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Abstract
We study the two-dimensional constant coefficients Korteweg-de Vries equation, which was
established not long ago in the literature. We construct group-invariant solutions and conser-
vation laws for this equation. Lie group method is applied and the Lie point symmetries are
derived.We show how one can derive travelling waves symmetry solutions given in respect of
the Weierstrass-zeta and hyperbolic functions using its symmetries. Furthermore, we present
infinite number of conservation laws of the underlying equation obtained by means of the
multiplier approach.

Keywords Two-dimensional Korteweg-de Vries equation · Lie point symmetries · Exact
solution · Conservation laws · Multiplier method

Introduction

Physical phenomena in applied sciences and engineering is often best described by differen-
tial equations. These differential equations can be either the nonlinear ordinary differential
equations (NODEs) or nonlinear partial differential equation (NPDEs) and these include
amongst others the Schrödinger equation which plays significant role in quantum mechanics
since it is the counterpart of the Newton’s second law in the study of classical mechanics
[1], the Boussinesq equation which is the model that describes the propagations of long
waves in shallow water and in addition used in plasma physics as ion sound waves [2],
the Kadomtsev-Petviashvili equation that is used as the model that describes the nonlin-
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ear propagation of electromagnetic pulses [3], the shallow water wave equation which is
mostly used in fluid mechanics as the model that describes flow of fluids below a pressure
surface [4], the equal-with equation which is used in simulating the wave propagation on
nonlinear dispersion process medium [5], just to mention a few. It is vital to understand such
occurrences from a mathematical position. Determining exact solutions of such equations is
important in understanding the physical behaviour of the problems. Many solution methods
have been introduced that could be employed to determine exact explicit solutions of differ-
ential equations. These methods are but not limited to the variable separated ODE technique
[6], bifurcation technique [7], inverse scattering transform technique [8], Weierstrass ellip-
tic function expansion technique [9], exponential function technique [10, 11], F-expansion
method [12], Darboux transformation technique [13], (G ′/G)-expansion technique [14, 15],
tanh function technique [16–18], sine-cosine technique [19], homogeneous balance method
[20], and symmetry analysis method [21].

The symmetry analysis technique introduced by Sophus Lie is a powerful method formed
on the theory of Lie groups. Lie symmetry analysis is an efficient technique to analytically
solve differential equations. This method decreases the amount of independent variables
in the original system of partial differential equations (PDEs) and this results in a reduced
system of differential equations. For a system of ordinary differential equations it will reduce
the order of the system which makes it easier to find group-invariant solutions of a reduced
system than the original system. For details on this method, see for example [21–30].

The renowned Korteweg-de Vries (KdV) equation [31] given by

ut − 6uux + uxxx = 0 (1)

is the mathematical model which describes long waves in shallow water surfaces. Here t
and x denote time and position, respectively and u(x, t) represents the wave surface. There
have been several extensions of the KdV Eq. (1), namely the integrable constant and time
dependent coefficients two and three dimensional KdV equations [32]. It was found that each
equation was integrable by employing the Painlevè test and furthermore, Hirota’s technique
was invoked to compute multiple solitary wave solutions [32].

The extended constant coefficients two-dimensional KdV equation [32] reads

uty + βuxx + α
(
uxuxy + uxxuy

) + uxxxy + γ uyy = 0, (2)

with α, β and γ being constants. The above equation is an extension of that constant coeffi-
cients (2 + 1)-dimensional KdV equation, obtained by adding two terms [32].

In the present work, we investigate the two-dimensional KdV constant coefficients Eq.
(2). Moreover, we find travelling waves group-invariant solutions by reducing (2). We then
use multipliers to derive conserved vectors of the Eq. (2).

Exact Solutions of Eq. (2)

Lie Point Symmetries

The symmetry group of (2) will be generated by

� = ξ1
∂

∂t
+ ξ2

∂

∂x
+ ξ3

∂

∂ y
+ η

∂

∂u
,
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with ξ1, ξ2, ξ3 and η being depend on variables t , x , y, u. To find symmetries of (2), we
first apply the fourth extension of� to (2) and get an overdetermined linear system comprising
of nineteen partial differential equations which are homogeneous. These equations are

ξ1u = 0, ξ1y = 0, ξ1x = 0, ξ1t x = 0, ξ2y = 0, ξ2u = 0, ξ3u = 0, ξ3x = 0, ηyu = 0, ηuu = 0,

3ηxu − ξ1t x = 0, ξ1t + 3ηu = 0, 3ξ2x − ξ1t = 0, γ ξ1t − γ ξ3y − ξ3t = 0,

2ξ1t xx + 3αηx − 3ξ2t = 0, 2βηxu − βξ2xx + αηxy = 0,

ηt y + βηxx + ηxxxy + γ ηyy = 0, β(ξ1t − 2ξ2x + ξ3y ) + αηy = 0,

3ηtu + ξ1t xxx − 3γ ξ1t y + 3αηxx = 0.

The solution of above system gives the infinitesimals

ξ1 = 6αC1, ξ2 = αF1(t), ξ3 = αF2(y − γ t),

η =F3(t) + xF ′
1(t) − βF2(y − γ t),

withF1,F2,F3 being arbitrary functions of their arguments. To acquire physically interesting
and significant solutions of Eq. (2), we could take F1(t) = C2t + C3, F2(y − γ t) =
C4(y − γ t) + C5, F3(t) = C6t + C7. Thus, the infinitesimals now become

ξ1 = 6αC1, ξ2 = αC2t + αC3, ξ3 = αC4(y − γ t) + αC5,

η =C2x − βC4(y − γ t) − βC5 + C6t + C7

and consequently the Lie algebra of symmetries of Eq. (2) is spanned by seven vector fields,
namely

�1 = ∂

∂t
, �2 = ∂

∂x
, �3 = ∂

∂ y
, �4 = ∂

∂u
, �5 = t

∂

∂u
,

�6 = αt
∂

∂x
+ x

∂

∂u
, �7 = α(y − γ t)

∂

∂ y
− β(y − γ t)

∂

∂u
. (3)

We now obtain the group transformations generated by the above symmetries. For this
purpose, we solve the following Lie equations with the initial conditions for each of the
symmetries (3):

dt̄

da
= ξ1(t̄, x̄, ȳ, ū), t̄ |a=0 = t,

dx̄

da
= ξ2(t̄, x̄, ȳ, ū) x̄ |a=0 = x,

d ȳ

da
= ξ3(t̄, x̄, ȳ, ū), ȳ|a=0 = y,

dū

da
= η(t̄, x̄, ȳ, ū), ū|a=0 = u. (4)

We obtain

T1 : (t̄, x̄, ȳ, ū) −→ (t + a1, x, y, u),

T2 : (t̄, x̄, ȳ, ū) −→ (t, x + a2, y, u),

T3 : (t̄, x̄, ȳ, ū) −→ (t, x, y + a3, u),

T4 : (t̄, x̄, ȳ, ū) −→ (t, x, y, u + a4),

T5 : (t̄, x̄, ȳ, ū) −→ (t, x, y, u + a5t),

T6 : (t̄, x̄, ȳ, ū) −→ (t, x + αa6t, y, u + a6x),

T7 : (t̄, x̄, ȳ, ū) −→ (t, x, eαa7(y − γ t) + γ t, u − β(y − γ t)a7).

Using the above group transformations we can now state the following theorem:
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Theorem If u = H(t, x, y) is the known solution for the KdV Eq. (2), then the following are
also solutions corresponding to each of the transformations T1, ..., T7:

u1 = H(t + a1, x, y),

u2 = H(t, x + a2, y),

u3 = H(t, x, y + a3),

u4 = H(t, x, y) + a4,

u5 = H(t, x, y) + a5t,

u6 = H(t, x + αa6t, y) + a6x,

u7 = H(t, x, eαa7(y − γ t) + γ t) − β(y − γ t)a7.

Symmetry Reductions and Solutions

Reduction for the symmetries �1, �2, �3

We begin by using the combination of the three translation symmetries, i.e., �1+a�2 +b�3,
with a, b constants, whose characteristic equations yields the invariants r = x−at , s = y−bt
and U = u. This then transforms Eq. (2) to the NPDE

Urrrs + αUrUrs + αUrrUs + βUrr + γUss − aUrs − bUss = 0. (5)

The symmetries of (5) are

R1 = ∂

∂U
, R2 = ∂

∂s
, R3 = ∂

∂r
, R4 = r

∂

∂r
+ 3s

∂

∂s
+

(
2ar

α
− 4βs

α
−U

)
∂

∂U
.

As above, when using the symmetry R = cR2 + R3, with c being a constant, we obtain the
invariants p = s − cr , f = U , which reduces (5) to the NODE

f ′′′′ − 2α

c
f ′ f ′′ +

(
b

c3
− β

c
− a

c2
− γ

c3

)
f ′′ = 0, c �= 0. (6)

Equation (6) may be rewritten in the form

f ′′′′ − A f ′ f ′′ − B f ′′ = 0, (7)

where A = 2α/c and B = (βc2 + ac + γ − b)/c3. Integration of Eq. (7) in reference to the
variable p results in

f ′′′ − A

2
f ′2 − B f ′ = k1, k1 = constant. (8)

The Eq. (8) is invariant under the symmetry group generators X = ∂/∂ p and Y = ∂/∂ f .
The invariants of Y [1] = ∂/∂ f are T (p, f ) = p and V (p, f , f ′) = f ′. By Lie’s theorem
the third invariant is dV /dT = f ′′. Thus, f ′′′ = d2V /dT 2 and hence the Eq. (8) is written
as

V ′′ − A

2
V 2 − BV = k1,

′ ≡ d

dT
. (9)

Now the group generator X = ∂/∂ p gets transformed to X̃ = ∂/∂T , which is a Lie
point symmetry of the reduced Eq. (9). The invariants of X̃ [1] are W (T , V ) = V and

123



Int. J. Appl. Comput. Math            (2022) 8:227 Page 5 of 11   227 

Fig. 1 The 3D and 2D profiles of the periodic solution (13)

Z = (T , V , V ′) = V ′. Thus, we have dZ/dW = V ′′/V ′. Hence the Eq. (9) becomes a
first-order ODE

Z
dZ

dW
− A

2
W 2 − BW = k1. (10)

Integration of the Eq. (10) and using the invariants W and Z gives

dV

dT
= ±

√
A

3
V 3 + BV 2 + 2k1V + 2k2 , k2 = constant. (11)

The general solution of (11) is given by

V (T ) = α2 + (α1 − α2)cn
2

{√
A(α1 − α3)

12
T , R2

}

, R2 = α1 − α2

α1 − α3
, (12)

where cn is an elliptic cosine function, α1, α2 and α3 are real roots of

V 3 − 3B

A
V 2 − 6k1

A
V − 6k2

A
= 0

with α1 > α2 > α3. Integration of (12) gives the following group-invariant solution of (2):

u(t, x, y) =
√

12 (α1 − α2)
2

A(α1 − α3)R8

{

EllipticE

(

sn

(√
A(α1 − α3)

12
p, R2

)

, R2

)}

+
{
α2 − (α1 − α2)

1 − R4

R4

}
p + C1, (13)

where p = (ac− b)t − cx + y, A = 2α/c, B = (βc2 + ac+ γ − b)/c3, C1 is a constant of
integration, sn is an elliptic sine function and EllipticE[q, κ] is an incomplete elliptic integral
[33]

EllipticE[q, κ] =
∫ q

0

√
1 − κ2w2

1 − w2 dw.

The solution (13) is illustrated via the periodic graphs in Fig. 1 with the parametric values
A = 0.9, a = −4, b = 0.2, c = 0.6, α1 = 99, α2 = 52, α3 = −63, C1 = 0.9.

Some special solutions

(i) Suppose γ = b and the coefficient b/c3 − β/c − a/c2 − γ /c3 = 0, then NODE (6)
becomes

f ′′′′ + 2αβ

a
f ′ f ′′ = 0, (14)
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Fig. 2 The graphical demonstration of the solution (16)

and its solution is

f (p) = c4 − 3

√(−6a

αβ

)2

ζ

(
3

√−αβ

6a
(p + c2);−2c1

3

√
−6a

αβ
, c3

)

, (15)

where ζ(v; g1, g2) is theWeierstrass-zeta function and ci ’s being constants. Thus, the group-
invariant solution of KdV Eq. (2) for this case is

u(t, x, y) = − 3

√(−6a

αβ

)2

ζ

(
3

√−αβ

6a

{
a

β
x + y −

(
b + a2

β

)
t + c2

}
;−2c1

3

√
−6a

αβ
, c3

)

+ c4. (16)

The solution (16) is traced graphically in Fig. 2, for certain desired values of arbitrary con-
stants. Suitable values for the constants are taken as a = 2, b = −1, α = −2, β = 2, c1 =
−0.35, c2 = −0.4, c3 = 2, c4 = 0 at x = 0.

(ii) We choose the constants (k1, k2) in Eq. (11) to be equal to zero. Then solving the
resultant ODE leads to the solution

V = −3B

A
sech2

{√
B

2
(T − k3)

}

, k3 = constant. (17)

Integrating the above value of V gives the solution f in the form

f (p) = −6
√
B

A
tanh

{√
B

2
(p − k3)

}

+ k4, k4 = constant. (18)

Hence we get the hyperbolic solution to KdV Eq. (2) as

u(t, x, y) = K0 tanh {K1 ((ac − b)t − cx + y + k3)} + k4, (19)

where the constants K0, K1 are expressed as

K0 = −3
√

βc2 + ac + γ − b

αc1/2
, K1 =

√
βc2 + ac + γ − b

2c3/2
.

Figure 3 gives the illustration of kink wave profile for the solution (19) along the x, y-axis
at t = 5, a = 0.1, b = 0.1, c = 1.5, K0 = 1.7, K1 = 5.6, k3 = 0, k4 = 11.
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Fig. 3 Illustration of the kink wave solution (19)

Symmetry reduction for the symmetry �6

This symmetry gives the invariants

f = t, g = y, U = u − x2

2αt
(20)

and the group-invariant solution for (2) is

u(t, x, y) = U ( f , g) + x2

2αt
. (21)

Inserting the above value of u in KdV Eq. (2) gives the reduced NPDE

αtUty + β + αUy + αγ tUyy = 0. (22)

To solveEq. (22),we let z = ∂U/∂ y and this transformsEq. (22) to the quasi-linear first-order
PDE

αt
∂z

∂t
+ αγ t

∂z

∂ y
= −β + αz

α
, (23)

whose solution is

z(t, y) = 1

α

{
1

t
G(y − γ t) − β

}
, (24)

with G being arbitrary function of its argument. Consequently, we have

u(t, x, y) =
∫ {

1

αt
G(y − γ t)

}
dy − β

α
y + x2

2αt
+ c1, (25)

with c1 being arbitrary constant, as the group-invariant solution to KdV Eq. (2) under the
symmetry �6.

Figure 4 gives the periodic profile for the solution (25) with the arbitrary function G
restricted to G = cos(y− γ t). Here we have chosen the parametric values to be α = 1, β =
0.1, γ = 1.8, c1 = 1.6 and x = 0.

Symmetry reduction for the symmetry �7

We now consider the symmetry �7 and use it to perform symmetry reduction. Solving the
associated characteristic equations yield the invariants

j1 = t, j2 = x, � = u + β

α
y. (26)

The above provides group-invariant solution

u(t, x, y) = �(t, x) − β y/α. (27)
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Fig. 4 Solution profiles of (25) with G = cos(y − γ t)

Fig. 5 Solution profiles for (28) with � = sin(t x)

The insertion of the value of u from (27) into (2), we see that this satisfies (2) for arbitrary
�. Hence the group-invariant solution to KdV Eq. (2) for the symmetry �7 is

u(t, x, y) = �(t, x) − β y/α, (28)

where � is arbitrary.
Figure 5 demonstrates the periodic wave solution (28) for � = sin(t x), α = 1, β = 0.1

and y = 10.

Conservation Laws

We construct conservation laws of KdV Eq. (2) in this section. A conservation law in physics
means that a certain property of a system does not change over time. For example, conserva-
tion of electric charge, energy, momentum and many others. Conservation laws are central
to understanding the physical world, in that they describe which physical processes are pos-
sible. Conservation laws are vital in solving and reducing the order of differential equations.
They are utilized to obtain exact solutions and numerical integration of PDEs and are of key
importance in the study of the phenomena exhibited by them [34–37]. There are different
methods that could be used to derive conservation laws of PDEs.

Here themultipliermethod [27]will be utilized as the equation does not have aLagrangian.
Before we derive conservation laws for (2), we first recall some definitions and basic results
of the multiplier method to be applied in this section.

For the two-dimensional KdV Eq. (2), a local continuity equation is a divergence expres-
sion

DtT + Dx X + DyY |(2) = 0, (29)

where T is conserved density, X , Y are spatial fluxes and Di is the total derivative [28]. Here
T , X , Y depend on t , x , y, u.
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Any non-trivial local conservation law (29) is analogous to

Dt T̃ + Dx X̃ + DyỸ = (
uty + βuxx + αuxuxy + αuxxuy + uxxxy + γ uyy

)
Q (30)

vanishing on the solution space of (2), Q(t, x, y, u) being themultiplier, and (T̃ , X̃ , Ỹ ) varies
with (T , X , Y ) by a trivial conserved current. On solution space of Eq. (2), the form (30)
reduces to (29).

We will consider multipliers of zeroth order, that is Q = Q(t, x, y, u). The determining
equation for obtaining all multipliers Q is given by

δ

δu
Q(uty + βuxx + αuxuxy + αuxxuy + uxxxy + γ uyy) = 0. (31)

Here δ/δu is Euler operator which is given by

δ

δu
= ∂

∂u
+

∑

s≥1

(−1)s Di1 . . . Dis
∂

∂ui1i2...is
. (32)

After expanding the determining Eq. (31) and solving for Q, we obtain

Q = f1(t) + f2(y − γ t)

for arbitrary functions f1 and f2. We now employ the homotopy formula [27] to find the
conserved vectors. The conserved vectors for (2) that corresponds to the twomultipliers f1(t)
and f2(y − γ t) are given, respectively, by

T t
f1 = 1

2
uy f1(t),

T x
f1 =

(
βux + 3

4
uxxy − 1

4
αuuxy + 3

4
αuxuy

)
f1(t),

T y
f1

=
(
1

2
ut + γ uy + 1

4
αu2x + 1

4
αuuxx + 1

4
uxxx

)
f1(t) − 1

2
u f1

′(t);

T t
f2 = 1

2
uy f2(y − γ t) − 1

2
u f2

′(y − γ t),

T x
f2 =

(
3

4
αuxuy + βux + 3

4
uxxy − 1

4
αuuxy

)
f2(y − γ t)

−
(
1

4
αuux + 1

4
uxx

)
f2

′(y − γ t),

T y
f2

=
(

γ uy + 1

4
αu2x + 1

4
αuuxx + 1

4
uxxx + 1

2
ut

)
f2(y − γ t) − 1

2
γ u f2

′(y − γ t).

Remark Since themultiplier has arbitrary functions f1 and f2, itmeans that there are infinitely
many nonlocal conservation laws for the KdV Eq. (2).

Concluding Remarks

In this paper, we constructed the group invariant solutions and an infinite number of conserved
vectors for the new two-dimensionalKdV equationwith constant coefficients bymeans of Lie
group symmetry method and the multiplier method, respectively. The Lie algebra spanned by
Lie point symmetries admitted by the equation was derived. The obtained exact solutions are
invariant under the subalgebra of combination of temporal and spatial translation symmetries
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of equation. These subalgebras gave rise to the special group-invariant solutions known as
travelling wave solutions that have a constant velocity throughout their course of propagation
[27]. Here in this work we succeeded in obtaining such physically important solutions pre-
sented in terms of the incomplete elliptic integral, Weierstrass-zeta and hyperbolic functions
which are valuable to study new phenomena emerge in the novel equation we investigated.
Moreover, we have constructed an infinite number of conserved vectors of the equationwhich
manifests on the integrability of underlying equation. The obtained results we presented here
due to the applications of the methods we chose are new and have not been divulged in the
literature earlier.
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