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Abstract: Elevated hexavalent chromium (Cr(VI)) levels in pervious concrete may undermine its
successful application in water treatment. Portland cement CEM I 52.5R (CEM I), coal fly ash (FA),
natural zeolite and ground granulated blast-furnace slag (GGBS) were evaluated as adsorbents for
removal of Cr(VI) from acid mine drainage (AMD). Adsorption experiments were conducted at
dosages of 6, 10, 30 and 60 g of adsorbent in 200 mL of AMD, while the mixing contact time was
varied from 15 to 300 min. It was found that the use of CEM1 and FA adsorbents strongly increased
the Cr(VI) concentration in AMD. Conversely, zeolite and GGBS removed up to 76% and 100% of
Cr(VI) from AMD, respectively, upon their use at dosages of at least 10 g of the adsorbent. Freundlich
isotherm was found better fitted with a high correlation coefficient (R2 = 0.998 for zeolite and 0.973 for
GGBS) than to the Langmuir model (R2 = 0.965 for zeolite and 0.955 for GGBS). Adsorption and ion
exchange seem to be active mechanisms for the Cr(VI) removal. These results suggest that zeolite and
GGBS can be considered as partial cement replacement materials for effective reduction or removal of
Cr(VI) from the treated water.

Keywords: adsorption; pervious concrete; hexavalent chromium; cementitious materials;
acid mine drainage

1. Introduction

Chromium exists in various oxidation states ranging from Cr(II) to Cr(VI). Among these states,
Cr(III) and Cr(VI) are the most common and most stable species [1,2]. Different species of chromium
originate from its industrial applications, as well as incineration facilities, cement, contaminated
landfill, asbestos lining erosion, tobacco smoke, topsoil and rocks [3]. The resulting industrial waste
materials containing Cr(VI) are often disposed of into the environment, leading to contamination of
natural water resources and soils, amongst others. The Cr(VI) varieties found in water are Cr2O7

2−,
CrO4

2−, H2CrO4, and HCrO4
− [4]. Of these, the variety that becomes prevalent in aqueous solution is

determined by pH of the solution, chromium concentration, the presence of oxidising and reducing
compounds, and the redox potential [3]. Cr2O7

2− and HCrO4
− are the predominant varieties at the pH

range of 2.0 to 6.0. At pH above 6.0, the dominant species is CrO4
2− [3,4]. Equations (1) and (3) show

the dissolved forms of Cr(VI) typically present in solution, as determined by the solution pH level.

H2CrO4→H+ + HCrO4
− (pH 2.0 to 6.0) (1)

2HCrO4
−
→Cr2O7

2− + H2O (pH 2.0 to 6.0) (2)
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HCrO4
−
→H+ + CrO4

2− (pH > 6) (3)

Fly ash (FA), ground granulated blast-furnace slag (GGBS) and natural zeolite, all exhibit pozzolanic
properties and are conventionally used in concrete as partial cement replacement materials for
improvement of durability, among other beneficial effects [5–9]. Various researchers have demonstrated
the potential of FA as an effective adsorbent for wastewater treatment [10–12]. Partial replacement
of pervious concrete with FA has been shown to improve the workability of fresh concrete and the
mechanical strength and durability of hardened concrete [13]. Fly ash can be utilised for a cleaner
production of pervious concrete possessing compatible hydrological property and pollution control
potential, compared to the ordinary pervious concrete [14]. Zeolites are low-cost ion exchangers that
have been used as adsorbents for removal of heavy metals including chromium, etc., [15,16] from
polluted water. Due to their net negative charge, zeolites have a strong affinity for transition metal
cations. Zeolites are often abundantly available in natural deposits; they also exhibit high chemical
stability [17–19]. A recent investigation by Bae et al. [20] found that the replacement of Portland cement
with a small amount of only 5 wt% GGBS, significantly reduced the dissolved Cr(VI) in aqueous
solution. There was complete sorption and reduction of Cr(VI) to Cr(III) using GGBS in a Ca(OH)2

solution of pH > 12.5.
Cr(VI) is an extremely toxic chromium species that is known to cause severe environmental

and health problems [21] to human, animal, and aquatic life systems. Such adverse health effects of
Cr(VI) include contact dermatitis, lung carcinoma, diarrhoea, ulcers, kidney failure, liver damage,
and other diseases of the gastrointestinal organs [3,22–25]. Not only is Cr(VI) highly carcinogenic and
mutagenic, it is also known to cause birth defects [3]. Inhalation of Cr(VI) can cause asthma, bronchitis,
pneumonitis, inflammation of the larynx and liver, perforation of the nasal septum, and increased risks
of cancer of the respiratory system [21–23,26]. Cr(VI) is classified as a Group 1 human carcinogen
by the International Agency for Research on Cancer [27] and was identified by the United States
Environmental Protection Agency (USEPA) as one of the 17 chemicals that pose a threat to human
life [28]. The World Health Organization specifies 0.05 mg/L as the maximum permissible limit of
Cr(VI) in water for domestic use [29]. Given the severe health hazards of Cr(VI), it is a crucial necessity
to ensure its removal from any sources that may lead to its direct contact with life systems.

The conventional approach for Cr(VI) removal from wastewater involves its reduction from the
hexavalent to the trivalent state, followed by its precipitation as Cr(III) hydroxide, by means of physical,
chemical, or bioremediation methods. Physical methods employ the physico-chemical properties
of materials to achieve chromium remediation through various mechanisms including adsorption,
electrodialysis, membrane filtration, photocatalysis, amongst others. Chemical remediation utilises
chemicals such as sulphur dioxide, sodium metabisulfite, ferrous sulfate, sodium sulfite, barium sulfite,
lime and limestone for the reduction of Cr(VI) to Cr(III). Bioremediation refers to the use of living
organisms including bacteria, fungi, yeast, algae, and plants to remove pollutants [3]. The problems
associated with use of physico-chemical methods for Cr(IV) removal include the high operating costs of
the treatment, high energy consumption, excessive use of chemicals, generation of toxic sludge and air
pollution resulting from the use of sulphur-based reducing agents [22,30]. These reductants generate
SO2 or H2S under strong acidic conditions and emit an unpleasant odour, both of which seriously affect
the health of workers [10]. Although bioremediation for chromium removal from wastewater may
show good performance under laboratory testing, it is not often suitable for large-scale field systems,
since the living organisms utilised for the treatments are not naturally available in abundance and
have to be grown or cultured [1].

Adsorption offers the benefits of a clean, cost-effective, easily controlled, efficient process [4].
Natural bio-adsorbents, such as sawdust, have been successfully used for adsorption of Cr(VI).
However, low adsorption capacities, high chemical, and biological oxygen demand, as well as leaching
of organic components remain the main drawbacks of applying biosorbents [31]. Natural polymer-based
adsorbents offer the benefits of low-cost, high effectiveness and regeneration potential. Examples of
natural polymer-based adsorbents are chitin [32], cellulose [33] and chitosan [34]. Chitosan contains
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chemical functional groups, such as NH2 and OH, while cellulose is mostly dominated by OH− and
CHO− groups that can aid in trace metal sequestration and complexation. [31]. Carbon-based adsorbents,
such as activated carbon [35] and biochar [36], possess a vast network of internal pores by which they
have high surface areas and become excellent adsorbents [37]. Other adsorbents that have shown
varying success in Cr(VI) adsorption include bentonite clay, zero-valent iron, bauxite and iron oxide
nanoparticles [38–41]. However, most of the adsorbents show limitations in adsorption capacity and
are often not re-usable [4].

Due to its particle retention capacity during filtration, concrete products can function as pollution
sink [42,43]. Contaminants, such as heavy metals and organic compounds, are absorbed into the
internal concrete body and are eliminated from the runoff. Other potential benefits of using this
type of pavement include recharging of groundwater, saving of water by recycling, and prevention
of pollution [44]. Reductions in suspended solids, biochemical oxygen demand, chemical oxygen
demand and ammonia levels in surface runoffs demonstrate the high treatment efficiency of pervious
pavement systems [45]. It can also lead to a reduction in oil, grease, and petroleum products, from the
water effluent drained through pervious concrete [43]. Several recent studies [43–49] have shown
pervious concrete to be a promising alternative reactive material for the treatment of acid mine drainage
(AMD). However, elevated Cr(VI) levels in the treated water arising from the use of cement and FA
in pervious concrete, may potentially undermine concrete’s successful application in water treatment.
Chromium in cement is found primarily in the form of Cr(III), while Cr(IV), Cr(V) and Cr(VI) may exist
in smaller quantities [50,51]. The oxidising environment in kilns under the typically high operating
temperatures of up to 1450 ◦C, transforms the Cr(III) found in the materials into hexavalent state [21].
Cr(VI) in cement emanates from different sources including some refractory bricks, raw materials, fuels,
and the chromium alloys used in grinding mills. The release of Cr(VI) into the environment when
cement or concrete products are exposed to water, soil and air, may result in a threat to environmental
safety and human health.

In the present study, adsorption experiments were conducted on Portland cement CEM I 52.5R
(CEM I), FA, natural zeolite and GGBS, to assess their effects as adsorbents for effective removal of Cr(VI)
from AMD. The present study aimed at identifying effective adsorbent(s) that may be incorporated
into pervious concrete for removal of Cr(VI) from the concrete-treated AMD. Batch adsorption
experiments were implemented under different criterions, including adsorbent dosage, contact time,
and pH. Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), and scanning
electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS), were used to investigate the
physico-chemical properties of the adsorbents.

2. Materials and Methods

Naturally occurring AMD was obtained from an abandoned coal mine for use in the experiment.
The AMD was collected from its discharge source using high-density polyethylene containers and
transported to the laboratory for use in the experiments. The pH of the raw AMD was 3.01, while its
composition [47] showed high concentrations of Ca (470 mg/L), Mg (214 mg/L), Na (3061 mg/L),
Fe (9 mg/L), Al (6 mg/L) and SO4 (2870 mg/L). The concentration of Cr(VI) in the raw AMD was
0.042 mg/L.

Adsorption tests were conducted on CEM I; Class F, FA; natural zeolite and GGBS as adsorbents
for Cr(VI) removal from AMD. The CEM I, FA, and zeolite materials used, were obtained from AfriSam
SA (Pty) Ltd. (Roodepoort, South Africa), Ash Resources SA (Pty) Ltd. (Edenvale, South Africa),
and Serina Trading (Pty) Ltd. (Heidelberg, South Africa), respectively. GGBS was also supplied
by AfriSam SA (Pty) Ltd. Phase identification of the unreacted and reacted adsorbents was carried
out using X-ray diffraction (XRD) (Malvern Panalytical Ltd., Malvern, UK) at a scan rate of 0.02◦,
2-theta per minute using a Pan Analytical X-ray X’pert PRO diffractometer (Malvern Panalytical
(Pty) Ltd., Malvern, UK). The XRD instrument consisted of a PW3830 X-ray generator operated
(Malvern Panalytical (Pty) Ltd., Malvern, UK) at 40 kV, 40 mA and a copper X-ray tube. Morphological
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characterisation of the adsorbents was conducted by scan electron microscopy–energy dispersive
spectrometer (SEM–EDS) (TESCAN VEGA 3 SEM, (Tescan Orsay Holding, Brno, Czech Republic).
The SEM samples were cross-section cut and dried under vacuum. Then, the samples were fixed on the
aluminium stub and sputter-coated with gold particle. An AZtec energy dispersive spectrometer (EDS,
Oxford instruments, Abingdon, UK) was employed to determine elemental composition of phases
in the samples. Functional groups were determined using BX-II PerkinElmer FTIR (Perkin Elmer,
Waltham, MA, USA) equipped with the universal attenuated total reflectance (ATR) diamond crystal.
Then, 0.5 g of the adsorbent is placed into contact with the ATR sampling crystal and subjected to IR
radiation. Some of this radiation is absorbed by the sample and is measured as an infrared spectrum.
The ATR technique gave a spectral range from 4000 to 400 cm−1.

The concentration of Cr(VI) in AMD was determined using a WLAB/046/Discrete Chromium
Analyser (Skalar Analytical B.V., Breda, The Netherlands) based on the American Public Health
Association, Standard Method 3500 Cr B Colorimetric Method [52]. The AMD sample was reacted with
diphenylcarbazide under acid conditions (pH of 2 ± 0.5). Cr(VI) produces a red-violet colour which
is measured photometrically at wavelength 540 nm. The limit of detection (LOD) was 0.0048 mg/L.
The amount of Cr(VI) contaminant adsorbed (qe) in mg/g and the removal efficiency (RE) levels were
calculated using Equations (4) and (5), respectively [53].

qe = (C o − Ce) ×
V
m

(4)

RE (%) =
Co − Ce

Co
× 100 (5)

where Co is the initial concentration of the contaminant in raw AMD (mg/L), Ce is the equilibrium
concentration of the contaminant (mg/L), V is the volume of AMD (litres), m is the mass of the
adsorbent (g).

Batch adsorption experiments were carried out in 500 mL graduated borosilicate glass beakers.
The experiments were performed using 200 mL of AMD containing 0.042 mg L−1 of Cr(VI) at 25 ◦C
and 150 rpm for 300 min. Adsorption efficiency of Cr(VI) by the adsorbents was studied by varying the
adsorbent dosage. The following dosages were used for the individual adsorbents: 6.0, 10.0, 30.0 and
60.0 g. A high precision electrical balance (Ohaus Scout Pro Portable Electronic Balance) was used for
weighing. The mixture was filtered through a 0.45 µm Whatman® PTFE membrane filter. Treated AMD
samples were transferred into 200 mL plastic vials. The pH, Electrical Conductivity (EC) and Total
Dissolved Solids (TDS) were measured using a digital pH meter (MP-103 microprocessor-based
pH/mV/Temp tester (Gondo electronic Co. Ltd., Taipei, Taiwan). The pH electrode used was calibrated
using standard NIST-traceable pH 2.0, 4.0, 7.0 and 10.0 buffers. Treated AMD samples were stored
in a refrigerator set at a constant temperature of 3 ◦C before the determination of Cr(VI) concentration.

Column tests were conducted to determine the leaching behaviour of Cr(VI) from CEM I, FA and
GGBS. Pervious concrete was made, using 6.7 mm granite aggregate and Portland cement consisting
of CEM I 52.5R (CEM I) alone or CEM I with 30% fly ash or CEM I with 50% GGBS. A mixture of
0.27 water/cementitious ratio was used. The mixture was placed into standard 100 mm cube moulds
and then compacted using a vibrating table. The fresh concrete cubes were de-moulded after about
24 h and placed in a water curing bath until 28 days of age [47]. Four concrete cubes of CEM I, 30%FA
and 50% GGBS were placed in separate columns. The columns used in this study were 500 mm
in height, and had an internal diameter of 100 mm. An AMD sample was pumped at a flow rate of
0.35 mL/min. Leachate samples were collected daily for the first three months, then once every third
day, and thereafter once a week for a total of 320 days. The concentrations of Cr(VI) were determined
using WLAB/046/Discrete Chromium Analyser.

Langmuir and Freundlich isotherms are the most commonly used models for adsorption studies.
Equation (6) gives the Langmuir model which can also be expressed in the linearised form given
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in Equation (7). By plotting the graphs of adsorption data as 1/qe versus 1/Ce, a trendline is obtained whose
slope and intercept is used to directly determine the values of qm and K, based on Equation (7) [26,54].

qe =
qmKCe

1 + KCe
(6)

1
qe

=
1

Kqm
×

1
Ce

+
1

qm
(7)

where qe (mg/g) is the amount of contaminant adsorbed (adsorbate) at the equilibrium concentration,
Ce (mg/L) is the equilibrium concentration of adsorbate, qm (mg/g) represents the maximum monolayer
adsorption capacity, and K (l/mg) is the Langmuir constant related to energy of adsorption and the
affinity of the binding sites. The essential characteristics of the Langmuir isotherm can be expressed
in terms of a dimensionless constant called the separation factor, RL, as shown in Equation (8) [33]:

RL =
1

1 + KLC0
(8)

where C0 is the maximum initial concentration of the adsorbate (heavy metal ion) and KL(L/mg) is
a constant related to the affinity of the binding sites. When the values of RL > 1, it is an indicator that
adsorption is unfavourable, RL = 1 indicates linear adsorption, favourable when 0 < RL < 1 and
irreversible when RL = 0.

The Freundlich isotherm of Equation (9) accounts for multilayer physico-chemical adsorption on
heterogeneous surfaces and can be expressed in a linearised form as given in Equation (10).

qe = KF·Ce
1
n (9)

where Ce is the concentration of the adsorbate at equilibrium (mg/L), KF is the Freundlich capacity
factor, and 1/n is the intensity. The latter two parameters are obtained by fitting Equation (9) to graphs
of adsorption data plotted as log qe versus log Ce.

log qe =
1
n

log Ce + logKF (10)

3. Results

3.1. Characterisation of Adsorbents

Chemical analyses of the adsorbents were performed using X-ray fluorescence (XRF, Bruker,
Karlsruhe, Germany), giving the chemical compositions shown in Table 1. The high CaO and SiO2

contents of CEM I are responsible for strength development in concretes. FA and zeolite are pozzolanic
materials composed of mainly amorphous aluminosilicate elements, while GGBS is a latent hydraulic
cement exhibiting both pozzolanic and cement properties. It can be seen in Table 1 that GGBS had
intermediate levels of all the three oxides comprising CaO, SiO2 and Al2O3. The typical concentrations
of total chromium Cr2O3 concentrations in South African CEM I, FA, GGBS are 102, 200 and 193 ppm,
respectively [51,55,56]. Potgieter et al. [51] also reported that 30 to 80% of the total chromium in cement
is Cr(VI) of which 8 to 26% is leachable or water soluble. A study by Eštoková et al. [57] stated that the
average concentrations of the total chromium in cements vary from 178.5 to 257.3 mg per kg of cement
while the average concentrations of hexavalent chromium ranged from 0.5 to 2.46 mg/kg.
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Table 1. Chemical compositions of Portland cement (CEM I), fly ash (FA), natural zeolite and ground
granulated blast-furnace slag (GGBS). LOI = Loss on Ignition.

Adsorbent SiO2 Al2O3 CaO Fe2O3 MgO TiO2 Mn2O3 SO3 Na2O3 K2O LOI

CEM I (%) 21.9 4.75 65.44 3.68 2.17 0.49 0.40 1.92 0.17 0.25 1.57
FA (%) 50.32 24.57 7.31 5.91 1.83 1.53 0.05 0.16 0.16 0.76 5.59

Zeolite (%) 58.12 11.44 1.01 1.57 1.30 0.12 0.18 2.03 1.44 22.36
GGBS (%) 37.03 13.39 36.62 0.61 8.00 0.63 0.87 2.31 0.23 1.11 0.19

3.2. Cr(VI) Adsorption Tests

3.2.1. Effect of Adsorbent Dosage

It can be seen in Figure 1a that CEM I showed an increase in Cr(VI) concentration with increase
in dosage of the adsorbent, attaining a maximum concentration of 4.27 mg/L at the dosage of 60 g
of the adsorbent in 200 mL of AMD. As mentioned in Section 1, chromium is present in Portland
cement as an impurity. In recent studies [47–49], it was reported that mine water treated with pervious
concrete exhibited high levels of Cr(VI) owing to leaching from the cement and fly ash materials used
in PERVC mixtures. FA also increased the concentration of Cr(VI) in AMD, but to a lesser extent
than CEM I. Cr(VI) increased from 0.042 mg/L in raw AMD to 0.211 mg/L and 0.535 mg/L when
6 g and 60 g of FA were mixed with 200 mL of AMD, respectively. Clearly, both CEM I and FA
increased the Cr(VI) concentration from 0.042 mg/L in raw AMD to levels exceeding the maximum
permissible limits of 0.1 mg/L and 0.05 mg/L, in the treated AMD, specified in Environmental Protection
Agency (EPA) [58] and World Health Organization (WHO) [29] or National Water Act (NWA) [59],
respectively. The observed elevation of Cr(VI) in the AMD following its treatment using CEM I or
FA, is attributed to leaching of the chromium present in the powder materials, into the polluted mine
water [51]. Interestingly, Cr(VI) in AMD was removed or significantly reduced when the zeolite and
GGBS adsorbents were used, as seen in Figure 1b. The Cr(VI) concentration in AMD reduced with
an increase in the GGBS dosage, achieving complete removal at the dosage of 30 g of the adsorbent
in 200 mL of AMD. Bae et al. [20] suggested that chromium removal by GGBS, could be attributed
to the dissolved anions from slag, which may serve as reducing agents to transform Cr(VI) to Cr(III).
Additionally, in the present study, a small dosage of only 6 g of zeolite in 200 mL of AMD, was sufficient
for effective reduction of the Cr(VI) concentration level.
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with the AMD: (a) CEM I and FA adsorbents; (b) Zeolite and GGBS adsorbents.

3.2.2. Effect of Contact Time

In the experiment, contact time between the adsorbent and AMD was varied from 15 to 300 min.
The CEM I and FA adsorbents strongly increased the Cr(VI) concentration in AMD, more so with longer
contact time, as seen in Figure 2a. Notably for FA, there was no significant change in the concentration
of Cr(VI) after 15 min of contact time. After 300 min of contact, the Cr(VI) concentration had risen
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from 0.042 mg/L in raw AMD to equilibrium levels of 2.05 mg/L for CEM I and 0.558 mg/L for FA,
both of which exceed the maximum limits of 0.10 and 0.05 mg/L specified in EPA [58] and NWA [59]
or WHO [29], respectively. It can be seen in Figure 2b that zeolite and GGBS showed rapid removal
of Cr(VI) at the early ages, with near complete removal of the contaminant occurring within 15 min
of contact between the adsorbent and AMD. The Cr(VI) concentration was reduced from 0.042 mg/L
in raw AMD to equilibrium concentrations 0.0107 mg/L and 0.002 mg/L after the water treatment
using zeolite and GGBS, respectively. There was no significant change in concentration of Cr(VI) after
15 min of contact, indicating that the adsorption phase had reached equilibrium. Evidently, a minimum
contact time of 15 min was required for removal or reduction of Cr(VI) by zeolite or GGBS to low
concentration levels that meet the limits specified in national water standards [58,59].Minerals 2020, 10, x FOR PEER REVIEW 7 of 18 
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3.2.3. Change in the pH of AMD as a Function of Adsorbent Dosage and Its Influence on
Cr(VI) Adsorption

Adsorption of Cr(VI) varies as a function of the pH. In dissolved form, Cr(VI) can be present
in any of the different forms H2CrO4, HCrO4

−, CrO4
2− or Cr2O7

2− [4]. At low pH, the H+ ions tend
to protonate at the surface of adsorbent, resulting in a positively charged surface, which in turn has
strong affinity for the negatively charged HCrO4

− [3]. At higher pH, a decrease in proton concentration
leads to a negatively charged adsorbent surface which has less affinity for the adsorption of HCrO4

−.
At higher pH, interferences from OH− ions may lead to lower removal efficiency of Cr(VI). Increased
amounts of OH− increases the competition between Cr(VI) and OH- for occupying exchange sites
in absorbent pore [60]. A similar pH dependent trend was also observed by a number of researchers
for the Cr(VI) removal by various adsorbents [1,3,34,61,62]. At the adsorbent dosage of 10 g in 200 mL
of AMD, the maximum pH levels attained by CEM I, FA, zeolite and GGBS were 12.0, 8.4, 4.8 and
9.2, respectively, as seen in Figure 3. At the higher adsorbent dosage of 60 g in 200 mL of AMD,
the respective pH levels attained were significantly higher, giving 13.2, 10.1, 6.7 and 10.6 for CEM I, FA,
zeolite and GGBS. In all cases, however, the pH rise was rapid and complete within 15 min of contact
between AMD and the adsorbents, which also coincided with the maximum Cr(VI) removal levels
achieved by zeolite and GGBS. In the AMD that was treated using CEM I and FA, the concentration
of Cr(VI) strongly increased as pH of the AMD increased—a concern attributed to the overriding
effect of the leaching of chromium from the absorbents into AMD. Cr(VI) in cement emanates from
sources such as refractory bricks, fuels, and the chromium alloys; Chromium is present in coal mainly
as trivalent chromium (Cr(III)). During the combustion of coal, Cr is usually oxidized from Cr(III)
to Cr(VI). When exposed to water, Cr(VI) may leach out from the adsorbents [63]. Maximum Cr(VI)
concentration levels of 4.27 mg/L and 0.558 mg/L were attained at pH levels of 13.6/8.77 of the treated
mine water, under the dosage of 60 g of CEM I/FA in 200 mL of AMD, respectively. In a study of Cr(VI)
removal from aqueous systems, Kantar et al. [64] reported that Cr(VI) reduction efficiency decreased
with increasing solution pH. In contrast, Cr(VI) reduction efficiency increased with increasing solution



Minerals 2020, 10, 932 8 of 17

pH when GGBS was used as an adsorbent. This is because GGBS’s activation is strongly dependent
on pH values. Enhanced Cr(VI) reduction by GGBS is achieved at pH values higher than 11.5 [20].
The effects of increased alkalinity on efficient removal of Cr(VI) by GGBS was confirmed by the
XRD/SEM results in Section 3.4.

3.2.4. Removal Efficiencies

The RE levels of Cr(VI) removal were determined for the various adsorbents, as summarised
in Table 2. For each adsorbent dosage, the average equilibrium concentration of Cr(VI) was calculated
for the contact durations of 15 to 300 min. The average Ce was then used in the calculation of RE as
per Equation (5). It can be seen in Table 2 that the GGBS adsorbent gave the highest RE, achieving
100% removal of Cr(VI) followed by 76% removal by zeolite. CEM I or FA did not remove or reduce
Cr(VI) concentration, but these adsorbents instead increased the chromium levels in the treated AMD,
thus giving negative RE values which apparently were also very high. At the dosage of 10 g of adsorbent
in 200 mL of AMD, CEM I and FA gave the RE values of −4781% and −1229%, respectively. The high
Cr(VI) levels in the CEM I- and FA-treated AMD are a result of undesirable leaching behaviours of the
two adsorbents.

Table 2. Removal Efficiency (RE) levels for Cr(VI) removal by Portland cement, fly ash, natural zeolite
and ground granulated blast-furnace slag.

Adsorbent Parameter
Dosage of Adsorbent in 200 mL of AMD

6 g of Adsorbent 10 g of Adsorbent 30 g of Adsorbent 60 g of Adsorbent

CEM I RE (%) −7519 −4781 −5305 −10,067
FA RE (%) −402 −1229 −990 −1174

Zeolite RE (%) 76 71 66 75
GGBS RE (%) 48 93 100 95
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3.2.5. Isotherm Models

The Langmuir and Freundlich isotherm models were used to describe the equilibrium
relationship between Cr(VI) and the adsorbents (zeolite and ground granulated blast-furnace slag).
Correlation coefficient values are presented in Table 3.

Langmuir Isotherm

The correlation coefficients R2 for the linear plot were >0.99 indicating that the experimental data
of Cr(VI) adsorption using both adsorbents fitted well with the Langmuir isotherm model, as can be
seen in Figure 4. Langmuir isotherm assumes monolayer adsorption on a homogenous surface [36].
The Langmuir dimensionless constant separation factor RL, was used to predict favourability of the
isotherm. If RL < 1, then adsorption is favourable, while RL > 1 represents unfavourable adsorption,
and RL = 0 irreversible process. According to the obtained results, RL was found to be 0.782 for GGBS,
showing favourable adsorption of Cr(VI) by GGBS under the study conditions. RL value for zeolite
was 0.999, indicating linear adsorption of Cr(VI) by zeolite.
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Freundlich Isotherm

The linear form of Freundlich model equation is reported in Figure 5 for zeolite and GGBS,
respectively. The R2 values were 0.998 and 0.973 for zeolite and GGBS, respectively, indicating good
correlation between the experimental data and Freundlich adsorption models for Cr(VI). Both the
zeolite and GGBS possess high adsorption capacity for Cr(VI). The Freundlich equation can also be
used to determine the adsorption intensity, 1/n, where n is an indicator of the change of intensity of
the adsorption process—a value of n above 1 (n > 1) indicates favourable adsorption. A value of n
below 1 (n < 1) indicates poor adsorption characteristics [65]. Our results showed n = 0.596 for zeolite,
indicating poor adsorption of Cr(VI) by zeolite. The calculated n value for adsorption of Cr(VI) by
GGBS was 1.187, showing good efficiency for Cr(VI) adsorption by GGBS adsorbent. The Freundlich
model was found to fit the Cr(VI) adsorption better than the Langmuir model for both adsorbents,
suggesting a multilayer adsorption of Cr(VI) on a heterogeneous surface. Other studies also reported
that the Freundlich model described a much better fit than the Langmuir model in relation to Cr(VI)
adsorption [37,38].

Table 3. Langmuir and Freundlich adsorption isotherm models determined for the adsorbents.

Adsorbent Langmuir Freundlich

Zeolite

qm (mg/g) 0.0262 n 0.596
KL (L/mg) −31.58 K 125.81

RL 0.999 R2 0.998
R2 0.965

GGBS

qm (mg/g) 0.0144 n 1.187
KL (L/mg) 4.729 K 1.311 × 10−4

RL 0.782 R2 0.973
R2 0.955
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Comparison of Different Adsorbents for Cr(VI) Ions Removal

The maximum adsorption capacities of various adsorbents are presented in Table 4. By comparison,
it was found that zeolite and GGBS were also able to efficiently remove Cr(VI) ions from aqueous media.
Most adsorbents presented on Table 4 have been chemically modified to achieve high adsorption
capacities. In the current study, maximum adsorption capacities were obtained without modifying the
adsorbents and the adsorption conditions.

Table 4. Comparison of maximum removal capacity of Cr(VI) by various adsorbents.

Adsorbent Qmax (mg/g) Reference

Zeolite 0.0262 (76% removal) Present study
GGBS 0.0144 (100% removal) Present study

Activated carbon 72.46 [35]
Dolachar 0.904 [65]

Zeolite modified ZVI 2.49 [66]
Illite carbon nanocomposite 0.57 [67]

Activated Akadama clay 2.17 [68]

3.3. Cr(VI) Leaching Tests

Column tests were conducted to determine the leaching behaviour of Cr(VI) from CEM I, FA and
GGBS. After 320 days of the experiment, the concentration of Cr(VI) for CEM1, FA and GGBS concrete
samples was 0.184, 0.069 and 0.059 mg/L, respectively (Figure 6). CEM I and FA showed higher
leachability of Cr(VI) that exceeded the recommended maximum concentration specified by the
World Health Organisation (WHO) of 0.05 mg/L, and therefore poses an environmental risk. This is
in agreement with adsorption experiments that showed elevated Cr(VI) levels in the AMD following
its treatment using CEM I or FA. Hartwich and Vollpracht [69] reported that higher chromium content
in cement results in higher pore solution concentrations and a higher release during leaching.
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Figure 6. Concentrations of Cr(VI) leached from CEM1, GGBS and FA adsorbents.

3.4. Characterisation and FTIR Analysis

The XRD pattern of raw zeolite, as given in Figure 7a, identified the dominant minerals present to be
the low-crystallised clinoptilolite ((Na,K,Ca)2–3Al3(Al,Si)2Si13O36·12H2O), quartz (SiO2), and mordenite
(Al2Si10O24·7H2O). In the reacted zeolite (Figure 7a), mordenite disappeared while a new phase
muscovite appeared, indicating the transformation of the former to the latter phase. The co-existence
of mordenite with the clinoptilolite in zeolites, was also observed by Diale et al. [70]. The high SiO2
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and Al2O3 in the zeolite adsorbent (Table 1) is responsible for its hydrophilic nature, an important
property for adsorption of contaminants [71]. The cations Na, K, Ca and Mg found in zeolites generally,
give the adsorbent its cation exchange capacity [16]. Figure 7b gives the XRD patterns of GGBS before
and after its exposure to AMD. The wide hump between the 25◦ and 35◦ two-theta angles, shows
that the GGBS was characteristically amorphous. The diffraction peak observed at the 30◦ two-theta
angle of unreacted GGBS was identified as calcium carbonate (CaCO3), most likely from the small
amounts of limestone typically present in GGBS. It may be recalled that GGBS is a by-product of pig
iron production from a mixture of limestone and forsterite or dolomite in some cases [72]. It can also
be seen that the reaction between GGBS and AMD resulted in a significant formation of gypsum.
GGBS is mainly composed of SiO2, Al2O3 and CaO, as shown in Table 1. Again, the dissolution of
CaO releases Ca ions, which combine with the SO4

2− in the AMD solution and/or sulphuric acid from
pyrite oxidation, leading to the formation of gypsum [47].
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slag (GGBS) before and after reaction with acid mine drainage: C—clinoptilolite; D—mordenite;
G—gypsum, H—calcium carbonate/calcium oxide, M—muscovite, Q—quartz.

Figure 8a is an SEM micrograph of unreacted zeolite, showing clustered crystals of clinoptilolite
plates. These structures provide a large surface area for fast and efficient adsorption of contaminants
by the zeolite through ion exchange between cations of the adsorbent and contaminants in the mine
water, including chromium [16,73]. The exchangeable ions Ca, K, Na found in unreacted zeolite as seen
in the EDS of Figure 8b, could no longer be detected in the reacted zeolite, as evident in Figure 8c,d,
indicating the occurrence of ion exchange between cations in zeolite and the positively charged ions in
the mine water [73]. Jorfi et al. [60] reported that in aqueous solutions, chromium form oxyanions.
At low pH values, these oxyanions are adsorbed onto the positively charged functional groups of
zeolite. Therefore, the negatively charged Cr(VI) ions reduce the cationic exchange capacity and
favour adsorption onto zeolite. The SEM micrograph of unreacted GGBS given in Figure 9a shows
predominantly irregular particles of the slag. Figure 9b gives the EDS spectra for unreacted GGBS
showing high content of C, Ca, Mg, Al and Si which are typical constituents of GGBS. When the CaO
and MgO in GGBS (Table 1) react with water to form Ca(OH)2 and Mg(OH)2, respectively, an alkaline
environment develops. With the resulting increase in pH, cement hydration products such as Ca(OH)2,
calcium-silicate-hydrate (C-S-H) and ettringite are formed [47]. These hydration products have a large
specific surface area that provides physical sorption and co-precipitation sites for heavy metal ions
such as Cr(VI) [20]. Cr(VI) may have also co-precipitated with gypsum, which was identified as the
dominant product formed from the reaction of GGBS with AMD. GGBS particles also had a large
surface area and high porosity levels, both of which promote metal sorption. Figure 9c gives the SEM
micrograph of reacted GGBS showing an accumulation of gypsum inside an existing pore. The EDS
for the reacted GGBS, as given in Figure 9d, shows a remarkable decrease in intensity levels of Ca2+,
Al3+ and Si4+ suggesting their consumption from the slag during AMD treatment.
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FTIR spectra of the reacted and unreacted natural zeolite are given in Figure 10a, indicating
the complex formations between the contaminants in AMD and different functional groups of the
adsorbent. It can be seen that adsorption of contaminants was particularly associated with the silicon
oxide (Si–O), the carboxylate anion (C=O) and hydroxyl (–OH) groups [74]. The spectrum of the
unreacted zeolite indicates the presence of Si–O symmetric bands of quartz with a double peak at the
wavenumbers 778 to 797 cm−1, which majorly shifted to a single peak at 797 cm−1 of the reacted zeolite.
The –OH group in the unreacted zeolite shows a signal at 2988 cm−1 which also shifted to form a strong
broad band between 3264 cm−1 and 3395 cm−1, denoting strong stretching vibrations in the reacted
zeolite. Both the Si–O and –OH groups show the shifting of bands to higher numbers, indicating
the adsorption of relatively lighter contaminant elements by the functional groups. The –OH group
in the reacted zeolite also gave a strong increase and broadening of transmittance. The carboxylate
C=O stretching at 1634 cm−1 showed no major shift but gave a strong increase and broadening of its
transmittance peak. The observed broadening of the peaks belonging to the –OH and C=O groups
in reacted zeolite, indicates an increase in contaminant concentrations and possible formation of
crystalline phases, which points to chemisorption through cation exchange. In Figure 10b, the FTIR
spectra of unreacted GGBS exhibit a band between wavenumbers 876 cm−1 and 963 cm−1, representing
stretching vibrations of the AlO4

−1 group along with the related antisymmetric stretching vibrations
of (Al)–O, respectively. The weak band at wavenumber 714 cm−1 is ascribed to Si–O–Si(Al) bridges,
linked or related to the SiO4 tetrahedral [75,76]. The transmittance wavenumbers (876 to 963, 714 cm−1)
observed in the unreacted slag were strongly reduced in the reacted GGBS, which may indicate the
role of Al and Si towards effective contaminant removal by slag [76]. In a study of chromite and slag
interactions by Lee and Nassaralla [77], it was reported that a replacement of Al2O3 in slag by SiO2,
reduced Cr(VI) formation. It was further shown that use of calcium silicate slags led to the formation of
much smaller levels of Cr(VI) from chromite, while calcium aluminate slags gave very high chromium
levels. The strong band at 1477 cm−1 indicates the presence of C–O stretching mode of calcite, with no
role in contaminant adsorption as there was no major shift or change in its transmittance peak.
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4. Conclusions

An investigation was conducted on Portland cement, fly ash (FA), natural zeolite and ground
granulated blast-furnace slag (GGBS), as adsorbents for Cr(IV) removal from acid mine drainage
(AMD). The following findings have been drawn.

1. Effective removal of Cr(VI) from AMD was achieved using at least 6 g of zeolite or 30 g of GGBS
in 200 mL of AMD, giving the removal efficiency levels of 76% and 100%, respectively. In both
cases, effective Cr(VI) removal was attained within 15 min of contact between the adsorbents
and AMD.

2. In the converse, CEM I and FA strongly increased the Cr(VI) concentrations in AMD to levels far
exceeding the permissible limits prescribed in national water standards, a concern attributed to
leaching of the chromium present in the adsorbents into AMD.

3. The Freundlich model correlated best with Cr(VI) adsorption data, for both zeolite and GGBS,
suggesting a multilayer adsorption of Cr(VI) on the surface of the adsorbents.

4. XRD and SEM analysis revealed high SiO2 and Al2O3 in zeolite, which was responsible for its
hydrophilic nature. Core-shell spheres and clustered crystals observed, confirmed the large
surface area of zeolite that could lead to a fast and efficient adsorption of Cr(VI).
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5. Cr(VI) removal, when using GGBS, can be attributed to its adsorption onto the surface of GGBS.
Hydration products formed provided physical sorption and co-precipitation sites for Cr(VI).
Cr(VI) may have also co-precipitated with gypsum, which was identified as the dominant product
formed from the reaction of GGBS with AMD.

6. FTIR showed changes in O–H and C–O functional groups of zeolite and GGBS after CR(VI)
adsorption, which is an indication of decationised adsorbents.

7. Zeolite and GGBS were found to be effective adsorbents for Cr(VI) removal and may be used as
partial cement replacement materials in systems that employ pervious concrete technology for
AMD treatment.
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