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Environmental DNA metabarcoding (eDNA) is a rapidly emerging field in which high-throughput sequencing is 
used to catalogue the biodiversity of ecosystems through the amplification of DNA extracted from environmental 
samples (water, air, faeces and soil). Although eDNA has strong links to DNA barcoding, the molecular marker most 
often used to detect vertebrates in eDNA studies is a portion of the mitochondrial 12S ribosomal RNA (12S rRNA) 
and not the standard cytochrome oxidase I (COI) marker used in traditional DNA barcoding. eDNA methods rely 
on a comprehensive reference library to link sequence data to species, which are often lacking in hyper-diverse 
countries such as South Africa. In this study, we review the present state of DNA barcode reference databases for 
both 12S rRNA and COI for freshwater fish (native and introduced) found in South African aquatic systems. Analysis 
of DNA records available on GenBank and the Barcode of Life Database (BOLD) revealed incomplete records of the 
examined taxa for both markers. Our findings showed that 34 species, 6 genera and 0 families of native South African 
freshwater fish lack COI barcode records, while 86 species, 22 genera and 8 families lack 12S rRNA records. Unlike 
the native freshwater fish, the non-native fish all had barcode records available for both COI and 12S rRNA. Producing 
comprehensive reference libraries for both markers is an important first step in developing an eDNA protocol for the 
non-invasive monitoring of native and non-native freshwater fish in South Africa.
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DNA barcoding has accelerated species identification 
and has been used to monitor changes in species 
composition in ecosystems (Hebert et al. 2003; da Silva 
and Willows-Munro 2016; Elsaied et al. 2021; Singh 
et al. 2021). Metabarcoding extends DNA barcoding by 
using high-throughput sequencing technology to allow for 
rapid production of species inventories from complex bulk 
samples (Singh et al. 2021). Environmental DNA (eDNA) 
uses DNA extracted from environmental samples such as 
soil, air, or water (Taberlet et al. 2012; Belle et al. 2019) 
and provides the opportunity for non-invasive sampling 
and monitoring (Miya et al. 2015; Thomsen and Willersleve 
2015; Valentini et al. 2016; Belle et al. 2019; Alam 
et al. 2020; Keck et al. 2022). In particular, many studies 
have demonstrated the utility of eDNA in monitoring species 
linked to aquatic systems (Hänfling et al. 2016; Vasselon 
et al. 2017; Fernández et al. 2018; Mächler et al. 2019; 
Keck et al. 2022; among others). Despite the promise 
of providing important global baseline data on species 
distribution and abundance essential for conservation and 
management (Heywood 2011; Belle et al. 2019), eDNA 
research in African systems is still limited (Belle et al. 2019). 

Globally, freshwater ecosystems are particularly vulner-
able to multiple stressors derived from anthropogenic 

activities (Revenga et al. 2005; Dudgeon 2010; Dudgeon 
2019; Belle et al. 2019; Fierro et al. 2019; Reid et al. 
2019; Alam et al. 2020). This is particularly true in South 
Africa, which is a water-scarce country (Dallas and Rivers-
Moore 2014; Govender et al. 2022). Freshwater ecosys-
tems in South Africa are species-rich (Dudgeon 2019; 
O’Brien et al. 2019; Dallas et al. 2022), with high levels of 
endemism (Ellender et al. 2017; Dallas et al. 2022) and are 
affected by factors including pollution, water extraction, the 
introduction of invasive species and the overexploitation of 
aquatic resources (Dudgeon et al. 2006; Dallas and Rivers-
Moore 2014; Riddell et al. 2019; Adams et al. 2020; Desai 
et al. 2021; Dallas et al. 2022; Evans et al. 2022). These 
activities pose a major threat to the freshwater biodiver-
sity in the region (Dallas and Rivers-Moore 2014; O’Brien 
et al. 2019; Desai et al. 2021; Dallas et al. 2022). There is 
an ever-increasing need to effectively monitor changes in 
biodiversity, identify the most affected areas and establish 
priority conservation areas for vulnerable taxa. Species identi-
fication, discovery and monitoring have become an essential 
research theme for the conservation and management of 
biodiversity (Tsoupas et al. 2022). Sustainable conserva-
tion of freshwater biodiversity requires baseline knowledge 
of the community structure of natural ecosystems (Fierro 
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et al. 2019). This will aid in understanding the impact of 
anthropogenic and natural activities on biodiversity loss 
(Fierro et al. 2019; Desai et al. 2021). 

Environmental DNA could provide an important tool for 
monitoring biodiversity in aquatic systems in South Africa 
(and other countries). Future eDNA research may be held 
back by the lack of comprehensive DNA reference libraries 
linking DNA barcodes to taxonomically verified reference 
(voucher) specimens (Elbrecht et al. 2017; Leese et al. 2018; 
Weigand et al. 2019; Garcia de Amézaga Quintanilla 2021; 
Singh et al. 2021; Li et al. 2022). The molecular marker 
in the DNA barcode community most widely used for 
identifying animal taxa is the standardised 658-base pair 
(bp) portion of the cytochrome C oxidase subunit I gene 
(COI; Hebert et al. 2003). These data are curated mainly 
in two popular databases, the Barcode of Life Database 
(BOLD; Ratnasingham and Hebert 2007) and GenBank. In 
contrast, recent eDNA metabarcoding studies have relied 
on the 12S ribosomal mitochondrial gene (12S rRNA) for 
the detection of vertebrate taxa (Riaz et al. 2011; Kelly et al. 
2014; Miya et al. 2015; Hänfling et al. 2016; Yamamoto et 
al. 2017; Polanco et al. 2021), including the characterisation 
of fish communities in freshwater habitats (Thomsen 
et al. 2012; Evans et al. 2016; Valentini et al. 2016; 
Bylemans et al. 2018; Cilleros et al. 2019; Fujii et al. 2019; 
Lecaudey et al. 2019; Berger et al. 2020; Antognazza et al. 
2021; Hallam et al. 2021; Sales et al. 2021; García-Machado 
et al. 2022). As eDNA research for biodiversity monitoring 
is still being established in South Africa, this review aimed 
to summarise the available DNA barcode reference libraries 
for freshwater fish (both native and introduced). Specifically, 
we compared the COI and 12S rRNA data available for 
fish found in South African freshwaters and make some 
suggestions for the standardisation of techniques used in 
future aquatic eDNA research.

Materials and methods

Our review of available 12S rRNA and COI records focused 
on all current native freshwater fish; we only considered 
primary freshwater fish that are restricted to and complete 
their life cycle in freshwater (Myers 1938). We collated a 
list of native freshwater fish using Skelton (2001), Chakona 
et al. (2022) and FishBase (Froese and Pauly 2023). Our 
review also included introduced freshwater fish that have 
naturalised in South African freshwaters (Ellender and Weyl 
2014; Weyl et al. 2020). We compiled a list of introduced 
fish species from Weyl et al. (2020) and FishBase (Froese 
and Pauly 2023). We checked the availability of COI and 
12S rRNA sequence data for each species by searching 
the BOLD (Ratnasingham and Hebert 2007) and National 
Centre for Biotechnology Information (NCBI, GenBank) 
databases. Our study included all data available up to and 
including October 2023. Given that eDNA often makes use 
of short-read high-throughput sequencing technologies such 
as Illumina, we noted all COI and 12S rRNA sequences 
>300 bp as present in the database. We also considered 
the availability of genes from both whole genomes and 
mitogenomes. Where possible, we also noted if the 
reference individual was collected in South Africa or another 
country. This was only noted if the country of collection was 

reported for the sequences in both BOLD and GenBank. If 
the barcode specimen was collected outside of South Africa, 
we still considered the record available for that species.

Results

The species list that we compiled included 106 native 
South African freshwater fish species (37 genera and 17 
families; Supplementary Table S1) and 20 non-native 
species (15 genera and seven families; Supplementary 
Table S2). The alien species were introduced to South 
African aquatic systems through release from the pet trade, 
for recreational fishing, or for aquaculture (Ellender and 
Weyl 2014; Weyl et al. 2020). For native fish, only 72 COI 
records were available, representing only 65% of the native 
species found in South Africa. Of these, only 47 records 
(65%) were collected from localities in South Africa, and 42 
(58%) were full-length (>600 bp) COI barcodes (Table 1). 
At higher taxonomic levels, 84% of native fish genera had 
at least one COI record, while all (100%) families were 
represented by at least one record. For 12S rRNA, only 20 
(19%) native species, 15 genera (41%) and nine families 
(53%) were represented by at least one record (Table 
1). All the 12S rRNA data (100%) were sequenced from 
individuals collected outside of South Africa. Of the 20 
non-native freshwater species found in South Africa, all 
had COI and 12S rRNA barcode records. Of these records, 
only 12 (60%) COI records were from specimens collected 
in South Africa (Table 1). Consequently, the non-native 
species were also fully represented at higher taxonomic 
levels, with 100% of genera and families covered for both 
COI and 12S rRNA (Table 1). 

Not all the examined genera of South African freshwater 
fish had available COI or 12S rRNA barcode records. The 
genera Ctenopoma, Microctenopoma, Serranochromis, 
Amatolacypris, Namaquacypris and Silhouettea lacked 
barcode records for both markers (Figure 1a). Among the 
native freshwater fish families found in South Africa, both 
COI and 12S rRNA records were available for nine families, 
while the remaining eight families had records for only COI 
(Figure 1b). For non-native freshwater fish in South Africa, 
all the genera and families had barcode records for both 
markers (Figure 2). 

Given that not all the South African freshwater fish genera 
and families we examined contained the same number of 
species, we also present the data as a proportion of coverage 
(% of species with records in each genus and family). 
Among the native South African freshwater fish genera, 
Pseudobarbus followed by Labeo had the lowest proportion 
coverage for COI, while Enteromius followed by Labeo and 
Amphilius had the lowest proportion coverage for 12S rRNA 
(Supplementary Figure S3a). Among the various families of 
native South African freshwater fish, the lowest proportion of 
coverage for COI was recorded in the Anabantidae family, 
followed by the Gobiidae family (Supplementary Figure S3b). 
The lowest proportion coverage for 12S rRNA was found in 
the Cyprinidae family, followed by the Amphiliidae family 
(Supplementary Figure S3b). For non-native freshwater fish 
in South Africa, there was complete proportion coverage 
(100%) for COI and 12S rRNA barcode records for all 
genera and families (Supplementary Figure S4).
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Table 1: Number of COI and 12S rRNA records available for native and introduced freshwater fish in South Africa (SA). The numbers of 
records for each species, genus and family are presented. We distinguished between records from specimens collected in South Africa and 
those only available from specimens collected outside the borders of South Africa

Taxonomy Total 
in SA

Total 
COI 

records

COI 
records 
<600 bp

SA COI 
records 

COI records 
from other 
countries

Total 12S 
rRNA 

records

12S rRNA 
records 
<600 bp

SA 12S 
rRNA 

records

12S rRNA 
records from

 other countries
Native taxa
Species 106 72 31 47 25 20 4 0 20
Genus 37 31 7 21 10 15 5 0 15
Family 17 17 2 12 5 9 2 0 9
Introduced taxa
Species 20 20 2 12 8 20 10 0 20
Genus 15 15 0 9 11 15 8 0 15
Family 7 7 0 6 1 7 1 0 7

Ente
rom

ius

La
be

ob
arb

us

Chil
og

lan
is

Amph
iliu

s
La

be
o

Clar
ias

Marc
us

en
ius

La
cu

str
ico

la

Pse
ud

ob
arb

us

Bryc
inu

s

Aus
tro

gla
nis

Oreo
ch

rom
is

Sed
erc

yp
ris

Hyd
roc

yn
us

Micr
ale

ste
s

San
de

lia

Che
tia

Cop
tod

on

Pse
ud

oc
ren

ila
bru

s

Tila
pia

Che
ilo

ba
rbu

s

Eng
rau

lic
yp

ris

Ops
ari

diu
m

Gala
xia

s

Glos
so

go
biu

s

Kne
ria

Syn
od

on
tis

Petr
oc

ep
ha

lus

Noth
ob

ran
ch

ius

Prot
op

ter
us

Sch
ilb

e

Cten
op

om
a

Micr
oc

ten
op

om
a

Serr
an

oc
hro

mis

Amato
lac

yp
ris

Nam
aq

ua
cy

pri
s

Silh
ou

ett
ea

2

4

6

8

10

12

14

GENERA OF NATIVE FRESHWATER FISH IN SOUTH AFRICA

TO
TA

L
N

U
M

BE
R

O
F

C
O

IA
N

D
12

S
rR

N
A

R
EC

O
R

D
S

PE
R

G
EN

U
S

COI

12S rRNA

Cyp
rin

idae

Cich
lid

ae

Moc
ho

kid
ae

Ales
tid

ae

Amph
iliid

ae

Morm
yri

da
e

Clariid
ae

Proc
ato

po
did

ae

Aus
tro

gla
nid

ida
e

Dan
ion

ida
e

Prot
op

ter
ida

e

5

10

15

20

25

TO
TA

L
NU

M
BE

R
O

F
CO

IA
ND

12
S

rR
NA

R
EC

O
RD

S
PE

R
FA

M
IL

Y

Ana
ba

nti
da

e

Gala
xiid

ae

Gob
iida

e

Kne
riid

ae

Noth
ob

ran
ch

iid
ae

Sch
ilb

eid
ae

FAMILIES OF NATIVE FRESHWATER FISH IN SOUTH AFRICA

COI

12S rRNA

(a)

(b)

Figure 1: Total number of native freshwater fish species with (a) COI and 12S rRNA records per genus (genera are ranked according to 
the number of COI data records) and (b) COI and 12S rRNA records per family (families are ranked according to the number of COI data 
records)
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Discussion

This study reviewed the present state of COI and 12S 
rRNA DNA barcode reference libraries for native and 
introduced freshwater fish in South Africa. Although COI 
is the marker traditionally used in the DNA barcoding 
of animal species (Hebert et al. 2003; Bucklin et al. 
2011; Leray et al. 2019; Li et al. 2022), 12S rRNA has 
recently been used in eDNA studies in other countries 
(Thomsen et al. 2012; Kelly et al. 2014; Miya et al. 2015; 
Noble et al. 2015; Evans et al. 2016; Valentini et al. 
2016; Bylemans et al. 2018; Milan et al. 2020; Shu et al. 
2021; Polanco et al. 2021; Xiong et al. 2022). This review 
highlights the incompleteness of the DNA reference libraries 
for South African native fish species for both COI and 
12S rRNA sequences; in particular, the 12S rRNA DNA 

barcode reference library is poorly populated. The South 
African node of the International Barcode of Life (http://
www.ibolproject.org) was established in 2010 and has 
been coordinating research efforts leading to significant 
growth of the COI DNA sequence reference library for South 
African taxa (da Silva and Willows-Munro 2016). This has 
likely led to the higher number of COI records than 12S 
rRNA records, despite the 12S rRNA marker becoming 
an increasingly important gene for the identification and 
monitoring of fish using eDNA methods (Deagle et al. 2014; 
Collins et al. 2019; Zhang et al. 2020; Polanco et al. 2021). 
For future eDNA studies in South Africa to be comparable 
to those conducted in other parts of the globe, this review 
suggests that a multi-marker approach (using both COI and 
12S rRNA) be used. Moreover, using other genes, such 
as 12S rRNA and 16S rRNA, in addition to COI will allow 
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Figure 2: Total number of introduced freshwater fish species with (a) COI and 12S rRNA records per genus (genera are ranked according to 
number of COI data records) and (b) COI and 12S rRNA records per family (families are ranked according to the number of COI data records).
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for more accurate species assignment and the elucidation 
of phylogenetic relationships at higher taxonomic levels 
(Duarte et al. 2020; Ahmed et al. 2022). To this end, it is 
also essential that the present 12S rRNA reference library 
for freshwater fish in South Africa be improved, particularly 
for native species. The DNA barcode reference libraries 
for the Cyprinidae family, which represents an important 
component of the freshwater fish in South Africa, are 
still lacking. The Cyprinidae family contains 56 species 
belonging to eight genera, of which 18 species are 
threatened (six Vulnerable, nine Endangered and three 
Critically Endangered). In particular, the Pseudobarbus 
genus is the most threatened in South Africa, with most 
species in this genus listed as Endangered or Critically 
Endangered on the IUCN red list (Chakona et al. 2022). 
The findings of this review indicate that most of these 
threatened species are not present in the current reference 
libraries for either COI or 12S rRNA DNA sequences. Of the 
18 threatened species belonging to the Cyprinidae family, 
only three Vulnerable species (Enteromius anoplus s.s., 
Pseudobarbus swartzi and Pseudobarbus burgi), and two 
Critically Endangered species (Enteromius treurensis and 
Sedercypris erubescens) have COI barcode records, and 
there are no 12S rRNA records available. Nevertheless, 
genes such as cytochrome b (cytb), which has also 
been used in fish species identification (Tobe et al 2009; 
Ficetola et al. 2010), are becoming increasingly popular in 
eDNA research (Rees et al. 2015; Shu et al. 2020; 2021). 
One advantage of including cytb in a multi-marker panel 
for eDNA, is that the substitution rate of this marker could 
provide support for higher taxonomic associations (Gillet et 
al. 2018). Although this review highlights the incompleteness 
of the 12S rRNA sequence reference library, we also 
reviewed the Cytb sequence reference library (results 
not presented in this review) and it is more complete, 
with records available for 65 species, representing 61% 
compared to the 19% representation reported for 12S rRNA 
in this review. Furthermore, although the Pseudobarbus 
genus lacks COI and 12S rRNA barcodes, almost all the 
species belonging to this genus have Cytb records available 
in GenBank. This further highlights the importance of using 
multi-marker approaches, which include the use of genes 
such as Cytb that have more complete reference libraries, 
for eDNA studies in South Africa. 

Environmental DNA methods have also been used 
successfully for the detection and monitoring of invasive 
fish (Takahara et al. 2013; Keskin 2014; Bylemans 
et al. 2016; Keskin et al. 2016; Hinlo et al. 2017; Clusa and 
García‐Vázquez 2018; Jo et al. 2021; Minett et al. 2021; 
Dubreuil et al. 2022; Jeunen et al. 2022). Considerable 
efforts have been made to barcode introduced freshwater 
fish species in South Africa (van der Walt et al. 2017). As 
a result, introduced freshwater fish species in South Africa 
are fully represented (100%) in the reference libraries for 
both COI and 12S rRNA DNA sequences, and this may 
promote the use of eDNA metabarcoding for the early 
warning, detection, monitoring and management of these 
introduced species.

The identification of taxa using DNA-based approaches 
also depends on the geographical coverage of local 
species in barcode reference databases (Li et al. 2022). 

This has been shown to improve species assignment by 
increasing taxonomic resolution during sequencing (Singh 
et al. 2021). According to Jones et al. (2021), complete 
DNA barcoding databases for regions or countries are 
still scarce. An important finding from this review is that 
most COI data (65%) for native freshwater fish were 
from specimens collected in South Africa. In contrast, all 
the 12S rRNA barcodes were from specimens collected 
outside the borders of South Africa (100%). This further 
highlights the need to build the 12S rRNA barcode 
reference library for South Africa to improve taxonomic 
resolution during eDNA analyses. 

Our review suggests that gaps in the reference libraries 
for COI and 12S rRNA sequences will negatively affect the 
use of eDNA metabarcoding to monitor freshwater fish in 
South Africa. Therefore, priority should be given to filling 
these gaps, especially at the species level, as this could 
increase the efficiency and accuracy of species assignment 
(Duarte et al. 2020). However, we suggest that best 
practices for building reference libraries be employed for 
both genes. This will guarantee the best possible quality 
and traceability of the supporting information linked to 
the identification reference barcode. Although, BOLD 
(Ratnasingham and Hebert 2007) and GenBank (Benson 
et al. 2012) are the main repositories of DNA barcodes, 
they have been associated with species misidentification 
attributed to a lack of expert taxonomic verification and 
supporting information linked to the barcodes (Meiklejohn 
et al. 2019; Weigand et al. 2019; Rimet et al. 2021), 
with particular emphasis on the limitations of GenBank 
(Meiklejohn et al. 2019). According to Remit et al. (2021), 
a barcode sequence can only be considered reliable if its 
metadata are available, including the primary data and all 
supporting information for that DNA barcode. This includes 
the accurately identified voucher specimen, photographs, 
taxonomic name, collection location, storage facility 
information and barcode authors (Rimet et al. 2021). These 
practices should be observed for building high quality 
and reliable COI and 12S rRNA DNA barcode reference 
libraries for South African freshwater fish, which will enable 
efficiency when employing eDNA methods. 

Conclusions and recommendations

Species discovery, identification, biodiversity monitoring 
and management are important measures for assessing 
the impacts of ecosystem management, climate change, 
habitat degradation, and other anthropogenic stressors 
and impacts on freshwater biodiversity in South Africa. 
Environmental DNA metabarcoding provides an opportunity 
for non-invasive monitoring and the identification of both 
native and introduced fish in freshwater systems. Despite 
this, the technique has not been established in South 
African inland waters and our study provides the initial step 
in the development of an eDNA metabarcoding protocol for 
monitoring freshwater fish in South Africa. 

This review assessed the status of the DNA barcode 
reference libraries of the two main eDNA metabarcoding 
markers (COI and 12S rRNA) for native and introduced 
freshwater fish in South Africa. Our results highlighted the 
incomplete representation and coverage of indigenous 
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species in the barcode reference libraries for COI 
sequences and particularly for 12S rRNA. These gaps 
limit the use of eDNA metabarcoding technologies for 
discovering and managing these species in the region. 
Therefore, there is an urgent need to build reliable DNA 
barcode reference libraries for both markers for South 
African freshwater fish. The present state of the South 
African DNA barcode libraries provides the impetus to 
coordinate ongoing efforts and stimulate new initiatives 
aimed to fill the gaps in the barcode libraries for freshwater 
fish in South Africa. eDNA methods are innovative, robust 
and effective, and are contributing to sustainable water 
resource management and conservation globally. We have 
the same opportunities for this approach to contribute to 
South African freshwater research. This review identifies 
the foundational data needed to achieve this.
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