumalanga Province.

Plant name		Proximate analyses (%)														
	Fruit part	Moisture	Ash	Crude fat	Crude fibre	Protein	Carbohydrates	Energy value (Kcal/100 g)								
D.	Peel	38.13±1.03 ^d	2.93±0.07bc	1.73±0.03 ^{bc}	31.23±0.58b	2.37±1.02 ^f	61.78±2.09°	272.13±2.83°								
mespiliformis	Pulp	59.13±0.59b	2.21±0.13 ^{bc}	2.5±0.25ab	2.95±0.20 ^f	6.20±0.29 ^d	86.02±0.41 ^a	391.38±2.25ª								
	Seeds	37.73±1.13 ^d	3.41±0.46 ^{ab}	1.13±0.12 ^{bc}	11.40±0.05 ^{de}	5.37±0.63 ^d	78.70±1.18 ^b	346.39±2.27 ^b								
S. spinosa	Peel	39.93±2.74 ^d	2.98±0.13bc	1.47±0.03 ^{bc}	44.21±0.33ª	8.83±0 ^e	42.95±1.17 ^e	218.61±1.97d								
	Pulp	76.33±0.18 ^a	5.87±0.93 ^a	0.25±0.75°	10.30±0.15 ^e	23.62±1.04 ^b	59.55±0.51°	342.55±0.55 ^c								
	Seeds	51.27±1.87°	3.55±0.06 ^{ab}	1.63±0.37 ^{bc}	13.13±0.43 ^d	31.20±0.29a	51.85±1.9 ^d	341.45±0.05 ^b								
F. thonningii	Whole fruit	82.07±1.75 ^a	1.2±0.2 ^c	3.92±0.42a	17.55±0.30°	20.60±1.47°	55.16±1.02 ^{cd}	346.68±2.18 ^b								

The results are expressed as the mean of three replicates \pm standard error (SE). Statistical analyses were performed separately for each nutrient. Identical superscript letters within the same column indicate no significant difference (p > 0.05). The analyses were conducted using Post Hoc's Tukey and LSD tests, with the significant difference determined at p < 0.05.

The analysis of the three fruit species revealed diverse nutritional components (Table 4.4). Moisture content was highest in the whole fruit of *F. thonningii* (82.07%), followed by the pulp of *S. spinosa* (76.33%) and *D. mespiliformis* (59.13%). *S. spinosa* pulp contained the largest ash content (5.87%), while crude fat was most abundant in the whole fruit of *F. thonningii*, with *D. mespiliformis* pulp ranking second (2.50%). Crude fibre was found to be significantly higher in fruit peels than in pulp or seeds, with the highest amounts in *S. spinosa* peel (44.21%) and *D. mespiliformis* peel (31.23%). The lowest crude fibre content was in the pulp of *D. mespiliformis* (2.95%). Crude protein was most abundant in *S. spinosa* seeds (31.20%), followed by *S. spinosa pulp* (23.62%) and *F. thonningii* whole fruit (20.60%). Carbohydrate content was highest in the pulp, seeds, and peel of *D. mespiliformis*. Regarding the energy values, the pulp of *D. mespiliformis* had the highest energy content, while *S. spinosa* peel had the lowest.

Table 4.5 Elemental analysis of the fruit and leaf samples of selected plant species and the soil samples from their respective sites.

Elements	Wavelengt				Conc	entration (mg/l	Kg)			
	h (λ)		D. mespiliforn	nis		F. thonningii			S. spinosa	
		Soil (Site A)	Leaves	Fruit	Soil (Site B)	Leaves	Fruit	Soil (Site C)	Leaves	Fruit
As	228.81	0.4 ± 0.01^{f}	0.2 ± 0.01^{d}	0.1 ± 0.00^{b}	0.3 ± 0.01^{e}	0.2 ± 0.01^{d}	0.2 ± 0.02^{c}	0.2 ± 0.01^{d}	BDL	BDL
Cd	228.80	0.3 ± 0.01^{b}	0.3 ± 0.02^{b}	0.2 ± 0.01 ^a	0.3 ± 0.01^{b}	0.2 ± 0.01^{a}	0.2 ± 0.01 ^a	0.2 ± 0.01 ^a	0.2 ± 0.01^a	0.2 ± 0.02 ^a
Ca	315.89	1 502 ± 2.08 ^e	2 793 ± 0.58 ^f	395.9 ± 2.09°	753 ± 0.50^{d}	12 190 ± 0.44 ^h	4 933 ± 3.00 ⁹	247.9 ± 0.46 ^a	17 240 ± 2.00 ⁱ	388.2 ± 0.09 ^b
Cu	224.7	9.7 ± 0.09^{g}	9.3 ± 0.02^{f}	3 ± 0.03^{a}	6.6 ± 0.03^{d}	6.1 ± 0.08°	7 ± 0.01 ^e	4.8 ± 0.02^{b}	6 ± 0.01°	3.1 ± 0.00 ^a
Со	228.62	2.6 ± 0.05^{f}	BDL	BDL	1.5 ± 0.01 ^e	0.1 ± 0.00^{a}	BDL	1 ± 0.00	$0.4 \pm 0.00^{\circ}$	0.2 ± 0.01 ^b
Cr	205.56	26.6 ± 0.02 ^h	$3 \pm 0.03^{\circ}$	2.2 ± 0.01 ^a	$6.5 \pm 0.09^{\text{f}}$	4 ± 0.27 ^d	2.8 ± 0.00^{bc}	8.1 ± 0.07 ^g	4.6 ± 0.03^{e}	2.7 ± 0.00 ^b
Fe	239.56	1 948 ± 0.57 ⁱ	91.5 ± 0.27 ^d	21.1 ± 0.50 ^a	1 647 ± 2.00 ^h	$330.5 \pm 0.05^{\text{f}}$	157.6 ± 0.06 ^e	1 195 ± 1.00 ⁹	$31.9 \pm 0.08^{\circ}$	28.6 ± 0.00 ^b
Pb	217.00	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Mg	285.21	1 026 ± 0.29 ^d	1 149 ± 0.11 ^e	483.1 ± 0.56°	445.5 ± 0.69 ^b	1 896 ± 0.56 ^h	1 555 ± 5.03 ^g	213.5 ± 0.27 ^a	1 508 ± 0.55 ^f	455.3 ± 0.44 ^b
Mn	260.57	72 ± 0.20^{g}	9.4 ± 0.10^{b}	2.1 ± 0.10 ^a	73.6 ± 0.10^{g}	43.5 ± 0.20 ^e	16.9 ± 0.10°	$68.9 \pm 0.10^{\text{f}}$	1 728 ± 3.00 ^h	21.3 ± 0.10 ^d
Se	196.03	2.2 ± 0.10 ^b	4.9 ± 0.06 ^e	4.5 ± 0.08^{d}	3.2 ± 0.01°	6.4 ± 0.07^{h}	6 ± 0.03^{g}	1.8 ± 0.04 ^a	$5.7 \pm 0.00^{\rm f}$	1.8 ± 0.01 ^a
Zn	213.86	45 ± 0.00^{e}	56.3 ± 0.10^{h}	27.8 ± 0.01 ^b	20.7 ± 0.01 ^a	$32.7 \pm 0.00^{\circ}$	$53.3 \pm 0.62^{\text{f}}$	44.9 ± 0.03 ^e	40.8 ± 0.00^{d}	55 ±

BDL= Beyond detection limit. The results are presented as the mean of three independent replicates (n) \pm standard deviation (SD). Significant differences among the samples were assessed using the Tukey test at a significance level of p < 0.05. Identical superscript letters within a row denote no significant difference (p > 0.05) between the samples while differing letters indicate a significant difference.

4.3.2 Elemental analysis

4.3.2.1 Mineral composition

The elemental analysis (Table 4.5) highlighted varying mineral concentrations. Arsenic (As) levels were higher in soils than in plant tissues, though *F. thonningii* fruit contained as much arsenic as its leaves (0.2 mg/Kg). Cadmium (Cd) was equally present in the soils of sites A and B, with *D. mespiliformis* leaves reflecting their soil concentration (0.3 mg/Kg). The calcium (Ca) content in *S. spinosa* leaves (17,240 mg/Kg) was notably high, surpassing even the calcium-rich soils at Site A (1,502 mg/Kg). Copper (Cu) concentrations were highest in *D. mespiliformis* leaves from Site A and *F. thonningii fruit*. Cobalt (Co) content was undetectable in *D. mespiliformis* but highest in *S. spinosa* leaves and fruit. Chromium (Cr) levels were elevated in *S. spinosa* leaves, and all fruit samples exhibited similar chromium concentrations (2.2-2.7 mg/Kg).

Iron (Fe) was the most abundant mineral in all soil and plant samples, with *F. thonningii* leaves and fruit having the highest concentrations. Lead (Pb) was undetectable across all samples. Magnesium (Mg) was abundant in *F. thonningii* leaves (1,896 mg/Kg) and dominant in the fruit of *F. thonningii* and *S. spinosa*. Manganese (Mn) was present in large quantities in *S. spinosa* (1,728 mg/Kg), and its fruit contained the highest manganese levels among the species.

Selenium (Se) content was highest in *S. spinosa* leaves, while zinc (Zn) concentrations varied, with the highest levels in *D. mespiliformis* leaves and *S. spinosa* fruit. Overall, these results highlight the nutritional and elemental richness of these species, with each fruit part offering unique contributions.

Table 4.6 Correlation coefficients (*r*) and significance (*p*) levels between elemental composition, proximate components, and soil samples of *Diospyros mespiliformis* fruit.

														Correla															
		AsF	AsS	CaS	CaF	CdF	CdS	CoS	CrF	CrS	CuF	CuS	FeF	FeS	MgF	MgS	MnF	MnS	SeF	SeS	ZnF	ZnS			Moisture			Carbohydrate	
sF	Pearson Correlation	1	1,000	-0.327	-0.980	0.619	-0.500	-0.982	0.500	-0.995	-0.933	-0.945		-0.927	-0.449	-0.091	0.778	0.655	-0.778	0.655	-0.029	0.189	-0.327	-0.156	-1,000	0.277		-0.327	
	Sig. (2-tailed)		0.000	0.788	0.129	0.575	0.667	0.121	0.667	0.061	0.234	0.212		0.245		0.942	0.433	0.546	0.433	0.546	0.981	0.879	0.788	0.901		0.821	01110	0.788	0.
S	Pearson Correlation	1,000	1	-0.327	-0.980	0.619	-0.500	-0.982	0.500	-0.995	-0.933	-0.945	-0.939	-0.927	-0.449	-0.091	0.778	0.655	-0.778	0.655	-0.029	0.189	-0.327	-0.156	-1,000"	0.277		-0.327	
	Sig. (2-tailed)	0.000		0.788	0.129	0.575	0.667	0.121	0.667	0.061	0.234	0.212		0.245	0.703	0.942	0.433	0.546	0.433	0.546	0.981	0.879	0.788	0.901		0.821		0.788	
aS	Pearson Correlation	-0.327		1	0.511	0.540	-0.655	0.143	-0.982	0.416	-0.034	0.000	0.633	0.658	-0.697	-0.911	-0.849	-0.929	-0.339	-0.929	-0.935	-0.990	1,000	0.984	1,000	-,999	-0.774	-0.786	
	Sig. (2-tailed)	0.788	0.788		0.659	0.637	0.546	0.909	0.121	0.727	0.978	1.000		0.543		0.270	0.355	0.242	0.780	0.242	0.231	0.091	0.000	0.113		0.033	0	0.425	
aF	Pearson Correlation	-0.980	-0.980	0.511	1	-0.448	0.315	0.924	-0.664	0.994	0.842	0.860	0.989	0.984	0.260	-0.112	-0.888	-0.793	0.635	-0.793	-0.172	-0.383	0.511	0.351	1,000	-0.465	0.149	0.130	
	Sig. (2-tailed)	0.129	0.129	0.659		0.704	0.796	0.250	0.538	0.068	0.363	0.341	0.095	0.115	0.832	0.929	0.304	0.417	0.562	0.417	0.890	0.750	0.659	0.772		0.692	0.905	0.917	0.
	N	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2		3	3	
dF.	Pearson Correlation	0.619	0.619	0.540	-0.448	1	-0.990	-0.756	-0.371	-0.540	-0.860	-0.842	-0.310	-0.279	-0.980	-0.839	-0.013	-0.189	-0.975	-0.189	-0.804	-0.655	0.540	0.680	-1,000	-0.583	-0.951	-0.945	-0.
	Sig. (2-tailed)	0.575			0.704		0.091	0.454	0.758	0.636	0.342	0.363		0.820	0.128	0.367	0.992	0.879	0.143	0.879	0.406	0.546	0.637	0.524		0.604		0.212	
iS	Pearson Correlation	-0.500	-0.500	-0.655	0.315	-0.990	1	0.655	0.500	0.415	0.778	0.756	0.171	0.139	,998°	0.908	0.156	0.327	0.933	0.327	0.880	0.756	-0.655	-0.778	1,000	0.693	0.985	0.982	0.
	Sig. (2-tailed)	0.667	0.667	0.546	0.796	0.091		0.546	0.667	0.728	0.433	0.454	0.891	0.911	0.037	0.275	0.901	0.788	0.234	0.788	0.315	0.454	0.546	0.433		0.512	0.109	0.121	0
oF.	Pearson Correlation	, b	. ь	, b	, b	b	, b	b	, b	. ь	ь .	. b	ь.	. ь	, b	, b	, b	, b	, b	, b	. ь	. ь	, b	ь.		, b	, b	. b	
	Sig. (2-tailed)																												
s	Pearson Correlation	-0.982	-0.982	0.143	0.924	-0.756	0.655	1	-0.327	0.959	0.984	0.990	0.857	0.840	0.610	0.277	-0.645	-0.500	0.882	-0.500	0.218	0.000	0.143	-0.034	1,000	-0.091	0.516	0.500	-0
	Sig. (2-tailed)	0.121	0.121	0.909	0.250	0.454	0.546		0.788	0.182	0.113	0.091	0.345	0.366	0.582	0.821	0.554	0.667	0.312	0.667	0.860	1.000	0.909	0.978	,	0.942	0.655	0.667	0
F	Pearson Correlation	0.500	0.500	-0.982	-0.664	-0.371	0.500	-0.327	1	-0.581	-0.156	-0.189	-0.768	-0.788	0.549	0.817	0.933	0.982	0.156	0.982	0.851	0.945	-0.982	-0.933	-1.000	0.971	0.640	0.655	0
	Sig. (2-tailed)	0.667	0.667	0.121	0.538	0.758	0.667	0.788		0.606	0.901	0.879	0.443	0.422	0.630	0.391	0.234	0.121	0.901	0.121	0.352	0.212	0.121	0.234	-,	0.154	0.557	0.546	0
S	Pearson Correlation	-0.995	-0.995	0.416	0.994	-0.540	0.415	0.959	-0.581	1	0.895	0.909	0.967	0.959	0.362	-0.005	-0.834	-0.724	0.714	-0.724	-0.067	-0.282	0.416	0.249	1,000	-0.368	0.253	0.235	-0
	Sig. (2-tailed)	0.061	0.061	0.727	0.068	0.636	0.728	0.182	0.606		0.295	0.273		0.183	0.764	0.997	0.372	0.485	0.494	0.485	0.958	0.818	0.727	0.840	1,000	0.760		0.849	
F	Pearson Correlation	-0.933	-0.933	-0.034	0.842	-0.860	0.778	0.984	-0.156	0.895	1	.999	0.752	0.731	0.740	0.442	-0.500	-0.339	0.952	-0.339	0.386	0.176	-0.034	-0.210	1.000	0.086	0.659	0.645	
	Sig. (2-tailed)	0.234	0.234	0.978	0.363	0.342	0.433	0.113	0.901	0.295	-	0.022		0.478	0.469	0.708	0.667	0.780	0.199	0.780	0.747	0.887	0.978	0.866	1,000	0.945	0.542	0.554	
S	Pearson Correlation	-0.945			0.860	-0.842	0.756	0.990	-0.189	0.909	.999	0.022	0.774	0.753	0.717	0.412	-0.529	-0.371	0.133	-0.371	0.355	0.143	0.000	-0.176	1.000	0.052		0.619	
_	Sig. (2-tailed)	0.212	0.212		0.341	0.363	0.454	0.091	0.879	0.273	0.022		0.436	0.457	0.491	0.730	0.645	0.758	0.220	0.758	0.769	0.909	1.000	0.887	1,000	0.967	0.564	0.575	
•	Pearson Correlation	-0.939	-0.939	0.633	0.989	-0.310	0.171	0.857	-0.768	0.967	0.752	0.774	0.430	.999	0.114	-0.258	-0.947	-0.875	0.513	-0.875	-0.317	-0.516	0.633	0.487	1.000	-0.592	0.00	-0.019	
	Sig. (2-tailed)	0.224	0.224	0.564	0.095	0.800	0.891	0.345	0.443	0.163	0.752	0.436		0.020	0.928	0.834	0.209	0.321	0.657	0.321	0.795	0.655	0.564	0.676	1,000	0.597	1.000	0.988	
3	Pearson Correlation	-0.927	-0.927	0.658	0.093	-0.279	0.139	0.840	-0.788	0.163	0.438	0.753	.999	0.020	0.082	-0.289	-0.957	-0.890	0.486	-0.890	-0.347	-0.543	0.658	0.514	4 000"	-0.617		-0.051	
•		0.245	0.245		0.984	0.820	0.139	0.366	0.422	0.939	0.731	0.753	0.020		0.082	0.813	0.188	0.301	0.486	0.301	0.774	0.634	0.543		1,000	0.577		0.968	-(
F	Sig. (2-tailed) Pearson Correlation	-0.449		0.0.0	0.115	-0.980		0.610	0.422	0.163	0.740	0.457	0.020	0.082	0.948	0.813	0.188	0.301	0.677	0.301	0.774	0.634	-0.697	-0.813		0.577	0.980	0.988	
,-							,998																		1,000				
ıS	Sig. (2-tailed)	-0.703	-0.703	-0.509	0.832	0.128	0.037	0.582	0.630	-0.005	0.469	0.491	0.928	0.948	0.004	0.239	0.864	0.751	0.271	0.751	0.278	0.418	0.509	0.396		0.476		0.084	. (
3	Pearson Correlation	0.00.		0.0	-0.112	-0.839	0.908		41411	0.000			0.00	-0.289	0.931	- '	0.000	0.000		0.693	,998°	0.961	-0.911	-0.970	1,000"	0.932			
F	Sig. (2-tailed)	0.942	0.942	0.270	0.929	0.367	0.275	0.821	0.391	-0.834	-0.500	0.730		0.813	0.239	0.555	0.625	0.512	0.509	0.512	0.039	0.179	0.270	0.157		0.237		0.154	
_	Pearson Correlation			0.0.0	-0.888	-0.013	0.156	-0.645	0.000	0.00	0.000	-0.529		-0.957	0.212	0.555	1	0.984	-0.210		0.606	0.764	-0.849	-0.742	-1,000"	0.820		0.339	
_	Sig. (2-tailed)	0.433	0.433	0.355	0.304	0.992	0.901	0.554	0.234	0.372	0.667	0.645		0.188	0.864	0.625		0.113	0.866	0.113	0.586	0.446	0.355	0.468		0.388		0.780	
S	Pearson Correlation	0.655	0.655		-0.793	-0.189	0.327	-0.500	0.982	-0.724	-0.339	-0.371			0.381	0.693	0.984	1		1,000	0.736	0.866	-0.929		-1,000	0.908		0.500	
_	Sig. (2-tailed)	0.546	0.546		0.417	0.879	0.788	0.667	0.121	0.485	0.780	0.758	0.321	0.301	0.751	0.512	0.113		0.978	0.000	0.473	0.333	0.242			0.275		0.667	
•	Pearson Correlation	-0.778	-0.778	0.000	0.635	-0.975	0.933	0.882	0.156	0.714	0.952	0.941	0.513	0.486	0.911	0.697	-0.210		1	-0.034	0.651	0.470	-0.339	-0.500	1,000	0.388	0.858	0.849	
	Sig. (2-tailed)	0.433	0.433	0.780	0.562	0.143	0.234	0.312	0.901	0.494	0.199	0.220		0.677	0.271	0.509	0.866	0.978		0.978	0.549	0.688	0.780	0.667		0.746		0.355	
3	Pearson Correlation	0.655	0.655		-0.793	-0.189	0.327	-0.500	0.982	-0.724	-0.339	-0.371			0.381	0.693	0.984	1,000	-0.034	1	0.736	0.866	-0.929	-0.849	-1,000	0.908		0.500	
	Sig. (2-tailed)	0.546	0.546	0.242	0.417	0.879	0.788	0.667	0.121	0.485	0.780	0.758	0.321	0.301	0.751	0.512	0.113	0.000	0.978		0.473	0.333	0.242	0.355		0.275		0.667	
-	Pearson Correlation	-0.029	-0.029	-0.935	-0.172	-0.804	0.880	0.218	0.851	-0.067	0.386	0.355	-0.317	-0.347	0.906	,998	0.606	0.736	0.651	0.736	1	0.976	-0.935	-0.983	1,000	0.952	0.948	0.954	
	Sig. (2-tailed)	0.981	0.981	0.231	0.890	0.406	0.315	0.860	0.352	0.958	0.747	0.769				0.039	0.586	0.473	0.549	0.473		0.140	0.231	0.118		0.198		0.194	
3	Pearson Correlation	0.189	0.189	-0.990	-0.383	-0.655	0.756	0.000	0.945	-0.282	0.176	0.143	-0.516	-0.543	0.792	0.961	0.764	0.866	0.470	0.866	0.976	1	-0.990	-,999	-1,000	0.996	0.857	0.866	
	Sig. (2-tailed)	0.879	0.879	0.091	0.750	0.546	0.454	1.000	0.212	0.818	0.887	0.909	0.655	0.634	0.418	0.179	0.446	0.333	0.688	0.333	0.140		0.091	0.022		0.058	0.345	0.333	
n	Pearson Correlation	-0.327	-0.327	1,000"	0.511	0.540	-0.655	0.143	-0.982	0.416	-0.034	0.000	0.633	0.658	-0.697	-0.911	-0.849	-0.929	-0.339	-0.929	-0.935	-0.990	1	0.984	1,000"	-,999	-0.774	-0.786	-1
	Sig. (2-tailed)	0.788	0.788	0.000	0.659	0.637	0.546	0.909	0.121	0.727	0.978	1.000	0.564	0.543	0.509	0.270	0.355	0.242	0.780	0.242	0.231	0.091		0.113		0.033	0.436	0.425	
otein	Pearson Correlation	-0.156	-0.156	0.984	0.351	0.680	-0.778	-0.034	-0.933	0.249	-0.210	-0.176	0.487	0.514	-0.813	-0.970	-0.742	-0.849	-0.500	-0.849	-0.983	999*	0.984	1	1.000	-0.992	-0.874	-0.882	-4
	Sig. (2-tailed)	0.901	0.901	0.113	0.772	0.524	0.433	0.978	0.234	0.840	0.866	0.887	0.676	0.656	0.396	0.157	0.468	0.355	0.667	0.355	0.118	0.022	0.113		,,,,,,,	0.079	0.324	0.312	
isture	Pearson Correlation	-1.000**		1.000"	1.000"		1.000"		-1.000"	1.000"	1.000"	1.000"	1.000"	1.000"	1.000**	1.000"		-1.000°°		-1.000"		-1.000"	1.000"	1.000**	1		1.000"	1,000"	-1
	Sig. (2-tailed)	.,	.,	.,	.,	.,	.,	.,	.,	.,	.,	.,	.,	.,	.,	.,	.,	.,	.,	.,	.,	.,	.,	.,		1,000	.,	1,000	
deFat	Pearson Correlation	0.277	0.277	999	-0.465	-0.583	0.693	-0.091	0.971	-0.368	0.086	0.052	-0.592	-0.617	0.734	0.932	0.820	0.908	0.388	0.908	0.952	0.996	999	-0.992	-1.000	1	0.806	0.817	
	Sig. (2-tailed)	0.821	0.821	0.033	0.692	0.604	0.512	0.942	0.154	0.760	0.945	0.967	0.597	0.577	0.476	0.237	0.388	0.275	0.746	0.275	0.198	0.058	0.033	0.079	.,		0.403	0.391	
re	Pearson Correlation	-0.345			0.149	-0.951	0.985	0.516	0.640	0.253	0.659	0.633			0.994	0.966	0.322	0.484	0.858	0.484	0.948	0.857	-0.774	-0.874	1,000	0.806		1,000	
	Sig. (2-tailed)	0.776	0.776		0.905	0.200	0.109	0.655	0.557	0.837	0.542	0.564	1.000	0.980	0.072	0.166	0.791	0.679	0.343	0.679	0.205	0.345	0.436	0.324	.,000	0.403	•	0.012	
bohvdrate	Pearson Correlation	-0.327	-0.327	-0.786	0.130	-0.945	0.982	0.500	0.655	0.235	0.645	0.619	-0.019	-0.051	0.991	0.971	0.339	0.500	0.849	0.500	0.954	0.866	-0.786	-0.882	1.000	0.817	1.000	1	
,	Sig. (2-tailed)	0.788	0.788		0.917	0.212	0.121	0.667	0.546	0.849	0.554	0.575	0.988	0.968	0.084	0.154	0.780	0.667	0.355	0.667	0.194	0.333	0.425	0.312	1,000	0.391	0.012		
erav value	Pearson Correlation	0.788			-0.488	-0.562	0.121	-0.117	0.977	-0.393	0.060	0.026			0.715	0.134	0.780	0.007	0.364	0.007	0.194	0.993	-1 000	-0.989	-1,000	1.000	0.790	0.801	
o.gy value	Sig. (2-tailed)	0.804		0.016	0.675	0.620	0.529		0.137	0.743	0.962	0.026		0.560			0.333	0.0.0		0.259	0.0	0.993	1,000		-1,000	0.017		0.408	
Correlation is si	ignificant at the 0.01 level (2-		0.604	0.016	0.075	0.020	0.529	0.925	0.137	0.743	0.902	0.984	0.580	0.560	0.492	0.234	0.371	0.239	0.763	0.239	0.215	0.075	0.016	0.096		0.017	0.420	0.408	

Sample types: Fruit= F; Soil= S. Elements: Arsenic= As; Calcium=Ca; Cadmium= Cd; Chromium=Cr; Copper= Cu; Iron=Fe; Magnesium= Mg; Manganese= Mn; Selenium= Se; Zinc= Zn. Correlation coefficient (r): Strong correlation r > 0.7 or r < 0.7; Moderate correlation 0.3 < r < 0.7 or -0.7 < r < 0.3; Weak correlation r > 0.3 or r > -0.3. Significance level (p): Significant

The correlation analysis (Table 4.6) of proximate compositions and elemental content in *D. mespiliformis* revealed a range of relationships, with some statistically significant and others not. Proximate-to-proximate correlations within the fruit showed notable trends. For example, fat exhibited a perfect positive correlation with energy (r = 1, p = 0.017), indicating that fat strongly contributes to the energy content of the fruit. Conversely, fat had a strong negative correlation with ash (r = -0.999, p = 0.033), suggesting that higher ash content is associated with lower fat levels. While fibre showed a perfect positive correlation with moisture (r = 1), the relationship was not statistically significant (p > 0.05). Similarly, protein displayed a strong negative correlation with fibre (r = -0.874, p = 0.324) and energy (r = -0.989, p = 0.096), though these relationships were also not significant. Moisture exhibited a perfect positive correlation with carbohydrates (r = 1), while its relationship with energy was negative (r = -1), both of which lacked statistical significance.

Element-to-element correlations between fruit and soil were assessed to understand the influence of soil composition on fruit nutrient content. A perfect positive correlation was observed between Cu in fruit and soil (r = 0.999, p = 0.022) and between Fe in fruit and soil (r = 0.999, p = 0.020), both of which were statistically significant. These findings highlight a strong dependency of fruit copper and iron content on soil levels. Conversely, Cd in fruit was strongly negatively correlated with Cd in soil (r = -0.990, p = 0.091), although the relationship was not statistically significant. Moisture in fruit also showed a perfect positive correlation with its soil counterpart (r = 1), though this relationship was not tested for significance. Conversely, cadmium in fruit was strongly negatively correlated with cadmium in soil (r = -0.990, p = 0.091), and chromium in fruit was strongly negatively correlated with chromium in soil (r = -0.581, p = 0.606), though neither relationship was statistically significant.

Relationships between elemental and proximate compositions within the fruit showed varying degrees of association. Zn displayed a strong positive correlation with protein (r = 0.983, p = 0.118), and magnesium showed a very strong positive correlation with fibre (r = 0.994, p = 0.072), though neither relationship reached statistical significance. Fat had a moderate negative correlation with cadmium (r = -0.583, p = 0.604), and fibre was strongly positively correlated with selenium (r = 0.858, p = 0.343), though these were also not significant. Relationships between elements within the soil showed weaker trends. For instance, iron and zinc exhibited a moderate negative correlation

(r = -0.543, p = 0.634), which was not statistically significant. For additional information on the correlation coefficients of *F. thonningii* and *S. spinosa*, refer to appendix 4, tables A4.1 and A4.2.

4.3.2.2 Bioaccumulation factor

Table 4.7 Bioaccumulation factors of toxic and microminerals in the leaves and fruit of wild fruits.

Plant species	Element	Conc	entration (mg/Kg)	Bioaccumula	tion factor
•		Soil	leaves	Fruit	Leaves	Fruit
D.	As	0.4	0.2	0.1	0.5	0.25
mespiliformis	Cd	0.3	0.3	0.2	1	0.67
	Cr	26.6	3	2.2	0.11	0.08
	Co	2.6	BDL	BDL	BDL	BDL
	Cu	9.7	9.3	3	0.96	0.31
	Fe	1 948	91.5	21.1	0.05	0.01
	Mn	72	9.4	2.1	0.13	0.03
	Zn	45	56.3	27.8	1.25	0.62
F. thonningii	As	0.3	0.2	0.2	0.67	0.67
	Cd	0.3	0.2	0.2	0.67	0.67
	Cr	6.5	4	2.8	0.62	0.43
	Со	1.5	0.1	BDL	0.07	BDL
	Cu	6.6	6.1	7	0.92	1.06
	Fe	1 647	330.5	157.6	0.20	0.10
	Mn	73.6	43.5	16.9	0.59	0.23
	Zn	20.7	32.7	53.3	1.58	2.57
S. spinosa	As	0.2	BDL	BDL	BDL	BDL
	Cd	0.2	0.2	0.2	1	1
	Cr	8.1	4.6	2.7	0.57	0.33
	Со	1	0.4	0.2	0.4	0.2
	Cu	4.8	6	3.1	1.25	0.65
_	Fe	1 195	31.9	28.6	0.03	0.02
_	Mn	68.9	1 728	21.3	25.08	0.31
	Zn	44.9	40.8	55	0.91	1.22

BDL: Beyond detection limit

The metal bioaccumulation (Table 4.7) results indicate that *D. mespiliformis* leaves can absorb and accumulate Zn, whereas the fruit was not effective in bioaccumulating any of the metals studied, as all metals had a bioaccumulation factor below one. *Ficus thonningii* leaves efficiently bioaccumulated Zn, while the fruit effectively accumulated both Cu and Zn. *S. spinosa* leaves exhibited a notably high BAF for Mn, at 25.08, and the fruit showed the ability to bioaccumulate Zn with a BAF of 1.22.

4.3.2.3 Health risk assessment

4.3.2.3.1 Target Hazard Quotient/non-carcinogenic risk and Carcinogenic risk

Table 4.8 Health risk assessment of toxic elements detected in the edible parts (Pulp) of wild fruit plants.

Plant species	Elements	Fruit (mg/Kg)	Estimated daily intake	Target hazard quotient	Carcinogeni c risk
D.	As	0.1	0.001	1.9	0.0009
mespiliformis	Cd	0.2	0.001	22.86	0.0004
	Cr	2.2	0.012	4.19	0.0063
	Со	BDL	BDL	BDL	
	Cu	3	0.017	0.43	•
	Fe	21.1	0.121	0.17	•
	Mn	2.1	0.012	0.09	•
	Zn	27.8	0.159	0.53	
F. thonningii	As	0.2	0.001	3.81	0.0017
	Cd	0.2	0.001	22.86	0.0004
	Cr	2.8	0.016	5.33	0.008
	Со	BDL	BDL	BDL	
	Cu	7	0.040	1	_
	Fe	157.6	0.900	1.29	•
	Mn	16.9	0.100	0.69	•
	Zn	53.3	0.305	1.02	•
S. spinosa	As	BDL	BDL	BDL	BDL
	Cd	0.2	0.001	22.86	0.0004
	Cr	0.2	0.001	0.38	0.0006
	Co	2.7	0.015	51.43	
	Cu	3.1	0.018	0.44	_
	Fe	28.6	0.163	0.23	_
	Mn	21.3	0.122	0.87	-
	Zn	55	0.314	1.05	-

BDL: Beyond detection limit. The carcinogenic risk of Co, Cu, Fe, Mn, and Zn was not calculated since they are not

The target hazard quotient/non-carcinogenic risk assessment (Table 4.8) revealed that the fruit of *D. mespiliformis* showed unacceptable levels of Cd (22.86), followed by Cr (4.19), and As (1.9). Similarly, the fruit of *F. thonningii* contained high levels of Cd (22.86), Cr (5.33), As (3.81), Fe (1.29), and Zn (1.02), while *S. spinosa* exhibited excessively high levels of cobalt Co (51.43), Cd (22.86), and Zn (1.05).

The carcinogenic risk assessment (Table 4.8) revealed that the fruit of *D. mespiliformis*, *F. thonningii*, and *S. spinosa* may pose an increased cancer risk to humans due to the presence of As, Cd, and Cr. The findings showed that in *D. mespiliformis* fruit, Cr presented the highest carcinogenic risk factor at 0.0063, followed by As at 0.0009 and Cd at 0.0004. In *F. thonningii* fruit, As had the highest

risk factor at 0.0017. For *S. spinosa* fruit, Cr had a carcinogenic risk factor of 0.0006, which was higher than Cd at 0.0004.

4.4 Discussion

4.4.1 Proximate analysis

Moisture content

The results of the study indicate that *F. thonningii* whole fruit had the highest water content (82.07%) followed by the pulp of *S. spinosa* fruit (76.33%) and *D. mespiliformis* pulp (59.13%). However, Jacob et al. (2016) found significantly lower percentages of moisture from the pulp of *D. mespiliformis* (6.89%) and *S. spinosa* (7.12%) compared to the current findings. The findings of another study found that the moisture content of the pulp of S. spinosa was 76.4% (Akweni et al., 2022) which is relatively close to the findings of the current study. Notably, fruits normally have a high water content ranging from 55–85 % (Rahman et al., 2024). Due to the high water content of fruits, some ethnobotanical studies show that wild fruits were used as thirst quenchers by local people (Das, 2018; Motlhanka and Makhabu, 2011; Muchuweti et al., 2005; Sathyavathi and Janardhanan, 2014). However, higher moisture content in fruits indicates that the fruit is highly perishable (Omolola et al., 2017). For instance, the papaya fruit is considered highly perishable due to its high moisture content leading up to 25% post-harvest losses (Mishra et al., 2015). Ramjan and Ansari (2018) concluded that amongst other factors, the moisture content controls the shelf life of fruits. Therefore, the currently studied fruit may have a low shelf life due to high moisture content. Previous research advices that fruits should be harvested before they ripen, reducing the carbon dioxide around them.

Ash content

Ash content refers to the inorganic material (Hitzl et al., 2015) found in the plant which contains the mineral content of the plant (Vermani et al., 2010). Therefore, the composition of ash depends on the type of plant material and the type of species (Babayemi et al., 2010). Furthermore, the ash content of different parts of the same plant may vary. Similarly, Zeng et al. (2014) also found varying quantities of ash from different parts of a Masson pine tree. Bakker and Elbersen (2005) noted that wetland species have higher ash content than C4 species further indicating that water-uptake

influences the ash content of a plant. This is justified by the perfect positive correlation between moisture and ash content in Table 4.6. High moisture content is associated with high ash content (Dagnew et al., 2021). Furthermore, the soil type and texture influence the ash content (Bakker and Elbersen, 2005).

Strychnos spinosa fruit pulp had the highest ash content of 5.87% while the fruit peel and seeds had 2.98% and 3.55% respectively. Mbhele et al. (2024) studied the ash content of various morphophytes of *S. spinosa* and one of them had an ash content of 5.83% comparable to the current findings (Table 5.2) of *S. spinosa* pulp which had an ash content of 5.87%. Furthermore, Mbhele et al. (2024) concluded that *S. spinosa* is a valuable fruit that can be used to address mineral deficiencies. Jacob et al. (2016) found that the ash content of *S. spinosa* pulp was 3.86 % and 4.66 % for *D. mespiliformis* pulp. *D. mespiliformis* showed varying quantities of ash between the pulp (2.21%), seeds (3.41%), and peel (2.93%). Magaji (2019) found that the pulp of *D. mespiliformis* had an ash content of 2.02 g/100g. Mbhele et al. (2024) highlighted that low ash content is associated with high moisture content which is justified by the results in Table 4.4 indicating that *F. thonningii* has the highest water content (82.07%) and the lowest ash content (1.2%). The results further revealed that different parts of the same fruit may contain varying quantities of ash (Table 4.4).

Crude fat

The results showed a strong negative correlation between the crude fat and ash content (r = -0.999) corresponding to the findings of (Ugese et al., 2008). Furthermore, the results show that the ash content influences the crude fat (p = 0.033) of a plant species Fat plays three key roles as a nutrient: it provides a highly concentrated source of energy, acts as a carrier for fat-soluble vitamins, and supplies essential fatty acids that must be obtained through dietary fat. Additionally, fat helps transport certain bioactive compounds found in fruits, such as phytoestrogens and carotenoids, which are fat-soluble. Fatty acids are also needed to form cell structures and to act as precursors of prostaglandins (Sánchez-Moreno et al., 2006). F. thorningii had the highest oil content of 3.92 %. The results (Table 4.4) further indicate variances in the crude oil content between the fruit peel, pulp, and seeds of both D. mespiliformis had fat content of 1.73% and 2.5%. Muhammad et al. (2024) found that the fat content of

D. mespiliformis fruit peel and pulp was 1.76% and 2.89% respectively. Contrarily, Ebbo et al. (2019a) found that the peel and pulp of *D. mespiliformis* had a much lower crude fat content of 0.45% and 0.11% respectively. Figueiredo et al. (2008) elaborated on how various factors such as environmental conditions (climate, pests and diseases, pollution), geographic variations (soil type), physiological variations (seasonality, type of plant organ, development stage, secretory structure, and injuries) influence the production of essential oils. Hence, these factors may affect the production and bioaccumulation of essential oils leading to variances in the quality and quantity of these oils within the same species exposed to varying conditions (Zhang et al., 2023). However, it is important to note that previous studies have shown that plant essential oils have proven antimicrobial (Andoğan et al., 2002; Sahu et al., 2024), antioxidant (Moghaddam et al., 2015; Okoh et al., 2016), and anti-proliferative (Lampronti et al., 2006; Saengha et al., 2022) activities. A comparative study by Rustaie et al. (2016) to determine the biological activities of wild and cultivated fruits of Bunium persicum (Boiss.) B.Fedtsch., the results showed that the wild-grown plant had some variations in percentage compositions of the essential oils with the wild-grown plant exhibiting excellent biological activities than the cultivated plant. This therefore indicates that plants growing in the wild have a better potential of providing essential oils with potent beneficial properties. Furthermore, previous studies show that some wild fruits have edible oils that are rich in essential fatty acids, and important saturated and unsaturated fatty acids (Maikhuri et al., 2021). In general, the fat content of fruits is very low as reported in table 4.4 for all the studied fruit. This is supported by (Sánchez-Moreno et al., 2006) who also highlighted that the fat content of fruit is generally low. For instance, fatty acid deficiencies are associated with eczema, depigmentation, and impaired wound healing (Krutmann and Humbert, 2011).

Crude fibre

S. spinosa fruit peel, which is non-edible had the highest crude fibre of 43.85%. From the edible part of the three analysed fruits, F. thonningii (17.55%) had the highest crude fibre content compared to the pulps of S. spinosa and D. mespiliformis. An estimate of the crude fiber content in present foods is based on the amount of indigestible cellulose, pentosans, lignin, and other materials of this type in the food (Nembang, 2023). The RDA of fibre for adult men and women is 38 and 25 g/day (Satter et al., 2016). Crude fibre is also known as dietary fibre (Dai and Chau, 2017)

which consist of insoluble and soluble fibres (Mudgil, 2017). Insoluble fibres are indigestible but assist food in passing through the digestive system while soluble fibres absorb water and make it easy to expel waste (Stadler and Elledge, 2004). The benefits of dietary fibres include the lowering of cholesterol levels, regulating diabetes, and improvement of the digestive system serving as prebiotics (Mudgil, 2017). Hence, fibers play an important role in the relief of constipation (Dai and Chau, 2017). Dietary fibres can be used to relieve inflammation in psoriasis patients, hence, there is a correlation between the low intake of dietary fibre and psoriasis (Sawada et al., 2021).

Protein

The protein content of *D. mespiliformis* fruit pulp was 6.20% which is comparable to the 6.01 g/100 g found in the fruit pulp of *D. mespiliformis* by Magaji (2019). The protein content of *D. mespiliformis* seeds was 5.37% comparable to the findings of Ezeagu et al. (1996) who found that the protein content of the seeds was 5.47%. However, the *D. mespiliformis* fruit peel had the least protein content (2.37%) compared to the seeds and pulp. In contrast, (Muhammad et al., 2024) found that the protein content of *D. mespiliformis* fruit peel was 6.86%, and (Nyambe et al., 2019b) found that the fruit peel protein content was 1.6%.

The whole *F. thonningii* fruit had a considerable quantity of protein 20.60% (Table 4.4) which is higher than the protein content of *F. thonningii* seed reported in (Muhammad and Oluwaniyi, 2022). The protein content of *S. spinosa* pulp (23.62%) was higher compared to the findings of Lockett et al. (2000) who found that the fruit has a protein content of 11.70%; 3.3% (Amarteifio and Mosase, 2006); and 9.19% (Mbhele et al., 2024). However, the protein content of the *S. spinosa* seed (31.20%) is less than that of the commercial date palm (*Phoenix dactylifera* L.) seed with 36.40% (Bouaziz et al., 2008).

The RDA of protein intake for children, men, and women is 34 g, 56 g, and 46 g, respectively (Satter et al., 2016). In this study, the pulp of *S. spinosa* and the whole fruit of *F. thonningii* were found to contain significant protein levels (23.63% and 20.60%, respectively), which could contribute substantially to meeting protein requirements, particularly in children. Proteins are crucial in the diet because they provide amino acids, some are essential as the body cannot produce them independently. They are vital structural components of all cells and are necessary for

tissue building and repair, and the production of enzymes, hormones, and other substances. Proteins also play roles in immune function, blood clotting, and more, serving both regulatory and structural functions in the body. While fruits contain only small amounts of nitrogenous compounds (0.1–1.5%), making them generally poor protein sources, berries, cherimoya, and avocados have higher protein content than other fruits (Sánchez-Moreno et al., 2006). Cao et al. (2020) further elaborated that constructing, repairing, and mediating skin physiological functions are among the primary functions of proteins. Hence, they form an important part of body tissue and organs. Furthermore, deficiencies in any of these nutrients will have detrimental effects on the skin.

Carbohydrates

Carbohydrates showed strong positive relationship with moisture, fibre, fat, energy value and a weak negative inverse relationship with protein (Table 4.6). The highest carbohydrate content was observed from the pulp of D. mespiliformis (86.02%)> D. mespiliformis seeds (78.70%) > D. mespiliformis peel (61.78%). The carbohydrate content of the pulp (Table 2) is higher than the findings of (Magaji, 2019) 56.55 \pm 0.72 g/ 100g., (Jacob et al., 2016) 60.47%, and (Aremu et al., 2019) 79.68 g/100 g on the pulp of D. mespiliformis. However, Muhammad and Oluwaniyi (2022) found that the pulp of D. mespiliformis fruit is 86.56%, comparable to the current study's findings. In addition, the current study findings on the carbohydrate content of D. mespiliformis seeds is comparable to the 77.21% found by (Ezeagu et al., 1996) in the seeds of D. mespiliformis.

The carbohydrate content of the *S. spinosa* pulp was 59.55 % which is less than the carbohydrate content of 62.47% of the pulp recorded by (Jacob et al., 2016). However, (Mbhele et al., 2024) found that the carbohydrate content of the fruit of thirty-two *S. spinosa* morphophytes ranged from 37.88–40.77 %. Furthermore, the carbohydrate content of *S. spinosa* pulp was higher than the carbohydrate content of *S. spinosa* seeds and peel (Table 4.4). The carbohydrate content of *F. thonningii* whole fruit was 55.16% which is higher than the carbohydrate content of the seed (40.02%) as discovered by Muhammad and Oluwaniyi (2022). The RDA of carbohydrates for adult males and females is 130 g/day (Satter et al., 2016). All the fruits in the current study can serve as good sources of carbohydrates, especially *D. mespiliformis* pulp.

Carbohydrates serve as the primary source of energy in the human diet. The energy generated from metabolizing carbohydrates can either be used immediately to meet the body's energy demands or stored as fat for later use (Sánchez-Moreno et al., 2006). Carbohydrates provide the body with energy (Posthauer et al., 2015).

Energy value

The current findings show that the energy value had a perfect inverse relationship with the moisture content as indicated by (Torrens Zaragozá, 2015). *D. mespiliformis* had the highest energy value of 391.38 Kcal/100 g which is higher than the findings of (Jacob et al., 2016) which was 348.86 Kcal/100 g. For *S. spinosa* fruit, the pulp had the highest energy value of 342.55 Kcal/100 g compared to its seeds and peel. However, Jacob et al. (2016) found that the pulp of *S. spinosa* was 303.38 kcal/100 g. However, the energy value of *F. thonningii* was 346.68 Kcal/100 g which was less than that of the seeds 382.93 Kcal/100 g (Muhammad and Oluwaniyi, 2022).

The energy value represents the amount of energy in a given weight of food and is a key determinant of energy intake because a greater intake of a low-energy-dense diet, such as fruits, makes excessive energy intake more difficult. Fruits add weight to meals without increasing calories, consequently decreasing energy density, and energy intake and reducing body weight. Additionally, low-energy-dense diets often are recommended for weight control (De Oliveira et al., 2008). Foods with higher energy levels such as refined grains and added sugars are associated with obesity while fruit has not been linked to obesity (Drewnowski and Darmon, 2005).

4.4.2 Elemental analysis

The presence of arsenic (As) in all soil samples aligns with findings by Rehman et al. (2021), who explained that Arsenic is a geogenic carcinogen commonly found in soils, with its levels varying due to the parent rock and anthropogenic activities. Although chronic arsenic exposure takes months or years to manifest, it can have detrimental effects on multiple organ systems, including the endocrine, nervous, and cardiovascular systems (Rokonuzzaman et al., 2022). Arsenic accumulation and chronic intake may have negative impacts on the endocrine, nervous, cardiovascular, hepatic, haematological, renal, dermal, and respiratory systems of the human body (Rehman et al., 2021).

All the soil samples in the current study contained Cadmium (Cd) and (Kubier et al., 2019) elaborates on how Cd levels in the soil are influenced by the weathering of rocks, sewage sludge, landfills, traffic, metal industry, mining, and incidents. Furthermore, Cd is known to compete with and displace zinc (Palmgren et al., 2008). The results show a weak negative correlation between Cd and Zn with r = -0.804. Cd levels were consistent across the fruit of *D. mespiliformis*, *F. thonningii*, and *S. spinosa*, each showing 0.2 mg/kg. However, the leaves of *D. mespiliformis* had a higher concentration of 0.3 mg/kg, matching the soil content. Cd, a highly toxic heavy metal, can cause severe health issues even at low concentrations, potentially leading to cancer, renal failure, cardiovascular dysfunction, hormonal imbalances, and death (Sharma et al., 2015).

The copper (Cu) content of *D. mespiliformis* was found to be 3 mg/Kg (Table 4.5), significantly lower than the 30.3 g/100g reported by Magaji (2019). In *F. thonningii*, Cu concentrations were 6.1 mg/Kg in the leaves and 7 mg/Kg in the fruit, while (Muhammad and Oluwaniyi, 2022) found 57.4 mg/100g in the seeds. The Cu content of the leaves and fruit of *S. spinosa* were 6 and 3.1 mg/Kg respectively, however, (Mbhele et al., 2024) found 2.70 mg/100 g from *S. spinosa* fruit. The Cu content of the soil and the fruit show a strong positive correlation (r = 0.999, p = 0.022). Cu plays a crucial role in skin health by supporting the synthesis of elastin, collagen, and melanin,

and deficiencies may lead to sagging skin conditions and hypopigmentation (Krutmann and Humbert, 2011). Among its many benefits, copper peptides have been shown to reduce photodamaged, speed wound healing, and calm irritated skin conditions (Polefka et al., 2012).

Cobalt (Co) was detectable in the leaves of *F. thonningii* (0.1 mg/Kg), however, (Muhammad and Oluwaniyi, 2022) found higher concentrations of Co (1.2 mg/100g) in the seeds of *F. thonningii*. *S. spinosa* leaves and fruits had cobalt content of 0.4 and 0.2 mg/Kg respectively. This corroborates that plant species take up 0.1 to 2.0 mg/Kg of Co in their tissues (Gál et al., 2008).

Chromium (Cr) was present in all soil and samples at varying concentrations (Table 4.5). Cr is considered a high environmental pollutant that is found in water, rocks and sediments, and minerals (Dey et al., 2023). It serves a vital role in insulin function and the metabolism of proteins, fats, and carbohydrates (Chowdhury et al., 2003). Trace elements like Cr are essential for skin health, and deficiencies can lead to skin modifications (Piccardi and Manissier, 2009). However, the Cr also places people at a risk of developing cancer (Table 4.8).

All the soil samples in the current study had high levels of iron (Fe). There was a significant (p = 0.020) directly proportional relationship between the Fe content of the soil and the fruit with r = 0.999. Bartholomeus et al. (2007) indicated that Fe content indicates the fertility and potential use of the soil for cultivation. The Fe content of D. mespiliformis was 21.1 mg/kg in the pulp, whereas Magaji (2019) reported a much higher value of 9.88 g/100g. In F. thonningii, Fe concentrations were higher in the leaves (330.5 mg/Kg) compared to the fruit (157.6 mg/Kg), with the seeds containing 434.1 mg/100g (Muhammad and Oluwaniyi, 2022). The highest Fe content observed in a study by (Mbhele et al., 2024) was 4.00 mg/100 g from the fruit of S. spinosa while the Fe levels in the current study were 31.9 and 28.6 mg/Kg for leaves and fruit respectively. Fe deficiencies are linked to pale, dry, and scaly skin, highlighting its importance in skin health (Krutmann and Humbert, 2011).

In this study, lead (Pb) levels were beyond the detection limit in all fruit, leaves, and soil samples, contrary to the findings of (Magaji, 2019) who found 5.06 g/100 g in *D. mespiliformis* pulp.

In the present study, site A soils were also rich in magnesium (Mg) than sites B and C. Mg is important for plant growth, but higher levels may be toxic to plants and may also have deleterious effects on the soil (Qadir et al., 2018). Mg concentrations in *D. mespiliformis* were 483.1 mg/kg in the pulp, while (Magaji, 2019) reported 24 g/100g. The leaves of *D. mespiliformis* had 1 896 mg/Kg, and the fruit had 1 555 mg/kg. Additionally, the findings of another study on the seed revealed 1184.10 mg/100 g magnesium content (Muhammad and Oluwaniyi, 2022). Mg plays a crucial role in many enzymatic reactions, and deficiencies can disrupt Ca and K levels, both vital for skin health (Al-Fartusie and Mohssan, 2017). *S. spinosa* fruit had Mg levels ranging from 9 to 69 mg/100 g (Mbhele et al., 2024) while the current study showed 455.3 mg/Kg in the fruit.

Ficus thonningii manganese (Mn) levels were 43.5 mg/Kg in the leaves and 16.9 mg/kg in the fruit, consistent with 39.3 mg/100g 72 seed concentrations. Mn is vital for normal body function, and its deficiency has been associated with skin lesions (Crossgrove and Zheng, 2004). Mbhele et al. (2024) found Mn levels ranging from 0.10 to 2.43 mg/100 g in *S. spinosa* fruit while the current study shows 21.3 mg/Kg in *S. spinosa* fruit.

Selenium was present in low concentrations across all soil, leaf, and fruit samples. According to (Brodowska et al., 2016) high levels of Se are associated with high Fe and organic matter content, while low levels are associated with acidic soils and magma-origin rocks. According to Pearson correlation coefficient, there was a positive moderate correlation (r = 0.513, p = 0.657) between Se and Fe in the fruit of *D. mespiliformis* and *F. thonningii* and a negative moderate correlation between Se and Fe in the soil samples (r = -0.890, p = 0.301). Se is critical for the development and function of skin keratinocytes and plays a role in skin antioxidant activity (Cao et al., 2020).

Site A and C soils had higher **Zn** content than site B. Zn is an essential toxic mineral when in excess and displaces other important minerals such as Mn and Fe (Palmgren et al., 2008). The correlation coefficient showed a moderate negative correlation between Zn and Fe (r = -0.543) indicating that their relationship is inversely proportional. Zn levels in *F. thonningii* were 32.7 mg/Kg in the leaves and 53.3 mg/Kg in the fruit. Muhammad and Oluwaniyi (2022) found that the seeds contained 63.6

mg/100g. Zn is a cofactor for wound healing enzymes, and its deficiency is linked to skin conditions like dermatitis (Krutmann and Humbert, 2011; Polefka et al., 2012). In the present study, *S. spinosa* had 55 mg/kg of Zn, however, (Mbhele et al., 2024) found Zn concentrations ranging from 0.10 to 0.80 mg/100 g from various morphotypes of *S. spinosa* fruit.

4.4.3 Bioaccumulation of metals across soil, leaves, and fruit

Fruits naturally accumulate metals from the soil during their growth and processing. These metals, which are not biodegradable, can persist (Mbhele et al., 2024) and move up the food chain. While some metals are essential micronutrients, they become toxic at elevated concentrations. Rising levels of environmental heavy metals can result in increased human intake, leading to serious health conditions (Randjelovic et al., 2014). The process of metal uptake in plants is influenced by various factors, such as soil metal concentrations, pH, cation exchange capacity, organic matter, plant type and variety, and even the plant's age (Jung, 2008).

The current study (Table 4.7) revealed intriguing patterns of metal bioaccumulation across different plant parts. In *D. mespiliformis*, for instance, the bioaccumulation factor (BAF) for all tested elements decreased from leaves to fruits. Similarly, in *F. thonningii*, the elements generally decreased from leaves to roots, except for Cd and As, which maintained a stable BAF (0.67) across leaves and fruits. Interestingly, Cu and Mn exhibited an increasing BAF from leaves to fruit in *F. thonningii*. For *S. spinosa*, the BAF of Cd was consistent (1) in both leaves and fruits, while Zn showed an increase from leaves to fruit.

Overall, most elements exhibited higher bioaccumulation in leaves than in fruits. Previous studies support this trend, suggesting that leaves typically contain higher concentrations of metals due to roots acting as barriers or leaves being the first receptors of contaminants from environmental sources (Islam et al., 2022; Zhao and Duo, 2015). Notably, *F. thonningii* leaves had an exceptionally high BAF of 25.08 for Mn, a trend corroborated by other studies (Assoumou et al., 2024; Kamal et al., 2016; Mulenga et al., 2022).

These findings suggest that *D. mespiliformis* is particularly effective at accumulating Zn in its leaves, while *F. thonningii* excels at accumulating Cu in its fruits and Zn in both leaves and fruits. Meanwhile, *S. spinosa* accumulates Mn in its leaves and Zn in

its fruits. Given their ability to bioaccumulate metals with BAF values greater than one, these plant species could serve as valuable candidates for phytoremediation of specific elements (Li et al., 2019).

4.4.4 Health risk assessment

4.4.4.1 Target Hazard Quotient/non-carcinogenic risk and Carcinogenic risk

Toxic elements are an increasing global environmental concern, leading to widespread contamination of water, air, and soil, which ultimately threatens the health of plants, animals, and humans. Plants can absorb these toxic substances, primarily through soil pollution, which can be caused by both natural processes and human activities when pollutant concentrations surpass safe limits (Sinha et al., 2023). Even trace amounts of hazardous toxic elements pose serious risks to public health (Rokonuzzaman et al., 2022).

In the current study (Table 4.8), results revealed alarming concentrations of harmful elements in fruit samples. The fruit of *D. mespiliformis* showed unacceptable levels of cadmium (Cd), followed by chromium (Cr), and arsenic (As). Similarly, the fruit of *F. thonningii* contained high levels of Cd, Cr, As, Fe, and Zn, while *S. spinosa* exhibited excessively high levels of Cd, Cd, and Zn. Notably, *D. mespiliformis* and *F. thonningii* lacked detectable levels of Co.

These findings raise concerns regarding the potential health risks to consumers of these fruits, as harmful elements such as Cd, As, Co, Cr, Fe, and Zn could accumulate in their bodies. Thus, it is imperative to enforce strict regulations on the consumption of these fruits (Adeagbo et al., 2024). Additionally, the toxic elements As, Cd, and Cr were found to exceed the target carcinogenic risk threshold of 1.0 × 10⁻⁴, further underscoring the need for careful monitoring of their intake. Mathebula (2010) notes that the Barberton area of Mpumalanga Province is home to active gold mining operations. Additionally, the Mpumalanga province hosts the majority of South Africa's coal-fired power stations situated near the coal mines in the province. Unfortunately, coal mining activities in Mpumalanga have negative effects on both biodiversity and water resources. The open-cast and underground mining activities contribute to the contamination of surface and underground water, resulting in the elevated levels of toxic metals found in plant species from the area (Simpson et al., 2019).

The Bushbuckridge Local Municipality, with its mining history, adds another layer of concern. This region not only has a history of gold mining in the Hazyview area (Rowe, 2021) but is also involved in sand mining and stone crushing, as highlighted by Mathebula (2010). These activities further exacerbate land, air, and water pollution.

4.5 Concluding remarks

The nutritional and elemental analysis of D. mespiliformis, F. thonningii, and S. spinosa highlights their potential as valuable sources of nutrition and mineral content, making them promising candidates for addressing food insecurity and enhancing human health. Each species exhibited unique profiles, with notable levels of protein, fibre, and essential minerals such as calcium, iron, and zinc, which could be beneficial in skincare products and promoting healthy skin. Additionally, the bioaccumulation of zinc and manganese in certain plant parts indicates the potential for developing nutraceuticals. Caution is warranted due to the presence of potentially toxic metals like arsenic, cadmium, and chromium in the fruits, as revealed by the bioaccumulation and carcinogenic risk assessments. While the leaves of D. mespiliformis and F. thonningii efficiently accumulated beneficial metals, their fruits, along with those of S. spinosa, showed elevated levels of metals with carcinogenic risks, particularly for Cr. As, and Cd due to the mining activities in the Bushbuckridge Local Municipality. The carcinogenic risk assessment underscores the need for careful consideration of the consumption of these fruits, especially in areas with heavy metal contamination, to mitigate potential long-term health risks. Overall, while these fruits offer significant nutritional and skincare potential, further research is necessary to evaluate and manage the risks associated with their consumption in polluted environments. Developing strategies for safe consumption could enhance their role in both food security and health applications.

References

- Adeagbo, A.A., Ogunlaja, O.O., Johnson, H.O., Akinseye, M.O., Oni, S.O., 2024. Human health risk assessment of trace elements in commonly consumed herbs in Ibadan, Nigeria. Journal of Food Composition and Analysis 126, 105838.
- Aguilera, J.M., Toledo, T., 2024. Wild berries and related wild small fruits as traditional healthy foods. Critical Reviews in Food Science and Nutrition 64, 5603-5617.
- Akweni, A.L., Sibanda, S., Zharare, G.E., Zimudzi, C., 2022. Deriving biomass allocation and carbon stocks in fruit components of *Strychnos madagascariensis* (Poir.) and *Strychnos spinosa* (Lam.) in South Africa. International Journal of Fruit Science 22, 1-16.
- Alabi, M.O., Ngwenyama, O., 2023. Food security and disruptions of the global food supply chains during COVID-19: Building smarter food supply chains for post COVID-19 era. British Food Journal 125, 167-185.
- Al-Fartusie, F.S., Mohssan, S.N., 2017. Essential trace elements and their vital roles in human body. Indian Journal of Advances in Chemical Sciences 5, 127-136.
- Amarteifio, J., Mosase, M., 2006. The chemical composition of selected indigenous fruits of Botswana. Journal of Applied Sciences and Environmental Management 10, 43-47.
- Andoğan, B.C., Baydar, H., Kaya, S., Demirci, M., Özbaşar, D., Mumcu, E., 2002.

 Antimicrobial activity and chemical composition of some essential oils.

 Archives of Pharmacal Research 25, 860-864.
- Aremu, M.O., Aboshi, D.S., David, A., Agere, I.J.H., Audu, S.S., Musa, B.Z., 2019. Compositional evaluation of bitter melon (*Momordica charantia*) fruit and fruit pulp of ebony tree (*Diospyros mespiliformis*). International Journal of Sciences 8, 80-89.
- Assoumou, R.B., Abaga, N.O.Z., Tayebi, M., 2024. Comparative assessment of the state of growth and bioaccumulation of manganese in Poaceae growing on

- the Mbembele manganese mine in Gabon, BIO Web of Conferences. EDP Sciences, 06005.
- Babayemi, J., Dauda, K., Nwude, D., Kayode, A., 2010. Evaluation of the composition and chemistry of ash and potash from various plant material- A review. Journal of Applied Sciences 10, 1820-1824.
- Bakker, R.R., Elbersen, H., 2005. Managing ash content and quality in herbaceous biomass: An analysis from plant to product, 14th European Biomass Conference, 21.
- Bartholomeus, H., Epema, G., Schaepman, M., 2007. Determining iron content in Mediterranean soils in partly vegetated areas, using spectral reflectance and imaging spectroscopy. International Journal of Applied Earth Observation and Geoinformation 9, 194-203.
- Beerling, D.J., Leake, J.R., Long, S.P., Scholes, J.D., Ton, J., Nelson, P.N., Bird, M., Kantzas, E., Taylor, L.L., Sarkar, B., 2018. Farming with crops and rocks to address global climate, food and soil security. Nature Plants 4, 138-147.
- Bouaziz, M.A., Besbes, S., Blecker, C., Wathelet, B., Deroanne, C., Attia, H., 2008. Protein and amino acid profiles of Tunisian Deglet Nour and Allig date palm fruit seeds. Fruits 63, 37-43.
- Brodowska, M.S., Kurzyna-Szklarek, M., Haliniarz, M., 2016. Selenium in the environment. Journal of Elementology 21, 1173-1185.
- Cao, C., Xiao, Z., Wu, Y., Ge, C., 2020. Diet and skin aging—From the perspective of food nutrition. Nutrients 12, 870.
- Chowdhury, S., Pandit, K., Roychowdury, P., Bhattacharya, B., 2003. Role of chromium in human metabolism, with special reference to type 2 diabetes. Journal of the Association of Physicians of India 51, 701-705.
- Crossgrove, J., Zheng, W., 2004. Manganese toxicity upon overexposure. NMR in Biomedicine: An international Journal Devoted to the Development and Application of Magnetic Resonance *In Vivo* 17, 544-553.
- Dagnew, A., Assefa, W., Kebede, G., Ayele, L., Mulualem, T., Mensa, A., Kenbon, D., Gabrekirstos, E., Minuye, M., Alemu, A., 2021. Evaluation of banana (*Musa*

- spp.) cultivars for growth, yield, and fruit quality. Ethiopian Journal of Agricultural Sciences 31, 1-25.
- Dai, F.J., Chau, C.F., 2017. Classification and regulatory perspectives of dietary fiber. Journal of Food and Drug Analysis 25, 37-42.
- Das, A., 2018. Ethnobotanical uses of wild fruits of *Santal paraganas* (Jharkhand). International Journal of Minor Fruits, Medicinal and Aromatic Plants 4, 31-38.
- De Oliveira, M.C., Sichieri, R., Mozzer, R.V., 2008. A low-energy-dense diet adding fruit reduces weight and energy intake in women. Appetite 51, 291-295.
- Dey, S.R., Sharma, M., Kumar, P., 2023. Effects and responses of chromium on plants, Chromium in Plants and Environment. Springer, 385-427.
- Dijkstra, F.A., Van Breemen, N., Jongmans, A.G., Davies, G.R., Likens, G.E., 2003.

 Calcium weathering in forested soils and the effect of different tree species.

 Biogeochemistry 62, 253-275.
- Drewnowski, A., Darmon, N., 2005. The economics of obesity: Dietary energy density and energy cost. The American Journal of Clinical Nutrition 82, 265S-273S.
- Duarte, G., Barbosa, L.O., Rosa, M.E.A., 2012. The management of psoriasis through diet. Psoriasis: Targets and therapy, 45-53.
- Dupont, R., Longué, M., Galinier, A., Frais, C.C., Ingueneau, C., Astudillo, L., Arlet, P., Adoue, D., Alric, L., Prévot, G., 2018. Impact of micronutrient deficiency & malnutrition in systemic sclerosis: Cohort study and literature review. Autoimmunity Reviews 17, 1081-1089.
- Ebbo, A.A., Sani, D., Suleiman, M.M., Ahmed, A., Hassan, A.Z., 2019. Phytochemical composition, proximate analysis and antimicrobial screening of the methanolic extract of *Diospyros mespiliformis* Hochst Ex a. Dc (Ebenaceae). International Science and Technology Journal of Namibia 11, 2-11.
- Ezeagu, I.E., Metges, C.C., Proll, J., Petzke, K.J., Akinsoyinu, A.O., 1996. Chemical composition and nutritive value of some wild-gathered tropical plant seeds. Food and Nutrition Bulletin 17, 1-4.

- Figueiredo, A.C., Barroso, J.G., Pedro, L.G., Scheffer, J.J., 2008. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour and Fragrance Journal 23, 213-226.
- Gál, J., Hursthouse, A., Tatner, P., Stewart, F., Welton, R., 2008. Cobalt and secondary poisoning in the terrestrial food chain: Data review and research gaps to support risk assessment. Environment International 34, 821-838.
- Gelaye, Y., 2023. Quality and nutrient loss in the cooking vegetable and its implications for food and nutrition security in Ethiopia: A review. Nutrition and Dietary Supplements, 47-61.
- Hasan, M.M., Kader, A., Asif, C.A.A., Talukder, A., 2023. Seasonal variation in the association between household food insecurity and child undernutrition in Bangladesh: Mediating role of child dietary diversity. Maternal and Child Nutrition 19, e13465.
- Hassoun, A., Al-Muhannadi, K., Hassan, H.F., Hamad, A., Khwaldia, K., Buheji, M., Al Jawaldeh, A., 2024. From acute food insecurity to famine: How the 2023/2024 war on Gaza has dramatically set back sustainable development goal 2 to end hunger. Frontiers in Sustainable Food Systems 8, 1402150.
- Hitzl, M., Corma, A., Pomares, F., Renz, M., 2015. The hydrothermal carbonization (HTC) plant as a decentral biorefinery for wet biomass. Catalysis Today 257, 154-159.
- Islam, M.S., Ahmed, M.K., Idris, A.M., Phoungthong, K., Habib, M.A., Mustafa, R.A., 2022. Geochemical speciation and bioaccumulation of trace elements in different tissues of pumpkin in the abandoned soils: Health hazard perspective in a developing country. Toxin Reviews 41, 1124-1138.
- Islam, M.S., Ahmed, M.K., Idris, A.M., Phoungthong, K., Habib, M.A., Mustafa, R.A., 2022. Geochemical speciation and bioaccumulation of trace elements in different tissues of pumpkin in the abandoned soils: Health hazard perspective in a developing country. Toxin Reviews 41, 1124-1138.

- Jacob, J.O., Mann, A., Adeshina, O.I., Ndamitso, M.M., 2016. Nutritional composition of selected wild fruits from Minna area of Niger state, Nigeria. International Journal of Nutrition and Food Engineering 10, 37-42.
- Jacob, J.O., Mann, A., Adeshina, O.I., Ndamitso, M.M., 2016. Nutritional composition of selected wild fruits from Minna area of Niger state, Nigeria. International Journal of Nutrition and Food Engineering 10, 37-42.
- Jung, M.C., 2008. Heavy metal concentrations in soils and factors affecting metal uptake by plants in the vicinity of a Korean Cu-W mine. Sensors 8, 2413-2423.
- Kamal, A.K.I., Islam, M.R., Hassan, M., Ahmed, F., Rahman, M.A.T., Moniruzzaman,M., 2016. Bioaccumulation of trace metals in selected plants within AminBazar landfill site, Dhaka, Bangladesh. Environmental Processes 3, 179-194.
- Kavcar, P., Sofuoglu, A., Sofuoglu, S.C., 2009. A health risk assessment for exposure to trace metals via drinking water ingestion pathway. International Journal of Hygiene and Environmental Health 212, 216-227.
- Krutmann, J., Humbert, P., 2011. Nutrition for healthy skin. Springer, London New York.
- Kubier, A., Wilkin, R.T., Pichler, T., 2019. Cadmium in soils and groundwater: A review. Applied Geochemistry 108, 104388.
- Kumar, V., 2021. Going, toll-like receptors in skin inflammation and inflammatory diseases. Excli Journal 20, 52.
- Lampronti, I., Saab, A.M., Gambari, R., 2006. Antiproliferative activity of essential oils derived from plants belonging to the Magnoliophyta division. International Journal of Oncology 29, 989-995.
- Lee, S.E., Lee, S.H., 2018. Skin barrier and calcium. Annals of dermatology 30, 265-275.
- Li, B., Chen, D., Yang, Y., Li, X., 2019. Effects of soil properties on accumulation characteristics of copper, manganese, zinc, and cadmium in Chinese turnip. Plant Diversity 41, 340-346.
- Lin, S., Li, J., Hu, X., Chen, S., Huang, H., Wu, Y., Li, Z., 2024. Potential dietary calcium supplement: Calcium-chelating peptides and peptide-calcium complexes

- derived from blue food proteins. Trends in Food Science and Technology 145, 104364.
- Lockett, T., Calvert, C.C., Grivetti, L.E., 2000. Energy and micronutrient composition of dietary and medicinal wild plants consumed during drought. Study of rural Fulani, Northeastern Nigeria. International Journal of Food Sciences and Nutrition 51, 195-208.
- Lu, Z., 2024. The Impact of the Israeli–Palestinian conflict on food and economy in Gaza. Interdisciplinary Humanities and Communication Studies 1, 1-4.
- Lye, C.W., Sivasampu, S., Mahmudiono, T., Majid, H.A., 2023. A systematic review of the relationship between household food insecurity and childhood undernutrition. Journal of Public Health, 070.
- Magaji, S., 2019. Study on the chemical composition of jackal berry (*Diospyros mespiliformis*) fruit edible part. Fudma Journal of Sciences 3, 576-580.
- Maikhuri, R., Parshwan, D.S., Kewlani, P., Negi, V.S., Rawat, S., Rawat, L., 2021.

 Nutritional composition of seed kernel and oil of wild edible plant species from Western Himalaya, India. International Journal of Fruit Science 21, 609-618.
- Mathebula, J.H., 2010. Determinants of household participation in agricultural production in Shatale region of the Bushbuckridge Local Municipality, Mpumalanga Province. University of Limpopo.
- Mbhele, Z., Zharare, G.E., Zimudzi, C., Mchunu, C.N., Ntuli, N.R., 2024. Variation in nutritional composition of *Strychnos spinosa* Lam. morphotypes in KwaZulu-Natal, South Africa. Genetic Resources and Crop Evolution, 1-15.
- Mehri, F., Heshmati, A., Ghane, E.T., Mahmudiono, T., Fakhri, Y., 2024. Concentration of heavy metals in traditional and industrial fruit juices from Iran: Probabilistic risk assessment study. Biological Trace Element Research, 1-10.
- Michalak, M., Pierzak, M., Kręcisz, B., Suliga, E., 2021. Bioactive compounds for skin health: A review. Nutrients 13, 203.
- Mirón, I.J., Linares, C., Díaz, J., 2023. The influence of climate change on food production and food safety. Environmental Research 216, 114674.

- Mishra, B.B., Gautam, S., Chander, R., Sharma, A., 2015. Characterization of nutritional, organoleptic and functional properties of intermediate moisture shelf stable ready-to-eat *Carica papaya* cubes. Food Bioscience 10, 69-79.
- Mkhize, X., Mthembu, B.E., Napier, C., 2023. Transforming a local food system to address food and nutrition insecurity in an urban informal settlement area: A study in Umlazi township in Durban, South Africa. Journal of Agriculture and Food Research 12, 100565.
- Moghaddam, M., Miran, S.N.K., Pirbalouti, A.G., Mehdizadeh, L., Ghaderi, Y., 2015. Variation in essential oil composition and antioxidant activity of cumin (*Cuminum cyminum* L.) fruits during stages of maturity. Industrial Crops and Products 70, 163-169.
- Motlhanka, D.M., Makhabu, S.W., 2011. Medicinal and edible wild fruit plants of Botswana as emerging new crop opportunities. Journal of Medicinal Plants Research 5, 1836-1842.
- Mshengu, B.P., Buthelezi, C.Z., Moodley, R., 2023. Elemental, phytochemical, and toxicological assessment of *Cissus rotundifolia* (Forssk.) Vahl. South African Journal of Science 119, 1-9.
- Muchuweti, M., Ndhlala, A.R., Kasiyamhuru, A., 2005. Estimation of the degree of polymerization of condensed tannins of some wild fruits of Zimbabwe (*Uapaca kirkiana* and *Ziziphus mauritiana*) using the modified vanillin-HCl method. Journal of the Science of Food and Agriculture 85, 1647-1650.
- Mudgil, D., 2017. The interaction between insoluble and soluble fiber, Dietary fiber for the prevention of cardiovascular disease. Elsevier, 35-59.
- Muhammad, H., Oluwaniyi, O., 2022. Proximate, phytochemicals, minerals, and antinutritional contents of *Ficus thonningii* seed. Journal of the Turkish Chemical Society Section A: Chemistry 9, 793-800.
- Muhammad, H.S., Atiku, M.K., Zubairu, I.K., Muhammad, S.M., 2024. Nutritional and phytochemical evaluation of Kanya (*Diospyros mespiliformis*) Juice: A potential functional beverage for enhanced food security. UMYU Scientifica 3, 114-126.

- Mulenga, C., Clarke, C., Meincken, M., 2022. Bioaccumulation of Cu, Fe, Mn and Zn in native *Brachystegia longifolia* naturally growing in a copper mining environment of Mufulira, Zambia. Environmental Monitoring and Assessment 194, 8.
- Munoz, N., Posthauer, M.E., Cereda, E., Schols, J.M., Haesler, E., 2020. The role of nutrition for pressure injury prevention and healing: The 2019 international clinical practice guideline recommendations. Advances in Skin and Wound care 33, 123-136.
- Mutengwa, C.S., Mnkeni, P., Kondwakwenda, A., 2023. Climate-smart agriculture and food security in Southern Africa: A review of the vulnerability of smallholder agriculture and food security to climate change. Sustainability 15, 2882.
- Mytton, O.T., Nnoaham, K., Eyles, H., Scarborough, P., Ni Mhurchu, C., 2014. Systematic review and meta-analysis of the effect of increased vegetable and fruit consumption on body weight and energy intake. BMC Public Health 14, 1-11.
- Nembang, M., 2023. Development and quality evaluation of blended wheat flour by incorporating brewer's spent grain. Tribhuvan University.
- Nnaji, N.D., Onyeaka, H., Miri, T., Ugwa, C., 2023. Bioaccumulation for heavy metal removal: A review. SN Applied Sciences 5, 125.
- Nyambe, M.M., Hakwenye, H., Benyamen, M., 2019. Nutritional and anti-nutritional composition of *Diospyros mespiliformis* and *Hyphaene petersiana* fruits from Namibia. International Science and Technology Journal of Namibia 13, 2-11.
- Okoh, S.O., Iweriegbor, B.C., Okoh, O.O., Nwodo, U.U., I. Okoh, A., 2016. Bactericidal and antioxidant properties of essential oils from the fruits *Dennettia tripetala* G. Baker. BMC complementary and alternative medicine 16, 1-12.
- Omolola, A.O., Jideani, A.I., Kapila, P.F., 2017. Quality properties of fruits as affected by drying operation. Critical Reviews in Food Science and Nutrition 57, 95-108.

- Palmgren, M.G., Clemens, S., Williams, L.E., Krämer, U., Borg, S., Schjørring, J.K., Sanders, D., 2008. Zinc biofortification of cereals: Problems and solutions. Trends in Plant Science 13, 464-473.
- Piccardi, N., Manissier, P., 2009. Nutrition and nutritional supplementation: Impact on skin health and beauty. Dermato-Endocrinology 1, 271-274.
- Piccardi, N., Manissier, P., 2009. Nutrition and nutritional supplementation: Impact on skin health and beauty. Dermato-Endocrinology 1, 271-274.
- Polefka, T., Bianchini, R., Shapiro, S., 2012. Interaction of mineral salts with the skin: A literature survey. International journal of cosmetic science 34, 416-423.
- Posthauer, M.E., Banks, M., Dorner, B., Schols, J.M., 2015. The role of nutrition for pressure ulcer management: national pressure ulcer advisory panel, European pressure ulcer advisory panel, and pan pacific pressure injury alliance white paper. Advances in Skin and Wound Care 28, 175-188.
- Qadir, M., Schubert, S., Oster, J.D., Sposito, G., Minhas, P.S., Cheraghi, S.A., Murtaza, G., Mirzabaev, A., Saqib, M., 2018. High-magnesium waters and soils: Emerging environmental and food security constraints. Science of the Total Environment 642, 1108-1117.
- Rahman, K.R., Ramdhani, S., Sanyoto, V.G., Nawareza, Z., 2024. Smart packaging innovation for food: Enhancing shelf life and quality of perishable goods. ASEAN Journal for Science and Engineering in Materials 3, 133-140.
- Ramjan, M., Ansari, M.T., 2018. Factors affecting of fruits, vegetables and its quality.

 Journal of Medicinal Plants Studies 6, 16-18.
- Randjelovic, S.S., Kostic, D.A., Stojanovic, G.S., Mitic, S.S., Mitic, M.N., Arsic, B.B., Pavlovic, A.N., 2014. Metals content of soil, leaves and wild fruit from Serbia. Central European Journal of Chemistry 12, 1144-1151.
- Raposo, A., Zandonadi, R.P., Botelho, R.B.A., 2023. Challenging the status quo to shape food systems transformation from a nutritional and food security perspective. MDPI, 1825.
- Rehman, M.U., Khan, R., Khan, A., Qamar, W., Arafah, A., Ahmad, A., Ahmad, A., Akhter, R., Rinklebe, J., Ahmad, P., 2021. Fate of arsenic in living systems:

- Implications for sustainable and safe food chains. Journal of Hazardous Materials 417, 126050.
- Rinnerthaler, M., Streubel, M.K., Bischof, J., Richter, K., 2015. Skin aging, gene expression and calcium. Experimental gerontology 68, 59-65.
- Rokonuzzaman, M., Li, W.C., Wu, C., Ye, Z., 2022. Human health impact due to arsenic contaminated rice and vegetables consumption in naturally arsenic endemic regions. Environmental Pollution 308, 119712.
- Rowe, C., 2021. Letter of recommendation for the exemption from a phase 1 archaeological and heritage investigation for the proposed development on the remaining extent of portion 39 of the farm de rust 12ju, Hazyview city of Mbombela, Mpumalanga province.
- Rustaie, A., Keshvari, R., Samadi, N., Khalighi-Sigaroodi, F., Ardekani, M.R.S., Khanavi, M., 2016. Essential oil composition and antimicrobial activity of the oil and extracts of *Bunium persicum* (Boiss.) B. Fedtsch.: Wild and cultivated fruits. Pharmaceutical Sciences 22, 296-301.
- Saengha, W., Karirat, T., Buranrat, B., Katisart, T., Ling, N., Luang-In, V., 2022. Cytotoxicity and antiproliferative activity of essential oils from lemon, wild orange and petitgrain against MCF-7, HepG2 and HeLa cancer cells. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 50, 12713-12713.
- Sahu, A., Nayak, G., Bhuyan, S.K., Bhuyan, R., Kar, D., Kuanar, A., 2024. Antioxidant and antimicrobial activities of *Ocimum basilicum* var. *thyrsiflora* against some oral microbes. Multidisciplinary Science Journal 6, 2024026-2024026.
- Sánchez-Moreno, C., De Pascual-Teresa, S., De Ancos, B., Cano, M.P., 2006. Nutritional values of fruits, in: Hui, Y.H., Barta, J., Cano, M.P., Gusek, T.W., Sidhu, J.S, Sinha, N.K (Ed.) Handbook of fruits and fruit processing. Blackwell Publishing, USA, pp. 29-43.
- Sathyavathi, R., Janardhanan, K., 2014. Wild edible fruits used by Badagas of Nilgiri District, Western Ghats, Tamilnadu, India. Journal of Medicinal Plants Research 8, 128-132.

- Satter, M.M.A., Khan, M.M.R.L., Jabin, S.A., Abedin, N., Islam, M.F., Shaha, B., 2016.

 Nutritional quality and safety aspects of wild vegetables consume in

 Bangladesh. Asian Pacific Journal of Tropical Biomedicine 6, 125-131.
- Sawada, Y., Saito-Sasaki, N., Mashima, E., Nakamura, M., 2021. Daily lifestyle and inflammatory skin diseases. International Journal of Molecular Sciences 22, 5204.
- Seligman, H.K., Levi, R., Adebiyi, V.O., Coleman-Jensen, A., Guthrie, J.F., Frongillo, E.A., 2023. Assessing and monitoring nutrition security to promote healthy dietary intake and outcomes in the United States. Annual Review of Nutrition 43, 409-429.
- Serra, R., Ielapi, N., Barbetta, A., de Franciscis, S., 2018. Skin tears and risk factors assessment: A systematic review on evidence-based medicine. International Wound Journal 15, 38-42.
- Sharma, H., Rawal, N., Mathew, B.B., 2015. The characteristics, toxicity and effects of cadmium. International Journal of Nanotechnology and Nanoscience 3, 1-9.
- Shelembe, B.G., 2014. Phytochemical and elemental studies of two indigenous medicinal plants of South Africa, *Bridelia micrantha* and *Sideroxylon inerme*. University of KwaZulu-Natal, Durban.
- Simpson, G.B., Badenhorst, J., Jewitt, G.P., Berchner, M., Davies, E., 2019.

 Competition for land: The water-energy-food nexus and coal mining in Mpumalanga Province, South Africa. Frontiers in Environmental Science 7, 1-12.
- Sinha, D., Datta, S., Mishra, R., Agarwal, P., Kumari, T., Adeyemi, S.B., Kumar Maurya, A., Ganguly, S., Atique, U., Seal, S., 2023. Negative impacts of arsenic on plants and mitigation strategies. Plants 12, 1815.
- Spoede, E., Corkins, M.R., Spear, B.A., Becker, P.J., Bellini, S.G., Hoy, M.K., Piemonte, T.A., Rozga, M., 2021. Food insecurity and pediatric malnutrition related to under-and overweight in the United States: An evidence analysis center systematic review. Journal of the Academy of Nutrition and Dietetics 121, 952-978.

- Stadler, K.M., Elledge, J.C., 2004. Eating high fiber foods. Human Nutrition, Foods and Exercise, 348-929.
- Stotts, M.J., Moulder, C.L., 2022. More than just weight loss: Understanding the toll of malnutrition on the body. Practical Gastroenterology, 29.
- Torrens Zaragozá, F., 2015. Classification of fruits proximate and mineral content: Principal component, cluster, meta-analyses. Nereis 7, 39-50.
- Ugese, F.D., Baiyeri, P.K., Mbah, B.N., 2008. Nutritional composition of shea (*Vitellaria paradoxa*) fruit pulp across its major distribution zones in Nigeria. Fruits 63, 163-170.
- Vermani, A., Navneet, P., Chauhan, A., 2010. Physico-chemical analysis of ash of some medicinal plants growing in Uttarakhand, India. Nature and Science 8, 88-91.
- Von Braun, J., Afsana, K., Fresco, L.O., Hassan, M.H.A., 2023. Science and innovations for food systems transformation. Springer Nature.
- Wallace, T.C., Bailey, R.L., Blumberg, J.B., Burton-Freeman, B., Chen, C.O., Crowe-White, K.M., Drewnowski, A., Hooshmand, S., Johnson, E., Lewis, R., 2020. Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Critical Reviews in Food Science and Nutrition 60, 2174-2211.
- Yosipovitch, G., DeVore, A., Dawn, A., 2007. Obesity and the skin: Skin physiology and skin manifestations of obesity. Journal of the American Academy of Dermatology 56, 901-916.
- Zergui, A., Kerdoun, M.A., Boudalia, S., 2024. Trace elements in tea in Ouargla, Algeria and health risk assessment. Food Additives and Contaminants: Part B, 1-12.

Chapter 5.0: General conclusion and implications for future research

Summary

This study aimed to explore the antimicrobial, antioxidant, and nutritional properties of several wild fruit plant species from the Bushbuckridge local municipality, Mpumalanga Province of South Africa. By identifying plants with therapeutic and nutritional value, the research sought to contribute to food and nutrition security and health improvement. The study's objectives and hypothesis were addressed through an integrated approach combining antimicrobial testing, antioxidant analysis, and nutritional evaluation.

5.1 Specific objectives and findings

A comprehensive literature review was conducted to identify wild fruit species with medicinal and nutritional potential in the Mpumalanga region. The review highlighted several wild plant species, particularly *Carissa spinarum*, *Diospyros mespiliformis*, *Euclea crispa*, *Ficus thonningii*, *Strychnos madagascariensis*, and *Strychnos spinosa*, which are the most used plant species for medicinal and nutritional purposes by the local people of Mpumalanga Province. These species were selected for further investigation based on their documented traditional uses and the availability of scientific data supporting their medicinal and nutritional value.

The antimicrobial properties of the leaves of the selected wild fruit species were evaluated against *Klebsiella pneumoniae* and *Pseudomonas aeruginosa*, two bacterial pathogens associated with skin infections. The study revealed that *Diospyros mespiliformis*, *Euclea crispa*, and *Ficus thonningii*, exhibited significant antimicrobial activity, especially against *Pseudomonas aeruginosa*. Inhibition zones ranged up to 28 mm, and the minimum inhibitory concentrations (MICs) were as low as 0.781 mg/mL. These results support the hypothesis that wild fruit plant species possess medicinal properties, particularly as potential treatments for bacterial skin infections.

The antioxidant potential of the wild fruit species was assessed through DPPH and ferric-reducing power assays. The results demonstrated that *Euclea crispa* exhibited the highest antioxidant activity, comparable to ascorbic acid, followed by *Diospyros mespiliformis*. This finding reinforces the hypothesis that wild fruit plants have

medicinal properties, particularly in combating oxidative stress, which is associated with skin aging and related diseases. The high antioxidant potential of these species suggests their suitability for inclusion in therapeutic products aimed at reducing oxidative damage. Nutritional analysis was conducted on the fruits of the selected species, revealing that F. thonningii, S. spinosa, and D. mespiliformis are rich in essential minerals such as calcium, iron, magnesium, and zinc. The high moisture (82.07%) and protein (20.60%) content of F. thonningii and the protein content of S. spinosa pulp (33.62%) highlight the potential of these species to contribute to food security, particularly in regions facing nutritional deficiencies. These findings also affirm the hypothesis that wild fruits have nutritional value, supporting their role in addressing food insecurity. However, based on the findings of this study, the presence of toxic elements such as cadmium (Cd), arsenic (As), chromium (Cr), and zinc (Zn) in the fruit samples of *D. mespiliformis*, *F. thonningii*, and *S. spinosa* poses significant health risks. These elements, which exceed safe concentration levels, can accumulate in the human body upon consumption, potentially leading to serious health conditions. Furthermore, the concentrations of Cd, As, and Cr in the fruit exceeded the target carcinogenic risk threshold, indicating an elevated risk of cancer for consumers exposed to these fruits regularly.

5.3 Implications of the current findings in clinical practice and dermatology

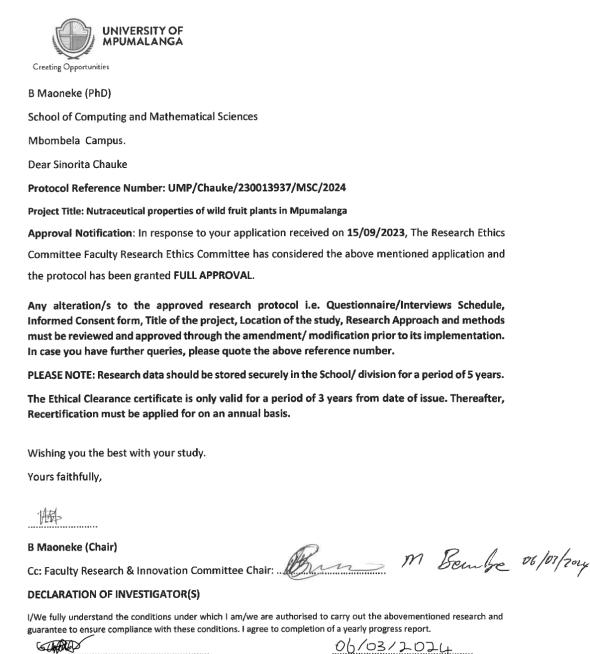
- Implications for dermatology and skin care: The antimicrobial activity of certain wild fruit species, particularly against *P. aeruginosa*, suggests that these plants could serve as a natural remedy or complementary treatment for bacterial skin infections. These findings could support their integration into dermatological treatments, particularly in areas with limited access to antibiotics or where antibiotic resistance is a growing concern. The antioxidant properties observed in *D. mespiliformis*, *E. crispa*, and the rest of the plant species may help combat oxidative stress, offering potential benefits in treating skin conditions such as premature aging, psoriasis, and eczema. The use of these plants as natural antioxidants could provide an alternative to synthetic compounds in skincare products.
- Implications for clinical nutrition and food security: The nutritional analysis showing that the fruits of these wild plants are rich in essential minerals,

highlights their potential role in combating micronutrient deficiencies, particularly in rural communities. The protein-rich pulp of *S. spinosa* and *F. thonningii* presents a valuable plant-based protein source, which could help alleviate food insecurity in underserved regions. Moreover, these fruits contain key nutrients such as calcium, iron, and zinc, which are crucial for immune function and overall health, reinforcing their potential as functional foods. However, despite these nutritional benefits, the study also identified significant health risks associated with the consumption of *D. mespiliformis*, *F. thonningii*, and *S. spinosa* due to elevated concentrations of toxic elements, particularly Cd, As, Cr. These heavy metals pose both non-carcinogenic and carcinogenic risks, which may lead to severe health complications, including organ toxicity and cancer, ultimately compromising food safety and nutrition security.

- Implications for integrative and traditional medicine: The antimicrobial and
 antioxidant properties identified in this study provide scientific validation of
 traditional practices that have long utilised these wild fruits for treating infections
 and skin diseases. These plants could be further developed into standardized
 formulations for use in both Western medicine and complementary therapies.
- Regulatory and safety considerations: The integration of these plants into clinical or nutritional practice will require careful regulatory oversight. Toxicity studies, clinical trials, and the establishment of safe usage guidelines are essential before these plants can be fully embraced in healthcare and nutrition.

5.4 Implications for future research

The findings from this study lay the groundwork for further research in the following areas:


- Isolation and characterization of bioactive compounds: Future studies should isolate the bioactive compounds responsible for the antimicrobial and antioxidant activities observed in these plants. This could lead to the development of new pharmaceutical and cosmetic products.
- Sustainable harvesting and cultivation: Research into sustainable harvesting methods and the development of cultivation practices that minimize heavy metal contamination is essential for ensuring the safe use of these plants in the future.

- Formulation of therapeutic products: There is potential for these wild plants
 to be developed into topical treatments, dietary supplements, or functional
 foods. Future research should explore the formulation and efficacy of such
 products.
- Toxicity and Safety Studies: It is essential to implement regular monitoring and risk assessment of wild fruit species in the Bushbuckridge Local Municipality and the Mpumalanga province to ensure they meet food safety standards. Additionally, phytoremediation and soil management strategies should be employed to reduce heavy metal contamination in the area. Promoting alternative safe food sources and raising awareness among local communities regarding the potential toxicity of these fruits can further enhance public health protection. Furthermore, reinforcing policy frameworks and regulatory measures will prevent exposure to hazardous elements and ensure sustainable utilisation of wild fruit plant species for food and medicinal purposes.

5.5 Concluding remarks

This study has successfully met its specific objectives, validating that wild fruit species from the Mpumalanga Province possess both medicinal and nutritional properties. The antimicrobial activity of the leaves against P. aeruginosa and the high antioxidant potential of *E. crispa* further emphasize their potential for therapeutic applications in treating skin infections and related conditions. Moreover, the nutritional value of these species suggests they can contribute to food security by providing essential minerals and proteins, which are particularly important in areas with limited access to diverse food sources. However, the presence of toxic metals like arsenic, cadmium, and chromium in some species, particularly in the fruits, poses a significant concern regarding their safety for consumption. Future research should focus on developing methods to mitigate these risks, such as identifying and cultivating plants in less contaminated environments, or refining extraction and processing methods that reduce heavy metal uptake. In conclusion, the research highlights the potential of wild fruit species in addressing both health and food security challenges. Through continued exploration and responsible development, these plants could serve as valuable resources in the fields of medicine, nutrition, and sustainable agriculture.

Appendix A: Ethical approval

PLEASE QUOTE THE PROTOCOL NUMBER ON ALL ENQUIRIES

Signature

Date

Appendix B: Plant collection permit

MPUMALANGA TOURISM & PARKS AGENTY & PARKS AGENTY

P/BAG X11338 NELSPRUIT 1200 TEL: 013 759 5300 / 1

CONSERVATION SERVICES

MPB. 1465

PERMIT

(Issued in terms of the provisions of the Nature Conservation act 10 of 1998) of the Area (Issued Interns of the Provisions of the Nature Conservation act 10 of 1998) of the Nature Conservation act 10 of 1998)

Name and residential Address of permit holder: S. Chauke Cnr R40 and D725, Nelspruit Private Bag x 11283

Nelspruit 1200

University of Mpumalanga NELSPRUIT

PARTICULARS OF PLANTS WHICH MAY BE COLLECTED

Number	Species
	Leaf & Fruit Samples
	Climbing num-num- Carissa spinarum L.
	Jackal berry- Euclea crispa (Thunb.) Gürke
	Blue guarri- Diospyros mespiliformis Hochst, ex, A.DC.
	Xirhomberhome- Ficus thonningii Blume
	Black monkey orange- Strychnos madagascariensis Poir
	Green monkey orange- Strychnos spinosa Lam.

PLACE:

MPUMALANGA

Name and address of institution or department:

- No Specially Protected (Encephalartos spp, Mpumalanga Conservation Act) plants may be collected
- No herbarium specimen of Critically Endangered (SANBI Red List) plants may be collected
- Only species and quantities indicated on the original project application form may be
- Collecting on private land without written permission is a contravention of the permit conditions and shall render the permit invalid
- May only collect on public open areas (NOT on unfenced private and tribal land)
- MTPA must be supplied with a list of all locality information.
- Copies of scientific reports, thesis and/or scientific articles generated from the project must be sent to the MTPA Botanist at: Willem.vanstaden@mtpa.co.za

In terms of and subject to the provisions of the Nature Conservation Act (Act No. 10 Of 1998) and the regulations framed thereunder , the above-mentioned person is hereby authorised, subject to the conditions and requirements appearing on this permit, to collect and convey protected plants referred to above during the period of validity of this permit on behalf of the institution or department referred to above

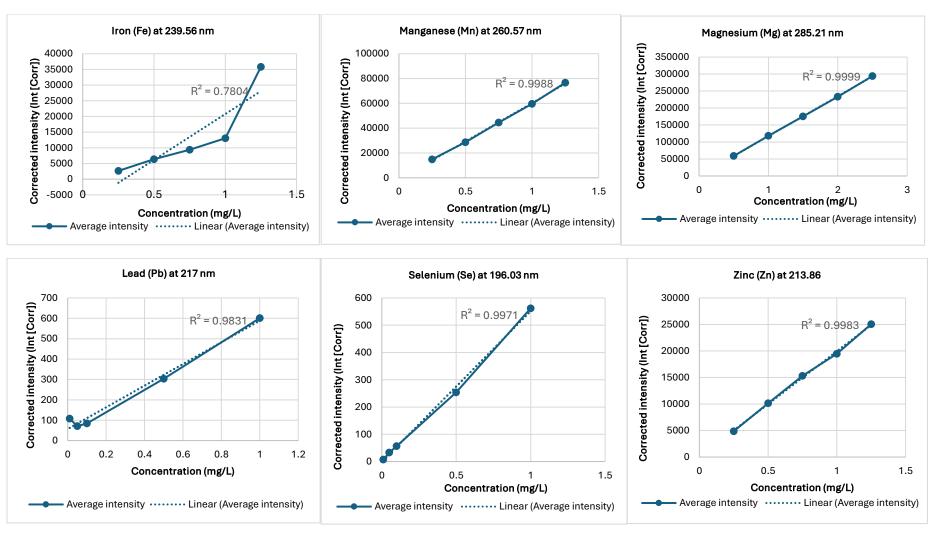
Period of validity of permit: From date of issue to:

31 January 2025

for CHIEF EXECUTIVE OFFICER

Signature of permit holder

MPUMALANGA


Appendix C: Turnitin report

Nutraceutical properties of wild fruit plants in Mpumalanga

ORIGINA	ALITY REPORT			· ·	
1 SIMILA	% ARITY INDEX	7% INTERNET SOURCES	9% PUBLICATIONS	% STUDENT F	PAPERS
PRIMAR	Y SOURCES				
1	hdl.hand				1%
2	ebin.pub				<1%
3	repositor	ry.up.ac.za			<1%
4	roderic.U				<1%
5	Orca.card				<1%
6	Security	Bvenura, Learr and Nutrition - nts", CRC Press	Utilizing Unde		<1%
7		Arsenic Hazard' Media LLC, 20		ence and	<1%
8		s: Chemistry ar Science and Bu			<1%

Appendix D: Supplementary data Arsenic (As) at 228.81 nm Cadmium (Cd) at 228.80 nm Calcium (Ca) at 315.89 nm 12000 15000 Corrected intensity (int [Corr]) 0000 0000 0000 (40000 Corrected intensity (Int [Corr]) $R^2 = 0.9981$ $R^2 = 0.9996$ Corrected intensity (int [Corr]) 30000 10000 0 10000 $R^2 = 0.997$ 5000 0.5 1.5 2 3 -5000 0.5 1.5 Concentration (mg/L) Concentration (mg/L) Concentration (mg/L) Average intensity Linear (Average intensity) Average intensity Linear (Average intensity) Average intensity Linear (Average intensity) Cobalt (Co) at 228.62 nm Chromium (Cr) at 205.56 nm Copper (Cu) at 224.70 10000 10000 8000 Corrected intensity (Int [Corr]) intensity (Int [Corr]) $R^2 = 0.9994$ 7000 Corrected intensity (Int [Corr]) 8000 $R^2 = 0.9989$ 8000 $R^2 = 0.9991$ 6000 6000 5000 6000 4000 4000 4000 3000 2000 Corrected 2000 2000 1000 0 0.2 0.4 0.6 8.0 1.2 0.5 1.5 0 0.5 1 1.5 Concentration (mg/L) Concentration (mg/L) Concentration (mg/mL) Average intensity Linear (Average intensity) Average intensity Linear (Average intensity) Average intensity Linear (Average intensity)

Figure D. 1 Calibration curves for arsenic (As) at 228.81 nm, Cadmium (Cd) at 228.80 nm, Calcium (Ca) at 315.89 nm, Copper (Cu) at 228.62 nm, Cobalt (Co) at 228.62 nm, and Chromium (Cr) at 205.56 nm, demonstrating the relationship between concentration (mg/L) and corrected intensity. The R² values, representing the goodness of fit and reliability of the calibration curves, were ≥ 0.99 for all elements.

Figure D. 2 Calibration curves for Iron (Fe) at 239.56 nm, Manganese (Mn) at 260.57 nm, Magnesium (Mg) at 285.21 nm, Lead (Pb) at 217 nm, Selenium (Se) at 196.03 nm, and Zinc (Zn) at 213.86 nm, demonstrating the relationship between concentration (mg/L) and corrected intensity. The R² values, representing the goodness of fit and reliability of the calibration curves, were ≥ 0.99 for all elements except Iron.

Table D. 1 Correlation coefficients (*r*) and significance (*p*) levels between elemental composition, proximate components of *Ficus thonningii* fruit and respective soil samples from the collection site.

														Correl	ations															
		AsF	AsS	CaS	CaF	CdF	CdS	CoF	CoS	CrF	CrS	CuF	CuS	FeF	FeS	MgF	MgS	MnF	MnS	SeF	SeS	ZnF	ZnS		Protein	Moisture	CrudeFat	Fibre Car	rbohydrate E	Energy val
	Pearson	1	1,000	-0.327	-0.980	0.619	-0.500	b	-0.982	0.500	-0.995	-0.933	-0.945	-0.939	-0.927	-0.449	-0.091	0.778	0.655	-0.778	0.655	-0.029	0.189	-0.327	-0.156	-1,000	0.277	-0.345	-0.327	0.
	Sig. (2-tailed)		0.000	0.788	0.129	0.575	0.667		0.121	0.667	0.061	0.234	0.212	0.224	0.245	0.703	0.942	0.433	0.546	0.433	0.546	0.981	0.879	0.788	0.901		0.821	0.776	0.788	0.
	Pearson	1,000"	1	-0.327	-0.980	0.619	-0.500	. ь	-0.982	0.500	-0.995	-0.933	-0.945	-0.939	-0.927	-0.449	-0.091	0.778	0.655	-0.778	0.655	-0.029	0.189	-0.327	-0.156	-1,000"	0.277	-0.345	-0.327	0
	Sig. (2-tailed)	0.000		0.788	0.129	0.575	0.667		0.121	0.667	0.061	0.234	0.212	0.224	0.245	0.703	0.942	0.433	0.546	0.433	0.546	0.981	0.879	0.788	0.901		0.821	0.776	0.788	0
	Pearson	-0.327	-0.327	1	0.511	0.540	-0.655		0.143	-0.982	0.416	-0.034	0.000	0.633	0.658	-0.697	-0.911	-0.849	-0.929	-0.339	-0.929	-0.935	-0.990	1,000	0.984	1,000	-,999	-0.774	-0.786	-1,0
	Sig. (2-tailed)	0.788	0.788		0.659	0.637	0.546		0.909	0.121	0.727	0.978	1.000	0.564	0.543	0.509	0.270	0.355	0.242	0.780	0.242	0.231	0.091	0.000	0.113		0.033	0.436	0.425	0
	Pearson	-0.980	-0.980	0.511	1	-0.448	0.315	."	0.924	-0.664	0.994	0.842	0.860	0.989	0.984	0.260	-0.112	-0.888	-0.793	0.635	-0.793	-0.172	-0.383	0.511	0.351	1,000	-0.465	0.149	0.130	-0
	Sig. (2-tailed)	0.129	0.129	0.659		0.704	0.796		0.250	0.538	0.068	0.363	0.341	0.095	0.115	0.832	0.929	0.304	0.417	0.562	0.417	0.890	0.750	0.659	0.772		0.692	0.905	0.917	0
	Pearson	0.619	0.619	0.540	-0.448	1	-0.990	."	-0.756	-0.371	-0.540	-0.860	-0.842	-0.310	-0.279	-0.980	-0.839	-0.013	-0.189	-0.975	-0.189	-0.804	-0.655	0.540	0.680	-1,000"	-0.583	-0.951	-0.945	-0
	Sig. (2-tailed)	0.575	0.575	0.637	0.704		0.091	b	0.454	0.758	0.636	0.342	0.363	0.800	0.820	0.128	0.367	0.992	0.879	0.143	0.879	0.406	0.546	0.637	0.524		0.604	0.200	0.212	0
	Pearson	-0.500	-0.500	-0.655	0.315	-0.990	1	."	0.655	0.500	0.415	0.778	0.756	0.171	0.139	,998	0.908	0.156	0.327	0.933	0.327	0.880	0.756	-0.655	-0.778	1,000"	0.693	0.985	0.982	0
	Sig. (2-tailed)	0.667	0.667	0.546 b	0.796 b	0.091 b	ь	ь	0.546	0.667	0.728	0.433	0.454	0.891	0.911	0.037	0.275	0.901	0.788 b	0.234	0.788	0.315	0.454	0.546	0.433	ь	0.512	0.109 b	0.121 b	
	Pearson		."					."	."	."		."	."			."			."	."	- "	."	."	٠	٠.				."	
	Sig. (2-tailed)	0.000	0.000	0.440	0.004	0.750	0.055			0.007	0.050	0.004	0.000	0.057	0.040	0.040	0.033	0.045	0.500	0.000	0.500	0.040	0.000	0.440	0.004		0.004	0.540	0.500	
	Pearson	-0.982	-0.982	0.143	0.924	-0.756	0.655	."	1	-0.327	0.959	0.984	0.990	0.857	0.840	0.610	0.277	-0.645	-0.500	0.882	-0.500	0.218	0.000	0.143	-0.034	1,000	-0.091	0.516	0.500	-0
	Sig. (2-tailed)	0.121	0.121	0.909	0.250	0.454	0.546		0.007	0.788	0.182	0.113	0.091	0.345	0.366	0.582	0.821	0.554	0.667	0.312	0.667	0.860	1.000	0.909	0.0.0		0.942	0.655	0.667	0
	Pearson	0.500	0.500	-0.982	-0.664	-0.371	0.500	."	-0.327	1	-0.581	-0.156	-0.189	-0.768	-0.788	0.549	0.817	0.933	0.982	0.156	0.982	0.851	0.945	-0.982	-0.933	-1,000	0.971	0.640	0.655	
	Sig. (2-tailed)	0.667	0.667	0.121	0.538	0.758	0.667		0.788		0.606	0.901	0.879	0.443	0.422	0.630	0.391	0.234	0.121	0.901	0.121	0.352	0.212	0.121	0.234		0.154	0.557	0.546	(
	Pearson	-0.995	-0.995	0.416	0.994	-0.540	0.415	."	0.959	-0.581	1	0.895	0.909	0.967	0.959	0.362	-0.005	-0.834	-0.724	0.714	-0.724	-0.067	-0.282	0.416	0.249	1,000	-0.368	0.253	0.235	-1
	Sig. (2-tailed)	0.061	0.061	0.727	0.068	0.636	0.728		0.182	0.606		0.295	0.273	0.163	0.183	0.764	0.997	0.372	0.485	0.494	0.485	0.958	0.818	0.727	0.840		0.760	0.837	0.849	(
	Pearson	-0.933	-0.933	-0.034	0.842	-0.860	0.778	."	0.984	-0.156	0.895	1	,999	0.752	0.731	0.740	0.442	-0.500	-0.339	0.952	-0.339	0.386	0.176	-0.034	-0.210	1,000	0.086	0.659	0.645	(
	Sig. (2-tailed)	0.234	0.234	0.978	0.363	0.342	0.433		0.113	0.901	0.295		0.022	0.458	0.478	0.469	0.708	0.667	0.780	0.199	0.780	0.747	0.887	0.978	0.866		0.945	0.542	0.554	(
	Pearson	-0.945	-0.945	0.000	0.860	-0.842	0.756		0.990	-0.189	0.909	,999	1	0.774	0.753	0.717	0.412	-0.529	-0.371	0.941	-0.371	0.355	0.143	0.000	-0.176	1,000	0.052	0.633	0.619	0
	Sig. (2-tailed)	0.212	0.212	1.000	0.341	0.363	0.454		0.091	0.879	0.273	0.022		0.436	0.457	0.491	0.730	0.645	0.758	0.220	0.758	0.769	0.909	1.000	0.887		0.967	0.564	0.575	0
	Pearson	-0.939	-0.939	0.633	0.989	-0.310	0.171	. ь	0.857	-0.768	0.967	0.752	0.774	1	,999	0.114	-0.258	-0.947	-0.875	0.513	-0.875	-0.317	-0.516	0.633	0.487	1,000"	-0.592	0.000	-0.019	-0
	Sig. (2-tailed)	0.224	0.224	0.564	0.095	0.800	0.891		0.345	0.443	0.163	0.458	0.436		0.020	0.928	0.834	0.209	0.321	0.657	0.321	0.795	0.655	0.564	0.676		0.597	1.000	0.988	0
	Pearson	-0.927	-0.927	0.658	0.984	-0.279	0.139	, b	0.840	-0.788	0.959	0.731	0.753	,999	1	0.082	-0.289	-0.957	-0.890	0.486	-0.890	-0.347	-0.543	0.658	0.514	1,000	-0.617	-0.032	-0.051	-(
	Sig. (2-tailed)	0.245	0.245	0.543	0.115	0.820	0.911		0.366	0.422	0.183	0.478	0.457	0.020		0.948	0.813	0.188	0.301	0.677	0.301	0.774	0.634	0.543	0.656		0.577	0.980	0.968	0
	Pearson	-0.449	-0.449	-0.697	0.260	-0.980	,998	, b	0.610	0.549	0.362	0.740	0.717	0.114	0.082	1	0.931	0.212	0.381	0.911	0.381	0.906	0.792	-0.697	-0.813	1,000	0.734	0.994	0.991	0
	Sig. (2-tailed)	0.703	0.703	0.509	0.832	0.128	0.037		0.582	0.630	0.764	0.469	0.491	0.928	0.948		0.239	0.864	0.751	0.271	0.751	0.278	0.418	0.509	0.396		0.476	0.072	0.084	C
	Pearson	-0.091	-0.091	-0.911	-0.112	-0.839	0.908	, b	0.277	0.817	-0.005	0.442	0.412	-0.258	-0.289	0.931	1	0.555	0.693	0.697	0.693	,998	0.961	-0.911	-0.970	1,000	0.932	0.966	0.971	0
	Sig. (2-tailed)	0.942	0.942	0.270	0.929	0.367	0.275		0.821	0.391	0.997	0.708	0.730	0.834	0.813	0.239		0.625	0.512	0.509	0.512	0.039	0.179	0.270	0.157		0.237	0.166	0.154	0
	Pearson	0.778	0.778	-0.849	-0.888	-0.013	0.156	. в	-0.645	0.933	-0.834	-0.500	-0.529	-0.947	-0.957	0.212	0.555	1	0.984	-0.210	0.984	0.606	0.764	-0.849	-0.742	-1,000	0.820	0.322	0.339	0
	Sig. (2-tailed)	0.433	0.433	0.355	0.304	0.992	0.901		0.554	0.234	0.372	0.667	0.645	0.209	0.188	0.864	0.625		0.113	0.866	0.113	0.586	0.446	0.355	0.468		0.388	0.791	0.780	C
	Pearson	0.655	0.655	-0.929	-0.793	-0.189	0.327	, b	-0.500	0.982	-0.724	-0.339	-0.371	-0.875	-0.890	0.381	0.693	0.984	1	-0.034	1,000	0.736	0.866	-0.929	-0.849	-1,000	0.908	0.484	0.500	C
	Sig. (2-tailed)	0.546	0.546	0.242	0.417	0.879	0.788		0.667	0.121	0.485	0.780	0.758	0.321	0.301	0.751	0.512	0.113		0.978	0.000	0.473	0.333	0.242	0.355		0.275	0.679	0.667	0
	Pearson	-0.778	-0.778	-0.339	0.635	-0.975	0.933	. в	0.882	0.156	0.714	0.952	0.941	0.513	0.486	0.911	0.697	-0.210	-0.034	1	-0.034	0.651	0.470	-0.339	-0.500	1,000	0.388	0.858	0.849	0
	Sig. (2-tailed)	0.433	0.433	0.780	0.562	0.143	0.234		0.312	0.901	0.494	0.199	0.220	0.657	0.677	0.271	0.509	0.866	0.978		0.978	0.549	0.688	0.780	0.667		0.746	0.343	0.355	0
	Pearson	0.655	0.655	-0.929	-0.793	-0.189	0.327	, b	-0.500	0.982	-0.724	-0.339	-0.371	-0.875	-0.890	0.381	0.693	0.984	1,000	-0.034	1	0.736	0.866	-0.929	-0.849	-1,000"	0.908	0.484	0.500	0
	Sig. (2-tailed)	0.546	0.546	0.242	0.417	0.879	0.788		0.667	0.121	0.485	0.780	0.758	0.321	0.301	0.751	0.512	0.113	0.000	0.978		0.473	0.333	0.242	0.355		0.275	0.679	0.667	0
	Pearson	-0.029	-0.029	-0.935	-0.172	-0.804	0.880	, b	0.218	0.851	-0.067	0.386	0.355	-0.317	-0.347	0.906	,998	0.606	0.736	0.651	0.736	1	0.976	-0.935	-0.983	1,000	0.952	0.948	0.954	0
	Sig. (2-tailed)	0.981	0.981	0.231	0.890	0.406	0.315		0.860	0.352	0.958	0.747	0.769	0.795	0.774	0.278	0.039	0.586	0.473	0.549	0.473		0.140	0.231	0.118		0.198	0.205	0.194	0
	Pearson	0.189	0.189	-0.990	-0.383	-0.655	0.756	. в	0.000	0.945	-0.282	0.176	0.143	-0.516	-0.543	0.792	0.961	0.764	0.866	0.470	0.866	0.976	1	-0.990	-,999	-1,000"	0.996	0.857	0.866	0
	Sig. (2-tailed)	0.879	0.879	0.091	0.750	0.546	0.454		1.000	0.212	0.818	0.887	0.909	0.655	0.634	0.418	0.179	0.446	0.333	0.688	0.333	0.140		0.091	0.022		0.058	0.345	0.333	0
	Pearson	-0.327	-0.327	1,000	0.511	0.540	-0.655	, b	0.143	-0.982	0.416	-0.034	0.000	0.633	0.658	-0.697	-0.911	-0.849	-0.929	-0.339	-0.929	-0.935	-0.990	- 1	0.984	1,000	-,999°	-0.774	-0.786	-1,
	Sig. (2-tailed)	0.788	0.788	0.000	0.659	0.637	0.546		0.909	0.121	0.727	0.978	1.000	0.564	0.543	0.509	0.270	0.355	0.242	0.780	0.242	0.231	0.091		0.113		0.033	0.436	0.425	0
	Pearson	-0.156	-0.156	0.984	0.351	0.680	-0.778	, b	-0.034	-0.933	0.249	-0.210	-0.176	0.487	0.514	-0.813	-0.970	-0.742	-0.849	-0.500	-0.849	-0.983	-,999°	0.984	1	1,000"	-0.992	-0.874	-0.882	-0
	Sig. (2-tailed)	0.901	0.901	0.113	0.772	0.524	0.433		0.978	0.234	0.840	0.866	0.887	0.676	0.656	0.396	0.157	0.468	0.355	0.667	0.355	0.118	0.022	0.113			0.079	0.324	0.312	0
ire	Pearson	-1,000	-1,000	1,000	1,000	-1,000"	1,000	, b	1,000	-1,000	1,000	1,000	1,000"	1,000"	1,000"	1,000	1,000	-1,000	-1,000	1,000	-1,000	1,000	-1,000	1,000	1,000	1	-1,000"	1,000"	1,000	-1,0
	Sig. (2-tailed)																													
at	Pearson	0.277	0.277	-,999	-0.465	-0.583	0.693	, b	-0.091	0.971	-0.368	0.086	0.052	-0.592	-0.617	0.734	0.932	0.820	0.908	0.388	0.908	0.952	0.996	-,999	-0.992	-1,000"	1	0.806	0.817	1.
	Sig. (2-tailed)	0.821	0.821	0.033	0.692	0.604	0.512		0.942	0.154	0.760	0.945	0.967	0.597	0.577	0.476	0.237	0.388	0.275	0.746	0.275	0.198	0.058	0.033	0.079			0.403	0.391	0
	Pearson	-0.345	-0.345	-0.774	0.149	-0.951	0.985	ь	0.516	0.640	0.253	0.659	0.633	0.000	-0.032	0.994	0.966	0.322	0.484	0.858	0.484	0.948	0.857	-0.774	-0.874	1,000	0.806	1	1,000	C
	Sig. (2-tailed)	0.776	0.776	0.436	0.905	0.200	0.109		0.655	0.557	0.837	0.542	0.564	1.000	0.980	0.072	0.166	0.791	0.679	0.343	0.679	0.205	0.345	0.436	0.324	,	0.403		0.012	(
drate	Pearson	-0.327	-0.327	-0.786	0.130	-0.945	0.982	ь	0.500	0.655	0.235	0.645	0.619	-0.019	-0.051	0.991	0.971	0.339	0.500	0.849	0.500	0.954	0.866	-0.786	-0.882	1,000	0.817	1.000	1	-
	Sig. (2-tailed)	0.788	0.788	0.425	0.917	0.212	0.121	-	0.667	0.546	0.849	0.554	0.575	0.988	0.968	0.084	0.154	0.780	0.667	0.355	0.667	0.194	0.333	0.425	0.312	.,	0.391	0.012		-
value	Pearson	0.303	0.303	-1 000°	-0.488	-0.562	0.674	ь	-0.117	0.977	-0.393	0.060	0.026	-0.613	-0.638	0.715	0.922	0.835	0.919	0.364	0.919	0.944	0.993	-1.000	-0.989	-1.000	1.000	0.790	0.801	
	Sig. (2-tailed)	0.804	0.804	0.016	0.675	0.620	0.529	-	0.925	0.137	0.743	0.962	0.984	0.580	0.560	0.492	0.254	0.371	0.259	0.763	0.259	0.215	0.075	0.016	0.096	.,000	0.017	0.420	0.408	
olation is	significant at the 0.01															=												- 1		

Table D. 2 Correlation coefficients (*r*) and significance (*p*) levels between elemental composition and proximate components of *Strychnos spinosa* fruit and respective soil samples from the collection site.

													Correlatio	ns														
		CaS	CaF	CdF	CdS	CoF	CoS	CrF	CrS	CuF	CuS	FeF	FeS	MgF	MgS	MnF	MnS	SeF	SeS	ZnF	ZnS	Ash	Protein	Moisture	CrudeFat	Fibre	Carbohydrate	Energy valu
aS	Pearson Correlation	1	-0.982	-1.000	0.500	0.500	0.189	-0.327	0.082	0.826	-0.886	0.887	0.835	-0.850	0.666	0.664	-0.861	-0.982	1.000	0.877	1.000	0.918	0.619	-0.787	0.756	1.000	0.89	6 -0
	Sig. (2-tailed)		0.121	0.000	0.667	0.667	0.879	0.788	0.948	0.381	0.306	0.305	0.371	0.353	0.536	0.538	0.339	0.121	0.000	0.320	0.000	0.260	0.575	0.423	0.454	0.000	0.29	3 0
CaF	Pearson Correlation	-0.982	1	0.982	-0.655	-0.327	0.000	0.143	-0.269	-0.918	0.958	-0.784	-0.924	0.735	-0.513	-0.793	0.750	1.000	-0.982	-0.770	-0.982	-0.976	-0.459	0.656	-0.866	-0.982	-0.96	4 0
	Sig. (2-tailed)	0.121		0.121	0.546	0.788	1.000	0.909	0.827	0.260	0.185	0.426	0.250	0.474	0.657	0.417	0.460	0.000	0.121	0.441	0.121	0.139	0.696	0.544	0.333	0.121	0.17	2 0
dF	Pearson Correlation	-1.000"	0.982	1	-0.500	-0.500	-0.189	0.327	-0.082	-0.826	0.886	-0.887	-0.835	0.850	-0.666	-0.664	0.861	0.982	-1.000"	-0.877	-1.000"	-0.918	-0.619	0.787	-0.756	-1.000"	-0.89	6 0.
	Sig. (2-tailed)	0.000	0.121		0.667	0.667	0.879	0.788	0.948	0.381	0.306	0.305	0.371	0.353	0.536	0.538	0.339	0.121	0.000	0.320	0.000	0.260	0.575	0.423	0.454	0.000	0.29	3 0.
dS	Pearson Correlation	0.500	-0.655	-0.500	1	-0.500	-0.756	0.655	0.904	0.901	-0.844	0.044	0.894	0.031	-0.313	0.980	0.009	-0.655	0.500	0.021	0.500	0.803	-0.371	0.141	0.945	0.500	0.83	
	Sig. (2-tailed)	0.667	0.546	0.667		0.667	0.454	0.546	0.281	0.285	0.360	0.972	0.295	0.980	0.797	0.129	0.994	0.546	0.667	0.986	0.667	0.407	0.758	0.910	0.212	0.667	0.37	
CoF.	Pearson Correlation	0.500	-0.327	-0.500	-0.500	1	0.945	-0.982	-0.822	-0.075	-0.042	0.843	-0.060	-0.881	0.979	-0.316	-0.871	-0.327	0.500	0.855	0.500	0.115	0.990	-0.928	-0.189	0.500	0.06	4 0.
	Sig. (2-tailed)	0.667	0.788	0.667	0.667		0.212	0.121	0.386	0.952	0.973	0.362	0.962	0.313	0.130	0.795	0.327	0.788	0.667	0.347	0.667	0.927	0.091	0.244	0.879	0.667	0.95	
coS	Pearson Correlation	0.189	0.000	-0.189	-0.756	0.945	1	-0.990	-0.963	-0.397	0.287	0.620	-0.383	-0.678	0.859	-0.609	-0.662	0.000	0.189	0.638	0.189	-0.217	0.888	-0.754	-0.500	0.189	-0.26	
,,,,	Sig. (2-tailed)	0.879	1.000	0.879	0.454	0.212		0.091	0.173	0.740	0.815	0.574	0.750	0.526	0.343	0.583	0.540	1.000	0.879	0.559	0.879	0.861	0.304	0.456		0.879		
`rE	Pearson Correlation	-0.327	0.143	0.327	0.655	-0.982	-0.990	0.031	0.915	0.262	-0.147	-0.726	0.730	0.776	-0.923	0.490	0.762	0.143	-0.327	-0.742	-0.327	0.075	-0.945	0.840	0.371	-0.327	0.12	
AIT.	Sig. (2-tailed)	0.327	0.143	0.327	0.535	0.121	0.091	- '	0.265	0.262	0.906	0.726	0.247	0.434	0.251	0.490	0.762	0.143	0.327	0.742	0.327	0.075	0.212	0.365	0.771	0.788	0.12	
rs	Pearson Correlation	0.082	-0.269	-0.082	0.904	-0.822	-0.963	0.915	0.203	0.630	-0.534	-0.387	0.617	0.455	-0.689	0.800	0.435	-0.269	0.788	-0.408	0.788	0.932	-0.732	0.550	0.738	0.766	0.52	
10	Sig. (2-tailed)	0.082	0.827	0.948	0.904	0.386	0.173	0.915	- '	0.566	0.641	0.747	0.576	0.433	0.516	0.410	0.433	0.827	0.082	0.733	0.062	0.471	0.477	0.629	0.493	0.002		
inF	Sig. (2-tailed) Pearson Correlation	0.948	-0.918	-0.826	0.281	-0.075	-0.397		0.630	0.000	-0.993	0.747		-0.405	0.129	0.410	-0.425	-0.918	0.826	0.733	0.948	0.687	0.477	-0.303	0.493	0.826	0.65	
ur								0.262		1			1.000"															
	Sig. (2-tailed)	0.381	0.260	0.381	0.285	0.952	0.740	0.831	0.566		0.075	0.686	0.010	0.735	0.917	0.157	0.720	0.260	0.381	0.701	0.381	0.121	0.957	0.804	0.073	0.381	0.08	
CuS	Pearson Correlation	-0.886	0.958	0.886	-0.844	-0.042	0.287	-0.147	-0.534	-0.993	1	-0.573	-0.995	0.509	-0.245	-0.935	0.528	0.958	-0.886	-0.554	-0.886	997	-0.185	0.412	-0.973	-0.886	-1.000	
	Sig. (2-tailed)	0.306	0.185	0.306	0.360	0.973	0.815	0.906	0.641	0.075		0.612	0.065	0.660	0.843	0.232	0.646	0.185	0.306	0.626	0.306	0.046	0.882	0.730	0.148	0.306	0.01	4 0.
eF	Pearson Correlation	0.887	-0.784	-0.887	0.044	0.843	0.620	-0.726	-0.387	0.473	-0.573	1	0.487	997	0.935	0.244	999	-0.784	0.887	1.000	0.887	0.631	0.911	-0.983	0.369	0.887	0.59	1 -0.
	Sig. (2-tailed)	0.305	0.426	0.305	0.972	0.362	0.574	0.483	0.747	0.686	0.612		0.676	0.048	0.231	0.843	0.034	0.426	0.305	0.015	0.305	0.565	0.270	0.118	0.759	0.305	0.59	8 0.
eS	Pearson Correlation	0.835	-0.924	-0.835	0.894	-0.060	-0.383	0.247	0.617	1.000	-0.995	0.487	1	-0.419	0.145	0.966	-0.439	-0.924	0.835	0.466	0.835	0.985	0.084	-0.317	0.992	0.835	0.99	2 -0.
	Sig. (2-tailed)	0.371	0.250	0.371	0.295	0.962	0.750	0.841	0.576	0.010	0.065	0.676		0.725	0.908	0.167	0.710	0.250	0.371	0.691	0.371	0.111	0.947	0.794	0.083	0.371	0.07	9 0.
/lgF	Pearson Correlation	-0.850	0.735	0.850	0.031	-0.881	-0.678	0.776	0.455	-0.405	0.509	- 997	-0.419	1	-0.959	-0.170	1.000	0.735	-0.850	999	-0.850	-0.570	-0.940	0.994	-0.297	-0.850	-0.52	8 0.
J	Sig. (2-tailed)	0.353	0.474	0.353	0.980	0.313	0.526	0.434	0.699	0.735	0.660	0.048	0.725		0,183	0.891	0.014	0.474	0.353	0.034	0.353	0.614	0.222	0.070	0.808	0.353	0.64	6 0.
Mas	Pearson Correlation	0.666	-0.513	-0.666	-0.313	0.979	0.859	-0.923	-0.689	0.129	-0.245	0.935	0.145	-0.959	1	-0.116	-0.952	-0.513	0.666	0.943	0.666	0.314	ggg.	-0.984	0.015	0.666	0.26	
go	Sig. (2-tailed)	0.536	0.657	0.536	0.797	0.130	0.343	0.251	0.516	0.917	0.843	0.231	0.148	0.183		0.926	0.197	0.657	0.536	0.216	0.536	0.796	0.039	0.113	0.991	0.536	0.82	
InE	Pearson Correlation	0.664	-0.793	-0.664	0.980	-0.316	-0.609	0.490	0.800	0.970	-0.935	0.244	0.966	-0.170	-0.116	0.020	-0.192	-0.793	0.664	0.222	0.664	0.906	-0.177	-0.061	0.991	0.664	0.92	
	Sig. (2-tailed)	0.538	0.733	0.538	0.129	0.795	0.583	0.430	0.410	0.157		0.843	0.300	0.891	0.926	- '	0.877	0.417	0.538	0.858	0.538	0.278	0.887	0.961	0.084	0.538	0.32	
											0.232					0.100	0.877											• •
MnS	Pearson Correlation	-0.861	0.750	0.861	0.009	-0.871	-0.662	0.762	0.435	-0.425	0.528	999	-0.439	1.000	-0.952	-0.192	1	0.750	-0.861	-1.000	-0.861	-0.589	-0.932	0.991	-0.319	-0.861	-0.54	
	Sig. (2-tailed)	0.339	0.460	0.339	0.994	0.327	0.540	0.449	0.713	0.720	0.646	0.034	0.710	0.014	0.197	0.877		0.460	0.339	0.019	0.339	0.599	0.236	0.084	0.794	0.339		
SeF	Pearson Correlation	-0.982	1.000"	0.982	-0.655	-0.327	0.000	0.143	-0.269	-0.918	0.958	-0.784	-0.924	0.735	-0.513	-0.793	0.750	1	-0.982	-0.770	-0.982	-0.976	-0.459	0.656	-0.866	-0.982	-0.96	•
	Sig. (2-tailed)	0.121	0.000	0.121	0.546	0.788	1.000	0.909	0.827	0.260	0.185	0.426	0.250	0.474	0.657	0.417	0.460		0.121	0.441	0.121	0.139	0.696	0.544	0.333	0.121	0.17	
SeS	Pearson Correlation	1.000"	-0.982	-1.000	0.500	0.500	0.189	-0.327	0.082	0.826	-0.886	0.887	0.835	-0.850	0.666	0.664	-0.861	-0.982	1	0.877	1.000"	0.918	0.619	-0.787	0.756	1.000	0.89	6 -0.
	Sig. (2-tailed)	0.000	0.121	0.000	0.667	0.667	0.879	0.788	0.948	0.381	0.306	0.305	0.371	0.353	0.536	0.538	0.339	0.121		0.320	0.000	0.260	0.575	0.423	0.454	0.000	0.29	3 0.
'nF	Pearson Correlation	0.877	-0.770	-0.877	0.021	0.855	0.638	-0.742	-0.408	0.453	-0.554	1.000	0.466	999	0.943	0.222	-1.000°	-0.770	0.877	1	0.877	0.613	0.920	-0.987	0.347	0.877	0.57	2 -0.
	Sig. (2-tailed)	0.320	0.441	0.320	0.986	0.347	0.559	0.468	0.733	0.701	0.626	0.015	0.691	0.034	0.216	0.858	0.019	0.441	0.320		0.320	0.580	0.256	0.103	0.774	0.320	0.61	2 0.
'nS	Pearson Correlation	1.000"	-0.982	-1.000	0.500	0.500	0.189	-0.327	0.082	0.826	-0.886	0.887	0.835	-0.850	0.666	0.664	-0.861	-0.982	1.000"	0.877	1	0.918	0.619	-0.787	0.756	1.000	0.89	6 -0.
	Sig. (2-tailed)	0.000	0.121	0.000	0.667	0.667	0.879	0.788	0.948	0.381	0.306	0.305	0.371	0.353	0.536	0.538	0.339	0.121	0.000	0.320		0.260	0.575	0.423	0.454	0.000	0.29	3 0.
Ash	Pearson Correlation	0.918	-0.976	-0.918	0.803	0.115	-0.217	0.075	0.471	0.982	997	0.631	0.985	-0.570	0.314	0.906	-0.589	-0.976	0.918	0.613	0.918	1	0.255	-0.477	0.954	0.918	.999	a -0.
	Sig. (2-tailed)	0.260	0.139	0.260	0.407	0.927	0.861	0.952	0.687	0.121	0.046	0.565	0.111	0.614	0.796	0.278	0.599	0.139	0.260	0.580	0.260		0.836	0.683	0.194	0.260	0.03	•
Protein	Pearson Correlation	0.619	-0.459	-0.619	-0.371	0.927	0.888	-0.945	-0.732	0.121	-0.185	0.903	0.084	-0.940	.998	-0.177	-0.932	-0.459	0.200	0.920	0.200	0.255	0.030	-0.972	-0.047	0.200	0.20	
TOTOIL																							- '					
	Sig. (2-tailed)	0.575	0.696	0.575	0.758	0.091	0.304	0.212	0.477	0.957	0.882	0.270	0.947	0.222	0.039	0.887	0.236	0.696	0.575	0.256	0.575	0.836		0.152	0.970	0.575	0.86	
Moisture	Pearson Correlation	-0.787	0.656	0.787	0.141	-0.928	-0.754	0.840	0.550	-0.303	0.412	-0.983	-0.317	0.994	-0.984	-0.061	0.991	0.656	-0.787	-0.987	-0.787	-0.477	-0.972	1	-0.191	-0.787	-0.43	
d-F-1	Sig. (2-tailed)	0.423	0.544	0.423	0.910	0.244	0.456	0.365	0.629	0.804	0.730	0.118	0.794	0.070	0.113	0.961	0.084	0.544	0.423	0.103	0.423	0.683	0.152	0.401	0.877	0.423	0.71	-
CrudeFat	Pearson Correlation	0.756	-0.866	-0.756	0.945	-0.189	-0.500	0.371	0.715	0.993	-0.973	0.369	0.992	-0.297	0.015	0.991	-0.319	-0.866	0.756	0.347	0.756	0.954	-0.047	-0.191	1	0.756	0.96	
	Sig. (2-tailed)	0.454	0.333	0.454	0.212	0.879	0.667	0.758	0.493	0.073	0.148	0.759	0.083	0.808	0.991	0.084	0.794	0.333	0.454	0.774	0.454	0.194	0.970	0.877		0.454		
ibre	Pearson Correlation	1.000"	-0.982	-1.000	0.500	0.500	0.189	-0.327	0.082	0.826	-0.886	0.887	0.835	-0.850	0.666	0.664	-0.861	-0.982	1.000	0.877	1.000	0.918	0.619	-0.787	0.756	1	0.89	
	Sig. (2-tailed)	0.000	0.121	0.000	0.667	0.667	0.879	0.788	0.948	0.381	0.306	0.305	0.371	0.353	0.536	0.538	0.339	0.121	0.000	0.320	0.000	0.260	0.575	0.423	0.454		0.29	
Carbohydrate	Pearson Correlation	0.896	-0.964	-0.896	0.832	0.064	-0.266	0.126	0.516	0.990	-1.000°	0.591	0.992	-0.528	0.266	0.927	-0.547	-0.964	0.896	0.572	0.896	.999	0.206	-0.432	0.968	0.896		1 -0.
	Sig. (2-tailed)	0.293	0.172	0.293	0.374	0.959	0.828	0.920	0.655	0.089	0.014	0.598	0.079	0.646	0.829	0.245	0.632	0.172	0.293	0.612	0.293	0.032	0.868	0.716	0.162	0.293		0.
nergy value	Pearson Correlation	-0.690	0.814	0.690	-0.972	0.282	0.581	-0.458	-0.778	-0.978	0.947	-0.278	-0.974	0.205	0.081	999	0.226	0.814	-0.690	-0.256	-0.690	-0.921	0.142	0.096	-0.995	-0.690	-0.93	9
	Sig. (2-tailed)	0.515	0.394	0.515	0.151	0.818	0.606	0.697	0.432	0.134	0.209	0.821	0.144	0.869	0.948	0.023	0.855	0.394	0.515	0.835	0.515	0.255	0.909	0.939	0.061	0.515	0.22	3
	s significant at the 0.01 level (2-ta	0.0.0		10		10							41.14						0							2.210	U.LL	1

Samples type: Fruit= F; Soil= S. Elements: Arsenic= As; Calcium=Ca; Cadmium= Cd; Chromium=Cr; Copper= Cu; Iron=Fe; Magnesium= Mg; Manganese= Mn; Selenium= Se; Zinc= Zn. Correlation coefficient (r): Strong correlation r > 0.7 or r < 0.7; Moderate correlation r < 0.7 or r < 0.7; Weak correlation r < 0.3 or r > -0.3. Significance level (p): Significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significant p < 0.05 or not significa