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a b s t r a c t 

In savanna ecosystems, fire is common, yet little is known on the direct and long-term effects of pre- 

scribed burns on arthropod abundance, richness, diversity, and composition. To understand the impact of 

fire on arthropods at Kruger National Park (KNP), standardized pitfall traps and active searches were used 

to collect arthropods at unburnt, annually burnt, and triennially burnt plots of the long-term experimen- 

tal burnt plots (EBPs). Abundance, richness, diversity, and assemblage composition of arthropods were 

compared across EBPs. Results showed that arthropods from the order Hymenoptera, particularly those 

in the family Formicidae, were the most abundant (76.4%), followed by Coleoptera (18.6%), Araneae (3%), 

Orthoptera (1%), and other small/less dominant orders (1%). However, the species richness of arthropods 

from Coleoptera was high (30.2%) compared with Formicidae (24.6%), Araneae (24.6%), and Orthoptera 

(4%). Abundance, richness, diversity, and assemblage composition of multitaxon and Formicidae were 

significantly different among EBPs. Although the abundance of multitaxon and Formicidae was signifi- 

cantly high at unburnt plot, species richness and diversity were low while the assemblage composition 

was unique at this plot compared with the annually and triennially burnt. Furthermore, the assemblage 

of arthropods in annually burnt EBP differed com pared with those collected at unburnt and triennially 

burnt EBPs. We conclude that the frequency of prescribed fires improves the richness, diversity, and as- 

semblage composition of arthropods with a significant reduction of abundances. Thus, fire can be used 

as a conservation tool for arthropods in the protected savanna of KNP. 

© 2024 The Authors. Published by Elsevier Inc. on behalf of The Society for Range Management. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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The savanna biome is a landscape dominated by grasses and 

cattered trees ( Scholes and Archer 1997 ). Globally, savannas sus-

ain diverse plant, vertebrate, invertebrate, and pathogenic species 

 Vaz et al. 2012 ; Botha et al. 2017 ; Leeuwis et al. 2018 ). In South

frica, savanna is the largest biome, covering more than one-third 

f the total land surface area ( Low and Rebelo 1998 ). Savanna is
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mong the renowned reserves of biodiversity, which is prone to 

nthropogenic and climatic disturbances ( Low and Rebelo 1996 ;

benoun et al. 2017 ). A change in the composition of one or more

ommunities of arthropods affects the abundance and diversity of 

ther organisms within the trophic cascade and functioning of this 

cosystem ( Low and Rebelo 1996 ; Siemann et al. 1997 ; Layme et

l. 2004 ; Uehara-Prado et al. 2010 ; Mbenoun et al. 2017 ; Soto-

hoender et al. 2018 ). This may lead to a dysfunctional and im-

alanced ecosystem, thus compromising the provision of essential 

cological services. 

Arthropods are the most dominant group of organisms in sa- 

annas and are sensitive to ecological changes ( Blaum et al. 2009 ;

otha et al. 2016 ; LeClare et al. 2020 ). They account for more

han 80% of the identified species from the Animalia Kingdom 
nge Management. This is an open access article under the CC BY-NC-ND license 
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Figure 1. South African map displaying the geographic location of Kruger National 

Park and two selected experimental burnt plots, namely Tsende (shaded circle) and 

Skukuza (dotted circle). 
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 Friend and Richardson 1986 ; Stork 2018 ). Their contribution to-

ard ecosystem services includes organic matter decomposition,

utrient cycling, pollination, seed dispersal, maintenance of biome

ensity, and food resources for other organisms within savanna

andscapes ( Kunz and Krell 2011 ; Botha et al. 2016 ; Del-Claro et

l. 2019 ; LeClare et al. 2020 ). However, arthropod abundance, rich-

ess, and composition are affected by anthropogenic disturbances

nd climate change ( Gebeyehu and Samways 2003 ; Parr et al.

012 ; Jerrentrup et al. 2014 ; Mauda et al. 2018 ). Changes in the

omposition of species within savanna ecosystems do not only

nterrupt the ecological processes and functions but also disrupt

rophic interactions ( Mauda et al. 2018 ; Maia et al. 2019 ; Scheiter

t al. 2019 ). 

The common disturbances within savanna ecosystems include 

ammal herbivory/grazing, fuelwood extraction, and veld fires

 Siemann et al. 1997 ; Andersen and Muller 20 0 0 ; Mograbi et al.

019 ; Butler et al. 2021 ). Although these three activities exert

ressure on the composition of plants and arthropods, fire has

een widely used to maintain the balance between the coexisting

lant communities by impeding the dense encroachment of shady

ree species but also promote coppicing of ground covering grass

pecies and forbs ( Trollope 1980 ; Trollope et al. 1998 ; Higgins et

l. 20 0 0 ; Gordijn and Ward 2010 ; Mukwevho et al. 2023 ). Thus,

re plays a pivotal role in savanna community assembly and sub-

equent ecosystem function ( Coetsee et al. 2010 ; Smith et al. 2013 ;

utler et al. 2021 ). The influence of fires on the diversity of organ-

sms, particularly arthropods and ecosystem processes in savanna

iomes, has received minimal attention. Yet this knowledge is cru-

ial in the conservation of biodiversity and management of pro-

ected conservancy reserves. 

In South Africa, one of the largest protected areas, Kruger Na-

ional Park (hereafter referred to as KNP), pioneered the long-term

re trials in 1954, following the amendment of the fire suppres-

ion policy in 1948 ( Biggs et al. 2003 ; Van Wilgen et al. 2004 ). The

xperimental burnt plots (EBPs) were initiated with the intention

f documenting the impact of fire on fauna and flora of a savanna

cosystem. However, the response of arthropods to different fire

requencies and intensities has received less attention ( Parr et al.

0 04 ; Horak et al. 20 06 ; Wittkuhn et al. 2011 ; D’Souza et al. 2021 ).

Studies reported that ground-dwelling arthropods endure fires

etter than the active and soil-nesting ones ( Warren et al. 1987 ;

iggins et al. 2014 ; Thom et al. 2015 ; Butler et al. 2021 ; Certini

t al. 2021 ). Furthermore, the elimination of plants by direct fire

ffects the arthropods inhabiting and feeding on the eliminated

lants, and these impacts cascade through the food chain ( Haddad

t al. 2009 ). Therefore, this study aimed at quantifying the long-

erm impacts of prescribed fires on the abundance, species rich-

ess, and diversity of arthropods within the EBPs of KNP. We hy-

othesized that long-term prescribed burns (annual and triennial)

egatively affect abundance, species richness, diversity, and com-

unity structure of arthropods in KNP. 

aterial and Methods 

tudy area 

KNP is among the largest protected areas (i.e., ∼ 2 million ha)

n South Africa and is located along the northeastern boarder of

he country ( Carruthers 1995 ; Biggs et al. 2003 ). The park extends

rom Mpumalanga to Limpopo provinces, with its northern de-

arcation bordering Mozambique and Zimbabwe. The park is lo-

ated in a subtropical region with the annual rainfall ranging be-

ween 350 and 750 mm per annum along the geographic regions

ominated by granite and basalt soils ( Biggs et al. 2003 ; Wigley-

oetsee et al. 2022 ). Furthermore, the monthly minimum and

aximum temperatures range between 15.7 °C and 28.0 °C during
he cooler winter (June–August) and warmer summer (December–

arch) seasons, respectively, at KNP ( Zambatis 2006 ). For this

tudy, Tsende (23 °27.319′ S; 31 °23.197′ E; 370 m a.s.l) and Skukuza

25 °5.870′ S; 31 °27.891′ E; 430 m a.s.l) EBPs, which are located in

he northern and southern parts of KNP, respectively, were se-

ected ( Fig. 1 ). Tree species dominating the landscapes include

olophospermum mopane, Vachellia sp. (i.e., formally known as Aca-

ia ), Combretum, and Sclerocarya sp. at Tsende, while Combretum

ollinum and Combretum zeyheri dominated Skukuza EBPs ( Biggs et

l. 2003 ; Smith et al. 2013 ). However, grasses such as Enneapogon

enchroides, Urochloa mosambicensis, and Bothriochloa radicans were 

ominant at Tsende, while Digitaria eriantha, Setaria sphacelate, and

anicum maximum dominated the Skukuza ( Smith et al. 2013 ). 

xperimental plots 

At both Tsende and Skukuza, strings of EBPs constituted 12

lots at the initial establishment in 1954 ( Biggs and Potgieter 1999 ;

iggs et al. 2003 ). The late summer biennial and triennial plots

t Tsende were divided in the late 70s with the intention of in-

roducing the spring quadrennial and sexennial EBPs, respectively

 Biggs et al. 2003 ). The division caused an increase in the num-

er of subplots to 14; however, the two new treatments were not

sed in this experiment. Each plot was approximately 7 ha and

he strings of EBPs, or individual plots, were demarcated using a

ouble firebreak to protect them from incidental fires ( Fig. 2 ). In

he current experiment, plots that were annually and triennially

urnt during the Austral Spring season (i.e., August) were selected.

ence, the unburnt plots were used as a control. The unburnt and

nnually, biennially, triennially, quadrennially, and sexennial burnt 

lots were haphazardly arranged along the string of EBPs, so the

istance between unique treatment plots varied (see Fig. 2 ). 

rthropod sampling 

A combination of passive and active arthropods capturing tech-

iques were used to optimize the sampling effort of arthropods

rom different taxa following previous studies ( Garcia et al. 1982 ;

ckert 2017 ; Yekwayo et al. 2018 ). In brief, arthropods were first

ollected using pitfall traps and later active searches within the

ransects during Austral winter (between June and August 2019). At

ach of the 100-m transects, 10 pitfall traps were temporarily laid

t a 2 × 5 grid transect with a trap set (two individual pitfall traps)

laced 2 m apart ( Munyai and Foord 2015 ). The first pair of pitfall
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Figure 2. Aerial images showing the layout of Tsende ( i ) and Skukuza ( ii ) strings of experimental burnt plots. Treatment plots on both strings were described, and those 

used for the experiments (i.e., Unburnt [ ◦], annually [ �] and triennially [ ♦]) were highlighted. 
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raps were placed at least 20 m from the fire break to avoid the

oundary effect. The distance between pitfall traps was maintained 

t 20 m, and the experiment was replicated three times (i.e., with

eplicates demarcated at ± 250 m apart) for each of the unburnt,

nnually burnt, and triennially burnt plots ( Ward et al. 2001 ). Dur-

ng sampling, a 500-mL plastic pitfall trap (8-cm diameter and 10-

m height) was buried with its rim flushing the soil surface. The

itfall trap was half-filled with ethylene glycol, and the traps were

eft open during arthropod sampling for 5 consecutive d ( Borgelt

nd New 2006 ; Chikowore et al. 2021 ). Intensive active searches

ere conducted within the 100 × 2 m transect for 30 min. The less

obile arthropods inhabiting the dung, dwelling under rocks and 

hose inhabiting specific host plants, were actively captured. Data 

ollected through both methods were pooled for each transect. 

Samples from traps were washed before arthropod preserva- 

ion. Collected arthropods were transferred from ethylene glycol to 

0% ethanol and preserved at the University of Mpumalanga lab- 

ratory, Mbombela, South Africa for subsequent identification. In 

he laboratory, representative specimens were sorted on the ba- 

is of their distinctive morphological characteristics (i.e., morphos- 

ecies), and where possible, identified to the lowest taxonomic 

evel (e.g., genus or species) using relevant guides ( Scholtz and

olm 1985 ; Picker 2012 ; Gutteridge 2017 ; Dippenaar-Schoeman

023 ). Voucher specimens were housed and cataloged at the Uni-

ersity of Mpumalanga, Biocontrol and Applied Entomology Labo- 

atory. 

ata analyses 

Data collected at the unburnt, triennially burnt, and annually 

urnt plots of Tsende and Skukuza were pooled and analyzed using

Aleontological STatistics software (PAST) version 4.09 ( Hammer et 

l. 2001 ), STATISTICA 13.3 (TIBCO Software Inc.), and PRIMER 6.
sing EstimateS version 9.1.0 ( Gotelli and Colwell 2011 ), nonpara-

etric estimators were used to predict the asymptotic species rich- 

ess of arthropods sampled at the unburnt, annually burnt, and 

riennially burnt plots. The robust, accurate, and reliable coverage- 

ased estimator of species richness, namely Incidence-based Cov- 

rage Estimator (ICE), was used to measure adequacy of sampling 

ffort. Furthermore, Chao2, Jacknife2, Bootstramp, and Michaelis- 

enten (MM) means estimators were used to provide the least 

iased estimates of the sampled arthropods ( Gotelli and Colwell 

011 ). Samples were randomized 100 times. 

Following Shapiro-Wilk‘s test, data for the abundance, species 

ichness, and diversity of Araneae, Coleoptera, Formicidae, and Or- 

hoptera did not meet the assumptions for analyses of variance. 

s a result, generalized linear models (GLZ) (in R software [ R Core

eam 2021 ]), which are less sensitive to homogeneity of variance

nd normality assumptions, were used assuming a Poisson distri- 

ution with a log-linear function. Significant differences were then 

etermined using the Wald χ2 test statistic. The diversity metri- 

es for Orthoptera was not computed due to lack of sufficient data.

or arthropod groups whose abundance, species richness, and di- 

ersity were statistically different, Dunn’s tests were used for mul- 

iple comparisons among undisturbed, triennially burnt, and annu- 

lly burnt plots. 

Using PRIMER 6, permutational multivariate analysis of vari- 

nce (PERMANOVA) was used to determine the assemblage com- 

osition of arthropod sampled at the unburnt, triennially burnt, 

nd annually burnt EBPs. Data were first transformed using square 

oot matrix, and the assemblage composition was calculated using 

999 permutations. Thereafter, pairwise PERMANOVA models were 

sed to determine the differences in the species composition of 

rthropods at different EBPs. Lastly, multivariate analysis consist- 

ng of a group-average hierarchical cluster analysis with similar- 

ty profile (SIMPROF) permutation tests was used to compare the 
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Table 1 

Abundance, species richness, and estimators of arthropods sampled from unburnt, triennially burnt, and annually burnt plots in the long-term experimental burnt plots of 

Kruger National Park. 

Arthropod species Frequency of burns 

Unburnt Triennial Annual Combined 

No. of arthropods sampled 2 532 2 391 1 842 6 765 

Percentage of arthropods sampled 37.4 35.3 27.2 100 

No. of species sampled 69 65 87 126 

Percentage of species sampled 54.8% 51.6% 69.1% 100% 

ICE 1 93.4 73.7 117.8 169 

Chao2 93.6 ± 13.1 69.6 ± 3.7 110.8 ± 11.4 161.3 ± 14.7 

Jackknife2 107.3 76.04 129.3 184.7 

Bootstramp 78 71.7 100.7 144.2 

MM means 83.5 78.2 104.6 132.2 

1 ICE indicates incidence-based coverage estimator; MM, Michaelis-Menten. 

Figure 3. Abundance of arthropods sampled at the unburnt, annually burnt, and 

triennially burnt experimental burnt plots, solely and combined. 
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omposition of species sampled among transects within unburnt,

riennially burnt, and annually burnt EBPs. To visualize the sepa-

ation of arthropod communities among EBPs, a non–metric mul-

idimensional scaling (nMDS) was performed at a stress value of

.14. Multivariate analyses were carried out using the Bray-Curtis

imilarity resemblance matrix. 

esults 

pecies abundance and richness 

A total of 6 765 individual arthropods representing 126 mor-

hospecies were collected from unburnt, annually burnt, and

riennially burnt plots ( Table 1 ). From the sampled arthropod

pecies, the Formicidae were the dominant group contributing

 168 (76.4%), followed by Coleoptera 1 255 (18.6%), while 342

5%) individual arthropods were recorded from the remaining

roups, namely Orthoptera, Araneae, Blattodea, Diptera, Hemiptera,

epidoptera, Scorpiones, Spirostreptida, and Scolopendromorpha 

 Fig. 3 ; Table S1, available online at …). The high number of arthro-

ods (multitaxon) were captured at the unburnt plots with a total

f 2 532 (37.4%). Furthermore, the abundance of multitaxon de-

lined by 0.9 and 0.7 folds at triennially burnt and annually burnt

ompared with the unburnt plot; thus, a total of 2 391 (35.4 %)

nd 1 842 (27.2 %) arthropods were captured from each plot, re-

pectively (see Fig. 3 and Table 1 ). 

The abundance of multitaxon was significantly different

 χ2 = 117.025, df = 2, P < 0.001) among the unburnt, triennially

urnt, and annually burnt plots. When analyzed separately, the

bundance of Formicidae ( χ2 = 194.498, df = 2, P < 0.001) and
rthoptera ( χ2 = 35.243, df = 2, P < 0.001) was significantly dif-

erent among the unburnt, triennially burnt, and annually burnt

BPs at KNP. The abundances of multitaxon, Formicidae, and Or-

hoptera were significantly high at the unburnt and triennially

urnt compared with the annually burnt EBPs ( Fig. 4 ). Contrast-

ng results showed no statistical differences in the abundance of

raneae ( χ2 = 14.131, df = 2, P = 0.224) and Coleoptera ( χ2 = 8.423,

f = 2, P = 0.701). 

Despite the noticeably high abundance of arthropods sampled

t the long-term EBPs of KNP, the species richness did not reach

symptotic estimations at the annually burnt, triennially burnt, and

nburnt plots either solely or combined. Of the 126 morphos-

ecies collected, 87 morphospecies were captured at the annu-

lly burnt plots; hence, 69 and 65 morphospecies were recorded

t the unburnt and triennially burnt plots, respectively (see

able 1 ). From these plots, the overall number of morphospecies

ampled was high for Coleoptera (30.2%), Hymenoptera: Formi-

idae (24.6%), Araneae (24.6%), and Blattodea (5.6%), while less

pecies-rich groups (Diptera, Hemiptera, Lepidoptera, Orthoptera, 

corpiones, Spirostreptida, and Scolopendromorpha) contributed 

% ( Fig. 5 ). 

Species richness of multitaxon was significantly higher

 χ2 = 8.733, df = 2, P = 0.013) at the annually burnt plot com-

ared with triennially burnt and unburnt plots. It increased by 0.1

nd 0.2 folds in triennially and annually burnt plots, respectively.

imilarly, the species richness of Formicidae ( χ2 = 5.841, df = 2,

 = 0.045) was significantly high at the annually burnt compared

ith the unburnt plot. Species richness of multitaxon and Formi-

idae was significantly low at the unburnt compared with the

nnually burnt plots. Species richness of Formicidae recorded at

he triennially burnt plot was not significantly different compared

ith those recorded at either unburnt or annually burnt plots.

owever, species richness of multitaxon at the triennially burnt

lot was not significantly different com pared with the unburnt plot

 Fig. 6 ). Furthermore, the species richness of other groups arthro-

ods such as Araneae ( χ2 = 1.603, df = 2, P = 0.449), Coleoptera

 χ2 = 2.365, df = 2, P = 0.307), and Orthoptera ( χ2 = 1.837,

f = 2, P = 0.399) did not significantly vary among the three

BPs. 

iversity metrices 

Shannon diversity index showed that there was significant vari-

tion in the diversity of multitaxon ( χ2 = 16.204, df = 2, P < 0.001)

nd Formicidae ( χ2 = 7.585, df = 2, P = 0.023). The diversity of

ormicidae and multitaxon was significantly high at the annually

urnt compared with unburnt plots, not with the triennially burnt

lots ( Fig. 7 ). However, there was no significant variation in the

iversity of Araneae ( χ2 = 1.116, df = 2, P = 0.572) and Coleoptera

 χ2 = 1.901, df = 2, P = 0.387) among the unburnt, triennially burnt,
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Figure 4. Boxplots showing the abundance of Formicidae (i), Orthoptera (ii), and multitaxon (iii) arthropods collected at the unburnt, triennially burnt, and annually burnt 

experimental burnt plots of Kruger National Park. Different letters above the bars show significant differences between treatments (Dunn’s test: P < 0.05). 

Figure 5. Number of arthropod species sampled at the unburnt triennially and an- 

nually burnt plots solely and combined. 
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nd annually burnt EBPs. Of the 126 morphospecies of arthropods 

ollected in the current study, 30.2% of the species was shared

mong the three plots. Less than 4.8% of the multitaxon was shared

etween burnt (i.e., either annual or triennial) and unburnt plots. 

he high number of species (7.1%) was shared between annually 

urnt and triennially burnt plots. Lastly, 16.7%, 11.1%, and 27% of

he species were distinct to the unburnt, triennially burnt, and an-

ually burnt plots, respectively (see Table S1). 
pecies similarity and composition 

Cluster analysis identified four groups: group 1 —annual 3; group 

 —triennial 1–3, unburnt 1–3, and annual 1–2; group 3 —unburnt

–6 and triennial 4–6; and group 4 —annual 4–6. Within groups 2

nd 3, assemblage communities were similar for each type of EBP

e.g., in group 3, the unburnt 4–6 and triennial 4–6 formed dif-

erent subgroups. However, a subgroup in group 2 had annual 1–2

nd triennial 1 grouped together, suggesting similarities ( Fig. 8 ).

he species composition was significantly different (PERMANOVA: 

seudo-F = 2.0568, df = 2, P = 0.002) among the unburnt and an-

ually burnt plots; hence, there were no marked differences be- 

ween the triennially burnt and other EBPs of KNP ( Table 2 ). Sim-

larly, the two-dimensional representation of the n MDS showed 

hat the arthropod communities in unburnt plots were separated 

rom those of the annually and triennially burnt plots, while there

as an overlap between the triennial and annual plots ( Fig. 9 ). Cre-

atogester sp. and Carabidae sp. 8 characterized the unburnt plots, 

hereas Pyramica sp. 01 and Gyrinidae sp. 6 were common in the

riennial plots. Lastly, Carabidae sp. 10 was common in the annu-

lly burnt plot (see Fig. 9 ). 

iscussion 

The current study reported the significant impact of prescribed 

urns (i.e., annual and triennial) on the abundance, species rich- 

ess, diversity, and assemblages of the multitaxon sampled at the 

ong-term experimental burnt plots of KNP. Findings also demon- 

trated the sensitivity of Formicidae and Orthoptera, through 
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Table 2 

Pairwise comparisons showing similarity in species composition of arthropods sampled at the unburnt, triennially burnt, and annually burnt plots of Kruger National Park. 

Bolded P value shows statistically significant dissimilarity of species composition between experimental burnt plot combinations. 

Combinations of plots compared Statistics 

t value P value Composition similarity 

Unburnt Triennial 1.336 0.0629 = 

1 

Annual 1.7222 0.0024 � = 

Triennial Annual 1.1929 0.1324 = 

1 = indicates similarity; � = , dissimilarity. 

Figure 6. Boxplot showing the species richness of Formicidae (i) and multitaxon 

(ii) sampled at the annually, triennially burnt, and unburnt plots of Kruger National 

Park. Different letters above the bars show significant differences between treat- 

ments (Dunn’s test: P < 0.05). 
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Figure 7. Boxplot showing the diversity (Shannon-Wiener diversity index) of 

arthropods (i.e., Formicidae [i] and multitaxon [ii]), sampled at the unburnt, annu- 

ally burnt, and triennially burnt experimental burnt plots of Kruger National Park. 

Different letters above the bars show significant differences between treatments 

(Dunn’s test: P < 0.05). 
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educed abundances with the increased frequency of fires. Emu-

ating the pattern of multitaxon, the species richness and diversity

f Formicidae increased with the frequency of fires. Multitudes of

tudies also demonstrated the impact of predetermined and acci-

ental fires on the abundance, species richness, diversity and as-

emblages of arthropods in the forests, fynbos, grasslands, and oak

avanna landscapes in the Americas, Australasia, and South Africa

 Siemann et al. 1997 ; Andersen and Muller 20 0 0 ; Ferrenberg et

l. 2006 ; Vasconcelos et al. 2009 ; Calcaterra et al. 2014 ; Haddad

t al. 2015 ; Yekwayo et al. 2018 ). Formicidae, Coleoptera, Araneae,

nd Orthoptera were recorded among the most abundant groups of

rthropods recorded at the long-term EBPs protected Afrotropic re-

ion of KNP. Four groups were also listed among dominating orders

f arthropods sampled in fire experiments conducted at the Brazil-

an savannas ( Uehara-Pradoa et al. 2009 ; Vasconcelos et al. 2009 ;

ehara-Prado et al. 2010 ), Peninsula fynbos ( Pryke and Samways

012 ; Yekwayo et al. 2018 ) and Ceuta (Spain) forests (EL Khayati

t al. 2023 ). Furthermore, studies cataloging the common arthro-
od groups and those conducted at the grazed exclosures docu-

ented similar orders as dominant at the savanna and grassland

andscapes ( Jonsson et al. 2010 ; Gerlach et al. 2013 ; Botha et al.

017 ; Mavasa et al. 2022 ; Mukwevho et al. 2023 ). 

Here, we showed that the abundance of multitaxon, Formicidae,

nd Orthoptera significantly declined with the increasing frequency

f fires. The results showed that the abundance of arthropods (i.e.,

ultitaxon and Formicidae and Orthoptera) was significantly lower

t the annually burnt plot (i.e., sampled at least 11 mo post fire)

ompared with the unburnt plot. Results corroborate with those

eported by da Silva et al. (2020) , Ferrenberg et al. (2006) , Lazarina

t al. (2017) , Paolucci et al. (2017) , and Siemann et al. (1997) that

ocumented the short-term impacts of fires, time post fire, and

requency of prescribed burns on arthropod abundances. The stud-

es reported high abundance of multitaxon and unique groups

n the undisturbed/infrequently burnt plots compared with the
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Figure 8. Classification tree showing arthropod assemblage similarities across unburnt, triennially burnt, and annually burnt plots at Kruger National Park. The group-average 

linking on Bray-Curtis species similarities was used to measure the similarities. 

Figure 9. Nonmetric multidimensional scaling (nMDS) ordination showing the re- 

semblance of arthropod species across unburnt, triennially burnt, and annually 

burnt plots surveyed at KNP. Polygons represent different plots, namely unburnt 

(green), triennially (dark blue), and annually burnt (light blue). 
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ntensively burnt or those assessed promptly after burns ( Siemann

t al. 1997 ; Ferrenberg et al. 2006 ; Lazarina et al. 2017 ; Paolucci et

l. 2017 ; da Silva et al. 2020 ). 

The notable difference in the abundance of Formicidae and Or- 

hoptera among plots reflects their sensitivity to late winter fires 

f KNP. The sensitivity of Formicidae and Orthoptera to ecological 

isturbance (i.e., fire) at the EBPs of KNP illustrates their renowned

se as reliable ecological indicators. Similarly, studies have re- 

orted that the significant reduction in the abundance of Formi- 

idae and Orthoptera to fires was not surprising since they are

nown to be a ubiquitous group contributing to a variety of ecolog-

cal functions in grasslands and savannas ( Porter and Redak 1996 ;

nderwood and Fisher 20 06 ; Bell 20 09 ; Graham et al. 2009 ; Van

chalkwyk et al. 2019 ; da Silva et al. 2020 ). Underground nests and

nfluxing abilities of Formicidae (i.e., ants) and Orthoptera may be 

ssociated with the resilience of the group to frequent predeter- 

ined fires (i.e., annually) at KNP. 

The decline of multitaxon and unique orders of arthropods 

ithin different trophic cascades may be associated with the di- 

ect and indirect effects of fire at KNP. Ground-dwelling and imma-
ure developmental stages of flying invertebrates inhabiting com- 

ustible live (e.g., plants) or dead material (e.g., litter) are highly

rone to fires and may be burnt during veld fires ( Vasconcelos et

l. 2009 ; Kwok and Eldridge 2015 ; Kwok et al. 2016 ). As such, the

estruction of various habitats such as the live plants, leaf litter, 

nd dung during burning is speculated to have directly reduced 

he numbers of arthropods dwelling at these microhabitats on an- 

ually burnt plots of KNP. Furthermore, limited food resources for 

ollinators indirectly impact the abundance of prestigious ecolog- 

cal facilitators, while the trophic cascade and ecological functions 

re disrupted by the elimination of arthropods at any trophic level

 Scherber et al. 2010 ; van Dam and Heil 2011 ; Seibold et al. 2018 ).

The species richness and diversity of multitaxon and Formici- 

ae significantly differed between the unburnt and annually burnt 

lots, while the overlap was noticeable between triennially burnt 

nd unburnt EBPs of KNP. Some studies ( Ferrenberg et al. 2006 ;

raham et al. 2009 ; Pryke and Samways 2012 ; Valkó et al. 2016 ;

ekwayo et al. 2018 ) showed that the richness and diversity of

rthropods sampled at the burnt plots from at least 6 months (up

o 10 years) after incidental or prescribed fires does not statistically

iffer with that on the unburnt plot at different protected areas

cross landscapes. Due to the noticeable significant increase in the 

pecies richness and diversity of multitaxon and Formicidae be- 

ween the unburnt and annually burnt sites, we speculate that the

ccelerated recovery and diversity of plants during the rainy season 

ould have encouraged influxes and recovery of arthropods at the 

nnually burnt plot. The abundance of diverse food resources (i.e., 

rom plants to predators) within trophic cascades could have im- 

roved the species richness and diversity of multitaxon and Formi- 

idae at the annually burnt plot at KNP ( Scherber et al. 2010 ; van

am and Heil 2011 ; Ebeling et al. 2018 ; Seibold et al. 2018 ; Maia

t al. 2019 ). 

While Yekwayo et al. (2018) reported low species richness and 

iversity of multitaxon, the current study reported contrasting re- 

ults with the significantly high richness and diversity recorded in 

he annually burnt plots. However, a study by Pryke and Samways

2012) reported that the diversity of multitaxon is significantly 

igher at a recently burnt plot (i.e., 3 mo post fire) compared with

hose sampled 1−3 yr after fires. 

The assemblages of multitaxon were distinct for the unburnt 

lots while the slight overlap was recorded between the trienni- 
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lly and annually burnt plots. The pattern emphasizes the impact

f fires and its role in shifting the assemblage in the ecosystem.

he level of overlaps explains that a low proportion is resilient to

ifferent frequencies of fires; hence, distinct groups have different

evels of fire tolerances. Studies conducted at the Afrotropical sa-

annas reported resilience of arthropods assemblages to prescribed

nd accidental fires; however, the assemblages’ compositions were

ssociated with the vegetation structure and complexity ( Parr et

l. 2004 ; Davies et al. 2012 ). Because fire was reported as a ma-

or driver of grass and tree diversity at KNP ( Smit et al. 2010 ; Smit

t al. 2013 ), we assume that the assemblages of arthropods could

e associated with vegetation structures at the unburnt, triennially

urnt, and annually burnt EBPs. 

The current study reported that the abundance, species rich-

ess, and diversity of multitaxon emulated that of the domi-

ating group of arthropods, Formicidae. Likewise, Siemann et al.

1997) reported that the abundance, species richness, and diversity

f dominating group of arthropods was similar to that of multi-

axa combined at different burnt plots at the oak savanna of Cedar

reek Natural History Area, Minnesota. Moreover, Yekwayo et al.

2018) demonstrated that the abundance, species richness, and di-

ersity of the most abundant group of arthropods (i.e., Formicidae)

as similar to that of the multitaxon in a study that measured the

mpact of fire on arthropods at the Cape Winelands and Kogelberg

iosphere Reserves, Western Cape, South Africa. 

The current study shed some light on the long-term benefits

f late summer prescribed burns on the conservation of arthro-

od species and biodiversity in the savanna landscape of KNP.

esults of the current study filled a gap outlined by Parr et al.

2004) , which emphasized the need to assess the overall response

f arthropods (i.e., multitaxon) at the protected areas where late

res have been constantly used as a veld management tool. The

urrent study reported that the impact of the late winter fire is

emporal and the abundance of Formicidae, Orthoptera and multi-

axon significantly improved with the reduction in the frequency

f fires. Contrarily, the species richness, diversity, and composition

mproved with the frequency of fires at Kruger National Park. The

bundance, species richness, diversity, and composition of arthro-

ods at the long-term EBPs emulate that of the plots where short-

erm fires (e.g., those incurred post burn or incidental fires). In

onclusion, burning during late winter season should be encour-

ged, although it has temporal impact on the abundance of arthro-

ods inhabiting savanna landscape of KNP. The intensity of ongoing

rescribed burns at the protected reserve of KNP encouraged the

onservation of arthropod species for more than 67 yr; thus, the

isruption of functions and ecological services rendered by arthro-

ods may be largely at acute temporal scales. 
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