
Afr J Ecol. 2024;62:e13300.	 wileyonlinelibrary.com/journal/aje	   | 1 of 15
https://doi.org/10.1111/aje.13300

© 2024 John Wiley & Sons Ltd.

Received: 19 April 2024  | Revised: 8 June 2024  | Accepted: 10 June 2024
DOI: 10.1111/aje.13300  

R E S E A R C H  A R T I C L E

Assessing the dynamics of land use and land cover change in 
semi-arid savannah: A focus on woody plant encroachment 
utilising historical satellite data

Cyncinatia Malapane1 |   Timothy Dube1 |   Tatenda Dalu2

1Department of Earth Sciences, Institute 
of Water Studies, University of the 
Western Cape, Bellville, South Africa
2Aquatic Systems Research Group, School 
of Biology and Environmental Sciences, 
University of Mpumalanga, Nelspruit, 
South Africa

Correspondence
Cyncinatia Malapane, Department of 
Earth Sciences, Institute of Water Studies, 
University of the Western Cape, Bellville 
7535, South Africa.
Email: cyncinatia@gmail.com

Tatenda Dalu, Aquatic Systems 
Research Group, School of Biology and 
Environmental Sciences, University of 
Mpumalanga, Nelspruit 1200, South 
Africa.
Email: dalutatenda@yahoo.co.uk

Funding information
National Research Foundation, Grant/
Award Number: 138206

Abstract
The encroachment of woody plants into grassland and the conversion of grasslands 
to woodlands is a worldwide phenomenon and has been regarded as a major global 
problem for decades. The rate of woody plant encroachment (WPE) varies across bi-
omes and can be influenced by land use activities and climate conditions. As a result, 
the current study assessed the spatial distribution of woody plants and land use and 
land cover (LULC) change within the Letaba River catchment in the Limpopo province 
of South Africa's subtropical region. Landsat Thematic Mapper (TM) and Operational 
Land Imager (OLI) satellite data sets were used to map and quantify WPE and other 
LULC changes in the Letaba River catchment over a 30-year period (1989–2019). 
Random forest classifier was used to determine of the rate of change of WPE and 
LULC within the study area. The results indicated that the Letaba River catchment 
has undergone a significant change with an increase in woody plant species. The 
woody plant cover had increased from 36,014 ha in the year 1989 to approximately 
561,493 ha by 2019. Meanwhile, grassland has declined by 486,322 ha (33.7%) from 
1989 to 2019. The overall classification accuracy (OA) ranged between 91.7% and 
95.5%. The study findings will provide critical insights and baseline information about 
the state of WPE in semi-arid environments, as well as provide catchment managers 
with the information they need to take the necessary actions to manage the rapid 
increase in woody plants. However, fire and herbivory are important factors that in-
fluences the WPE, and this might have also played an important role in the findings. 
The study suggests that WPE is an ongoing process and management strategies are 
required to mitigate and maintain the intensity of woody plants.
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Résumé
L'envahissement des prairies par les plantes ligneuses et la conversion des prairies 
en forêts constituent un phénomène mondial et est considéré comme un problème 
mondial majeur depuis des décennies. Le taux d'empiètement des plantes ligneuses 
(WPE) varie selon les biomes et peut être influencé par les activités d'utilisation des 

www.wileyonlinelibrary.com/journal/aje
https://doi.org/10.1111/aje.13300
mailto:
mailto:
mailto:cyncinatia@gmail.com
mailto:dalutatenda@yahoo.co.uk


2 of 15  |     MALAPANE et al.

1  |  INTRODUC TION

Several studies (e.g. Acharya et  al.,  2018; Caterina,  2012; De 
Klerk, 2004; Moleele et al., 2002; Ward, 2005) have suggested that 
the world's savannah and grasslands are being altered by a process 
known as woody plant encroachment (WPE). The WPE is a type of 
ecological succession in which woody plants replace herbaceous 
vegetation like grasses and forbs (Ding et al., 2020; Mokgotsi, 2018; 
Mokoka, 2016; Mpati, 2015). Bush thickening, woody plants invasion 
and plant regrowth are all synonyms for WPE (Acharya et al., 2018; 
Kiswaga et al., 2020; Malapane et al., 2024). It includes a wide range 
of woody plant species, from shrubs to trees, evergreen to decidu-
ous, deciduous and broad-leaved to needle-leaved (Liu et al., 2013; 
Stahl, Hérault, et al., 2013; Stahl, Kattge, et al., 2013).

The WPE has been classified as another type of land degradation 
and is regarded as one of the most significant ecological changes 
(Oldeland et  al.,  2010). For more than a century, it has been rec-
ognised as a global rangeland problem (Eldridge et al., 2011; Grellier 
et  al.,  2013; Liao et  al.,  2020; O'Connor et  al.,  2014; Russell & 
Ward, 2014; Wilcox et al., 2022). However, not all forms of encroach-
ment are harmful to the ecosystem, some are natural vegetation suc-
cession, that play an important role in improving the infiltrability of 
soil and percolation in semi-arid regions (Leite et al., 2020). The WPE 
can be due to overgrazing, increased atmospheric carbon dioxide, 
fire suppression, loss of browser herbivores, warmer temperatures 

and altered rainfall patterns (Belayneh & Tessema,  2017; Brunelle 
et al., 2014; Daskin et al., 2016; Kraham, 2017). Grazing can reduce 
fuel loads, resulting in the reduction fire frequency and intensity 
that historically kept woody plants suppressed (Venter et al., 2018). 
Increase in carbon dioxide concentration favours woody plants that 
have the C3 photosynthetic pathway over grasses that have the C4 
photosynthetic pathway (Quirk et al., 2019). Venter et al. (2018) re-
ported that rainfall is identified as one of the main causes of WPE. 
Nevertheless, on local scale, increase in temperatures have shown 
to be the main cause of WPE through declines in frost-induced 
tree mortality. Nonetheless, WPE is mostly associated with over-
grazing and has been particularly widespread in arid and semi-arid 
savannahs, with approximately 20 million hectares (ha) affected in 
South Africa alone (Belayneh & Tessema, 2017; Case & Staver, 2017; 
Moleele et al., 2002; Sankaran & Anderson, 2009).

Herbivory grazing reduces biomass, therefore reducing the 
chances of fire, which have kept WPE in check (Pierce et al., 2019). 
Moreover, heavy livestock grazing has caused the replacement of pal-
atable grass species by less palatable bushes and shrubs (Symeonakis 
& Higginbottom, 2014). South Africa has lost about 50% of grazing 
capacity in rangelands due to the replacement of palatable grass by 
less palatable bushes and shrubs (Gigliotti et  al.,  2020; Grossman 
& Gandar, 1989). Savannahs have also lost their mammalian fauna; 
therefore, this has further affected the maintenance of savannahs 
as they also dependant on mammals for maintenance. Fire is now 

terres et les conditions climatiques. Par conséquent, la présente étude a évalué la 
distribution spatiale des plantes ligneuses et les changements dans l'utilisation et 
l'occupation des sols (LULC) dans le bassin versant de la rivière Letaba, dans la province 
de Limpopo, qui se situe dans la région subtropicale de l'Afrique du Sud. Les données 
des satellites Landsat Thematic Mapper (TM) et Operational Land Imager (OLI) ont 
été utilisées pour représenter et quantifier les changements du WPE et d'autres LULC 
dans le bassin versant de la rivière Letaba sur une période de 30 ans (1989-2019). Un 
classificateur de forêts d'arbres décisionnels a été utilisé pour déterminer le taux de 
changement du WPE et de la LULC dans la zone d'étude. Les résultats indiquent que 
le bassin versant de la rivière Letaba a subi un changement considérable avec une 
augmentation des espèces de plantes ligneuses. La couverture des plantes ligneuses 
est passée de 36 014 ha en 1989 à environ 561 493 ha en 2019. Quant aux prairies, 
elles ont diminué de 486 322 ha (33,7 %) entre 1989 et 2019. La précision globale de 
la classification (OA) était comprise entre 91,7 % et 95,5 %. Les résultats de l'étude 
fourniront des informations cruciales et des données de base sur l'état du WPE dans 
les environnements semi-arides, ainsi que les informations dont les responsables des 
bassins versants ont besoin pour prendre les mesures nécessaires à la gestion de la 
croissance rapide des plantes ligneuses. Cependant, les incendies et les herbivores 
sont des facteurs importants qui influencent le WPE, ce qui pourrait également avoir 
joué un rôle important dans les résultats. L'étude suppose que le WPE est un processus 
continu et que des stratégies de gestion sont nécessaires pour atténuer et maintenir 
l'intensité des plantes ligneuses.
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the main factor left to maintain savannahs (Murphy et  al.,  2015). 
According to Kavwele et al. (2017), WPE in isolated ecosystems can 
lead to reduction or extinction of indigenous species and can poten-
tially affect the diversity of species, distribution and abundance. The 
WPE can also change the biogeochemical, energy, processes, grass-
land microclimate, decrease the diversity of herbaceous species, al-
ters the nutrient cycle, soil hydrological properties and ecosystem 
water budget (Petersen & Stringham, 2008).

It has also been demonstrated that an increase in woody plants 
has a significant impact on rangeland-based agriculture and biodi-
versity (Ayalew & Mulualem, 2018). About 10–20 million ha of South 
Africa's agricultural land has declined, and this has affected agricul-
tural production and biodiversity due to WPE (Stafford et al., 2017). 
Furthermore, WPE alters species composition, ecosystem processes, 
carbon and nutrient cycles, groundwater recharge and increases 
carbon and nitrogen pools in plants and soils (Caterina et al., 2014; 
McKinley & Blair, 2008; Zou et al., 2016).

The WPE is most severe in arid to semi-arid environments, 
which cover nearly 40% of the world's land and are used for range-
land activities on about 50% of it (Huang et  al.,  2018; Malapane 
et  al.,  2024; Shikangalah & Mapani,  2020). According to Belayneh 
and Tessema  (2017), semi-arid rangelands around the world have 
gone from grasslands to woodlands in the last 50 years. Woody 
plants now dominate approximately 45 million ha of savannah eco-
systems worldwide (Uchezuba et al., 2019). South Africa alone has 
lost 8 million ha of grazing or cultivation land because of WPE, result-
ing in decreased food security (Stafford et al., 2017). However, there 
are still grasslands with less trees and savannahs with high woody 
cover savannahs that are healthy systems and there are savannahs 
that are transitioning to woodlands. The transition of vegetation in 
arid savannahs differs among regions, with Africa and India transi-
tioning to closed dry thicket, South America to hummock grassland 
and Australia transition to shrub-like Triodia vegetation type. There 
are areas which are dry to support grass growth and areas that can 
support grass growth; however, other vegetation outcompetes the 
grass and hinders their growth.

For several decades, researchers have used remote sensing tech-
niques to map and monitor vegetation change (Feng et  al.,  2015; 
Rawat & Kumar, 2015; Zhang et al., 2020), with WPE being one of 
the most performed assessments (Graw et al., 2016; Liao et al., 2018; 
Oldeland et al., 2010; Symeonakis & Higginbottom, 2014). Remote 
sensing is currently widely used as an effective tool for providing 
spatial and temporal information about tree cover change in sa-
vannah and grassland environments (Pérez-Cabello et  al.,  2021), 
as remote sensing techniques provide relatively accurate and up-
to-date information (Adam et al., 2010; Çömert et al., 2019; Khalid 
et al., 2018; Wachowiak et al., 2017). Although it is less expensive 
and takes less time than actual field surveys, a combination of field 
surveys and remote sensing techniques produce the best results 
(Weiss et al., 2020).

Since the year 1984, Landsat data have been used to record 
continuous LULC changes at spatial and temporal resolutions 
(Wulder et al., 2012, 2016). Landsat is the longest operating earth 

observation satellite; therefore, it is ideal for studying long-term 
environmental changes (Song et al., 2021). Landsat data have also 
been used to assess long-term changes in forests, croplands and 
prairies at the local, regional and national levels (Dong et al., 2015; 
Helber et  al.,  2019; Müller et  al.,  2015; Zhang et  al.,  2014). There 
are various classification techniques, ranging from pixel-based to 
object classification (Qu et al., 2021; Sibaruddin et al., 2018; Vogel & 
Strohbach, 2009; Zhang et al., 2019). Deep learning classifiers have 
recently evolved and can achieve high accuracy in land cover clas-
sification (Abdi, 2020; Helber et al., 2019; Pan et al., 2022; Rumora 
et  al.,  2020). Because WPE is a continuous process, assessment 
techniques that can quickly identify and monitor these changes 
are required. Studies have focused on mapping woody plants in 
areas dominated by shrubs and grasses (e.g. Brandt et  al.,  2016; 
Higginbottom et al., 2018; Ludwig et al., 2016). As a result, the rate 
of change in woody plants is expected to vary across regions in re-
lation to LULC types/changes (Archer et al., 2017). Therefore, it is 
critical to map and monitor the WPE in areas as well as changes in 
other LULC. The Letaba River catchment contains a variety of LULC 
types, including agriculture and urbanisation. Thus, using Landsat 5 
TM and 8 OLI, this study assessed the extent of WPE over a 30-year 
period. Landsat data were used because it contains historical infor-
mation that can be utilised to map the long-term spatial distribution 
of WPE (Tokar et al., 2018). The study further evaluated the changes 
that occurred over the 30-year period to determine the changes in 
LULC. While WPE is another form of land degradation not all form 
of WPE have negative impact to the environment. There are areas 
that are experiencing WPE but are healthy regardless of the transi-
tion. Moreover, WPE has been previously reported to have effect on 
grass species than on other LULC. However, in this study, reduction 
of areas covered by other LULC due to WPE is observed such as the 
reduction of agricultural land and grassland. Nonetheless, the study 
hypothesised that WPE increased with time at an expense of other 
LULC particularly grassland.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

The Letaba River catchment is part of the Limpopo River basin and 
spans 14,086 km2. The Letaba River has three main tributaries: the 
Klein Letaba River in the northwest, the Middle Letaba and Groot 
Letaba rivers in the southwest, and other major tributaries includ-
ing the Nsama, Letsitele and Molototsi rivers (Querner et al., 2016). 
The river together with the tributaries flow from the mountain area 
in the western part of the catchment to the east, where it meets 
the Kruger National Park's western boundary. The Letaba River 
flows into the Olifants River near the Mozambican border, then 
into the Limpopo River before emptying into the Indian Ocean 
(Ndara, 2017). The mountainous topography at the western head-
waters of the Letaba Catchment results in a higher rainfall with the 
mean annual rainfall ranging between 700 and 1500 mm, while the 
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mean annual rainfall for the remainder of the catchment varies from 
450 to 800 mm (Mkwalo, 2011; Raubenheimer, 2018). The catch-
ment has a diverse geology composed primarily of sedimentary 
rocks in the north and rocks in the south (Holland, 2011). The north-
ern part of the Kruger National Park consists of high-quality coal 
deposits, while the mineral rich Bushveld igneous complex is found 
on the southern parts of the water management area (DWAF, 2004). 
Moreover, the western part of the Letaba Catchment is comprised 
of granite and gneiss with dolerite intrusions, quartzite, shale and 
sandstone. Furthermore, the eastern part consists of basalt, rhyo-
lite and granophyre, and granite and gneiss with dolerite intrusions 
(Ndara, 2017). The Letaba River basin has a diverse range of soils, 
with sandy soils being the most common. In mountainous areas, 
composite and deep fractured aquifers predominate in relatively im-
permeable bedrock. The average annual precipitation in the Letaba 
catchment region is 612 mm, with more than 60% captured in only 
6% of the total area, which is the mountainous region in the west 
(Olivier & Jonker,  2013). The precipitation in the western moun-
tainous areas ranges from 500 to 1800 mm, while the east receives 
450–700 mm (Heritage et al., 2001). The annual evaporation average 
is estimated to be 1669 mm (Olivier & Jonker, 2013). At lower el-
evation (<650 m NN), the area is dominated by savannah vegetation 
(grass and shrubs) which are interspersed by agricultural activities 
particularly along the river. However, the high elevation is comprised 

of forests, especially monoculture of eucalyptus, pine and acacia 
(Krause et al., 2014; Figure 1).

2.2  |  Field surveys

2.2.1  |  Reconnaissance survey

Before analysing the satellite images, an overview field survey of the 
study area was conducted. Visual observations were made to learn 
about the topography, vegetation, soil and general characteristics of 
the Letaba River catchment. Table 1 describes in detail the observed 
LULC classes within the study area. The classes were used to assess 
the accuracy of classified maps. This stage aided in the preparation 
of satellite images for classification as well as the collection of data 
on LULC types in the study area.

2.3  |  Image selection

Landsat 5 TM and 8 OLI with high spatial resolution were used. The 
years 1989, 1998, 2004 and 2019 were chosen to evaluate the ex-
tent of WPE and other LULC changes in the Letaba River catchment 
(Table 2). The selection of these specific years of satellite images was 

F I G U R E  1 Letaba River catchment in the Limpopo Province, South Africa.
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entirely based on the quality (e.g. radiometric and geometric errors) 
and long-time series availability. It must also be noted that four im-
ages of the same month was mosaicked into one image. During the 
mosaicking process it was noted that, most of the images between 
2004 and 2019 had a misfit, resulting in a large gap when compared 
to space between other years chosen. Misfit in this case mean other 
images were flipped or rotated such that features do not appear to 
be where there are supposed to be. For examples rivers connection 
were not clearly or well represented on the satellite images. This 
would have affected the general findings of the study because LULC 
types would have appeared where they are not supposed to appear, 
for example, riparian vegetation would have appeared to be at the 
edge of the study area instead of where there is rivers connection 
are. Therefore, land cover such as riparian vegetation would have 
appeared where there are no river connections. The Landsat sat-
ellite imagery was chosen because it has enough historical data, it 
is freely available, and it has been shown to perform well in other 
land cover classification and woody plant analysis studies (e.g. 
Fashae et al., 2020; Ghaderpour & Vujadinovic, 2020; Symeonakis 
et al., 2016; Wang et al., 2017; Yang & Crews, 2019). The Landsat im-
ages were obtained from the Earth Explorer program of the United 
States Geological Survey (USGS) (usgs.​gov). Landsat imagery is suit-
able for mapping woody plant encroachment due to its wide swath 
width and moderately high spatial resolution (30 m).

2.4  |  Image pre–processing

The satellite imagery was pre-processed with the goal of correcting 
defects inherent in remotely sensed data (i.e. radiometric and geo-
metric distortions) and improving the raw data quality to facilitate 
data interpretation. The images were enhanced further to improve 
visual interpretation and the appearance of land features. Image 

enhancement techniques such as linear contrast stretching, and edge 
enhancement filters were used to improve the image visual interpreta-
tion. Image restoration was also used to compensate for image errors, 
noise and geometric distortions caused by scanning, recording and 
playback operations. This was accomplished using ERDAS imagine 
2014's geometric correction, radiometric correction (haze compensa-
tion) and noise reduction filters. The goal was to make the restored 
image easier to read the type of LULC for better classification maps.

2.5  |  Image processing

The layer stacking tool in ArcMap 10.8 software was used to com-
bine the individual monochromatic bands. This was accomplished by 
importing Landsat 5 TM bands 1–7 and Landsat 8 OLI bands 1–11 
into the software and combining them with the layer stacking tool 
to create the necessary data set (i.e. a true colour composite map). 
It should be noted that the acquired remotely sensed data were in 
the form of individual monochromatic bands (i.e. visible bands, VNIR 
bands and SWIR bands) (Table 3). Because the individual bands were 
ineffective at identifying different LULC types, they were com-
bined to form a single data set that could then be used to identify 
different LULC types. During layer stacking, the nearest neighbour 
resampling method was used to ensure that all pixels in the bands 
were reordered appropriately, and that the radiometric integrity of 
the data was preserved. The composited images were then overlaid 
with the Letaba River catchment shapefile to ensure that only the 
study region was extracted. Random forest classifier (RF) was used 
to generate classified LULC maps, because RF has a non-parametric 
nature, high classification accuracy and the ability to determine 
change or variability within the catchment (Desai & Ouarda, 2021; 
Janitza et al., 2018; Rodriguez-Galiano et al., 2012; Soleimannejad 
et al., 2019; Zhao et al., 2022).

Classes Description

Forest Natural forest

Plantation Agricultural activities, farmlands and cultivated lands

Non-vegetated Developed lands (urbanisation), including residential, 
commercial and socio-economic infrastructure and bare land 
(area without or with little vegetation cover)

Waterbodies Rivers, dams, streams and lakes

Shrubland Shrubs and bushes

Grassland Herbaceous layers such as grass and forbs

TA B L E  1 Description of LULC classes 
within the Letaba River catchment.

Sensor Date of acquisition Source

Landsat 5 TM (Thematic Mapper) 12 September 1989 USGS (United States of 
Geological Survey)20 August 1998

25 August 2004

Landsat8 OLI (Operational Land Imager) 25 May 2019

TA B L E  2 Landsat data images used in 
this study.

http://usgs.gov
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2.6  |  Accuracy assessment

Accuracy assessment is a critical final step in the classification 
process. The accuracy assessment goal was to quantify how well 
the pixels were classified into the correct land cover classes. RF 
focus for accuracy assessment pixel selection was on every part 
of the area to avoid biasness. It was done to compare the per-
formance of RF classifiers for classified images. Using classified 
images, accuracy assessment points were created in ArcGIS 10.8. 
The points were then converted to KML files and imported into 
Google Earth. The goal of using Google Earth in this case was to 
determine which pixels of each land cover were correctly classi-
fied and which were incorrectly classified. A total of 400 points 
were chosen at random. According to Parece and Campbell (2013), 
selecting many points yields a more reliable set of results. The 
points were then represented on an attribute table to validate the 
classified land classes.

3  |  RESULTS

3.1  |  Spatial distribution of WPE and other land use 
and land cover types

According to the classified maps, shrubland has increased from 1989 
to 2019. The area covered by shrubs has increased significantly from 
36,014 ha (2.6%) in 1989–561,493 ha (46.9%) in 2019; however, the 

area covered by grasses has decreased from 507,454 ha (37.1%) to 
21,132 ha (1.7%) (Figure  2; Table  4). Overall, shrubland increased 
by 525,479 ha (44.3%), while grassland decreased by 486,322 ha 
(35.4%) (Figures  4 and 6). In 1989, grasslands predominated over 
shrubland and other land use activities in the catchment area, 
covering approximately 507,454 ha (37.1%) of the total area, while 
non-vegetated areas covered approximately 653,460 ha (47.8%). In 
1998, shrubland increased by 36,014 ha–146,053 ha (8%). The re-
sults also show increase in area of plantation from 1989 to 2004 of 
approximately 10.3% (Figures 5 and 6). Increase in area of plantation 
has negative environmental impacts (Spawn et al., 2020). Reduced 
grassland cover leaves soils less protected from soil erosion leading 
to reduced soil organic matter. In addition, application of commer-
cial fertiliser can lead to high amounts of nutrient inputs into soils 
and eutrophication of waterways through runoff or leaching (Zhang 
et al., 2021).

Water bodies, forests, and non-vegetated land have all fluctuated 
over the last 30 years (Table 4). Waterbodies, forest, plantation and 
non-vegetated areas covered approximately 13,747 ha, 81,919 ha, 
74,236 ha and 653,460 ha, respectively, in 1989. Waterbodies, for-
est, and non-vegetated area cover 21,444 ha, 54,157 ha, 109,402 ha 
and 427,128 ha, respectively, in 2019. Figure 2 depicts the changes 
in shrubland and other LULC types that occurred within the Letaba 
River catchment. The resulting RF classifier for the LULC clas-
sifications for the four chosen years shows a significant increase 
in woody plants, particularly in the western part of the region 
(Figures 2 and 3).

Landsat 8 sensor Band name
Wavelength 
(mm)

Spatial 
resolution (m)

Landsat 8 OLI

1 Coastal/ aerosol 0.43–0.45 30

2 Blue 0.45–0.52

4 Green 0.53–0.60 30

5 Red 0.63–0.68 30

4 Near infrared (NIR) 0.85–0.89 30

5

6 Short-wave infrared (SWIR)1 1.56–1.66 30

7 Short-wave infrared (SWIR)2 2.10–2.30 30

8 Panchromatic 0.500–0.68 15

9 Cirrus 1.360–1.39 30

10 Long-wave infrared (LWIR) 1 10.60–11.20 30

11 Long-wave infrared (LWIR) 2 11.50–12.50 30

Landsat 5 TM

1 Visible blue 0.45–0.52

2 Visible green 0.52–0.60 30

3 Visible red 0.63–0.69 30

4 Near infrared (NIR) 0.76–0.90 30

5 Short-wave infrared (SWIR)1 1.55–1.75 30

6 Thermal 10.40–12.50 120

7 Short-wave infrared (SWIR) 2 2.08–2.35 30

TA B L E  3 Bands description for 
Landsat 8 OLI and Landsat 5 TM band 
specifications used for 1989–2019.
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3.2  |  Accuracy assessment derived classified maps

Validation was carried out using the four classified maps. A total 
number of 400 random points was distributed across the scene with 
a minimum number of 38 points and maximum number of 111 points 
allocated to the smallest class and highest class (i.e. waterbodies and 
nonvegetated area), respectively to ensure that an adequate num-
ber of samples was used for the assessment of every class. The RF 
classifier achieved high overall classification accuracies ranging from 
91.7% to 95.5% between 1989 and 2019 (Tables 5–8). Overall clas-
sification accuracies achieved in 1989, 1998, 2004 and 2019 were 
91.7%, 93.2%, 95.2% and 95.5%, indicating that there was agree-
ment between reality on the ground and satellite-derived images. 
Furthermore, the accuracies of the producer and user ranged from 
82% to 100%, respectively. Furthermore, the results revealed low 
error of omission and commission rates ranging from 0% to 18%, re-
spectively (Figure 4).

4  |  DISCUSSION

Over a 30-year period, the researchers examined the spatial dis-
tribution of woody plants (years 1989–2019). According to the 
findings, the catchment region has undergone significant changes 
due to an increase in woody plants. From 1989 to 2019, the area 
covered by woody plants increased by 44.3%, while grassland 
decreased by 35.4%. Similarly, other studies (e.g. Symeonakis & 
Higginbottom, 2014; Mpati, 2015; Browning et al., 2014) have linked 
an increase in woody plants to a decrease in grasslands. Over 20 years, 
Symeonakis and Higginbottom  (2014) observed a significant aerial 
increase in woody plants from 58% to 67% and a significant de-
crease in grasslands from 41% to 33% in South Africa's North-West 
Province. Doyo et al. (2019) study in Ethiopia found a 70% increase 
in woody plants in the Borana Rangelands region, which supports 
the current study findings. González-Roglich et al. (2015) discovered 
a 27% increase in woody plant density in the Caldenal savannahs of 

F I G U R E  2 The spatial distribution of WPE and other identified LULC types within the Letaba River catchment.

TA B L E  4 Area (ha) coverage in the Letaba River system catchment region between 1989 and 2019.

LULC 1989 Cover (%) 1998 Cover (%) 2004 Cover (%) 2019 Cover (%)

Shrubland 36,014 2.6 146,053 10.6 366,841 28.7 561,493 46.9

Grassland 507,454 37.1 457,555 33.4 358,669 28 21,132 1.7

Plantation 74,236 5.4 67,874 4.9 201,517 15.7 109,402 9.1

Forest 81,919 5.6 88,823 6.4 82,583 6.4 54,157 4.5

Non-vegetated 653,460 47.8 601,651 44.01 263,708 20.64 427,128 35.75

Waterbodies 13,747 1 4873 0.3 4157 0.3 21,444 1.7

Abbreviation: LULC, land use and land cover.
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central Argentina in the 1960s, transitioning from open savannahs to 
a mosaic of dense woodlands with additional agricultural clearings. 
Similarly, Nill et al.  (2022) reported similar findings in the Western 
Canadian Arctic. Stevens et al. (2016) discovered an 8% increase in 
woody plant cover across sub-Saharan Africa over a 30-year period. 
Skowno et al.  (2017) measured the extent to which woodlands re-
placed grasslands in South Africa's grassland over a 23-year period 

and discovered that woodlands replaced grasslands by more than 
57,000 km2.

Woody plant cover is increasing most rapidly in savannahs, 
according to Stafford et al.  (2017), most likely due to fire suppres-
sion and land fragmentation. However, changes in grassland and 
savannah ecosystems to woodlands vary across different areas 
(Skowno et al., 2017). Areas with more than 500 mm of mean annual 

F I G U R E  3 Change in the area (ha) covered by shrubland and other LULC types in the Letaba River catchment area from 1989 to 2019.

TA B L E  5 Derived land use and land cover classification accuracies for 1989 in the Letaba River catchment, South Africa.

Forest Waterbodies Plantation

Non-veg 
(bare 
land)

Non-veg 
(settlement) Shrubland Grassland Total

Commission 
error (%)

User's 
accuracy 
(%)

Forest 52 0 0 0 0 0 0 52 0.00 100.00

Waterbodies 0 33 1 1 0 0 0 35 5.70 94.30

Plantation 9 0 55 0 0 0 1 65 15.30 84.60

Non-vegetated (bare 
land)

0 0 2 63 2 1 0 68 7.30 92.60

Non-vegetated 
(settlement)

0 2 1 0 44 0 0 47 6.30 93.60

Shrubland 0 1 2 1 0 66 1 71 7.00 93.00

Grassland 0 2 6 0 0 0 54 62 12.90 87.10

Total 61 38 67 65 46 67 56 400

Omission error (%) 14.70 13.10 17.90 14.00 4.30 1.40 3.70

Producer's accuracy 
(%)

85.20 86.80 82.00 98.60 95.60 98.60 96.40

Overall accuracy (%) 91.70

Kappa coefficient 0.8

Abbreviations: non-veg, non-vegetated; OA, overall accuracy; PA, producer accuracy; UA, user accuracy.
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precipitation have higher woodland rate expansions than areas with 
less than 500 mm. Furthermore, elephant–protected areas show a 
clear loss of woodlands, whereas commercial and traditional range-
lands show an increase in woodland extent. Huang et  al.  (2018) 
found no increase or decrease in woody cover over a 28-year period 
in southern Arizona. As a result, changes in woody plants can be af-
fected by factors such as precipitation and other climatic conditions.

The Letaba catchment is dominated by rural areas and most of 
these rural communities practice livestock production. Livestock 
grazing is the main use of grasslands globally (Asner et  al.,  2004) 

and is often associated with WPE. Livestock grazing removes fuel 
loads, which reduces the frequency and intensity of fire leading to 
WPE (Madany & West, 1983). Moreover, the introduction of live-
stock can be linked with displacement of indigenous browsers and 
seed predators, releasing woody plants from top-down controls. 
Furthermore, land abandoned can also influence WPE such as 
transition of forest to agricultural land and later abandon it. As ob-
served from the results plantation decrease with increase in woody 
plats cover. While land management practices are seen as the main 
contributor of WPE (Wigley et  al.,  2009), increase in atmospheric 

TA B L E  6 Derived land use and land cover classification accuracies for 1998 in the Letaba River catchment, South Africa.

Forest Waterbodies Plantation

Non-veg 
(bare 
land)

Non-veg 
(settlements) Shrubland Grassland Total

Commission 
error (%)

User's 
accuracy 
(%)

Forest 50 0 0 0 0 0 0 50 0.00 100.00

Waterbodies 0 34 1 1 0 0 0 36 5.50 94.40

Plantation 9 0 58 0 0 0 0 67 13.40 86.50

Non-vegetated (bare 
land)

1 1 0 64 0 1 1 68 5.80 94.10

Non-vegetated 
(settlement)

0 0 0 0 46 0 0 46 0.00 100.00

Shrubland 1 1 2 0 0 66 0 70 5.70 94.30

Grassland 0 2 6 0 0 0 55 63 12.70 87.30

Total 61 38 67 65 46 67 56 400

Omission error (%) 18.00 10.50 13.40 1.40 0.00 1.40 1.40

Producer's accuracy (%) 82.00 89.40 86.50 98.60 100.00 98.60 98.60

Overall accuracy (%) 93.20

Kappa coefficient 0.80

Abbreviations: non-veg, non-vegetated; OA, overall accuracy; PA, producer accuracy; UA, user accuracy.

TA B L E  7 Derived land use and land cover classification accuracies for 2004 in the Letaba River catchment, South Africa.

Forest Waterbodies Plantation

Non-veg 
(bare 
land)

Non-veg 
(settlements) Shrubland Grassland Total

Commission 
error (%)

User's 
accuracy 
(%)

Forest 58 0 0 0 0 0 0 58 0.00 100.00

Waterbodies 0 36 1 0 1 1 0 39 7.60 92.40

Plantation 0 0 59 0 1 2 0 62 4.80 95.10

Non-vegetated (bare 
land)

0 1 2 64 0 0 1 68 5.80 94.20

Non-vegetated 
(settlement)

2 1 0 1 44 0 1 49 10.20 89.80

Shrubland 1 0 1 0 0 64 0 66 3.30 96.70

Grassland 0 0 4 0 0 0 54 58 6.90 93.10

Total 61 38 67 65 46 67 56 400

Omission error (%) 4.90 5.20 11.90 1.50 4.30 4.40 3.50

Producer's accuracy 
(%)

95.20 94.70 88.10 98.50 95.70 95.60 96.50

Overall accuracy (%) 94.70

Kappa coefficient 0.80

Abbreviations: non-veg, non-vegetated; OA, overall accuracy; PA, producer accuracy; UA, user accuracy.
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concentration of greenhouse gases such as carbon dioxide has also 
been documented to be one of the primary factors that influence 
WPE (Stevens et al., 2016). Archer et al.  (2017) reported that pre-
cipitation can accelerate the growth and density of woody plants 
further explains that precipitation can also be the cause of WPE as 
mesophytic grasses transition to xerophytic bushes. With regards 
to the Letaba catchment the pattern and trends of WPE might have 
also been influenced by minimal precipitation.

Mapping the spatial distribution of woody plants over time is 
critical for detecting and monitoring changes as well as understand-
ing trends. Remote sensing data have been shown to be accurate 

in mapping environmental changes, and it is also freely available 
(Bechtel et al., 2015; Dong et al., 2016; Gómez et al., 2016; Tulbure 
et  al.,  2022). As a result, Landsat data with a spatial resolution of 
30 m were used, and the spatial distribution of WPE has been suc-
cessfully mapped for over 30 years. Hostert et  al.  (2003) mapped 
vegetation change in central Crete, Greece, between 1977 and 1996 
using Landsat TM and the multispectral Scanner System (MSS). 
Röder et al.  (2008) assessed the spatio-temporal patterns of vege-
tation cover development in a rangeland system in northern Greece 
from 1984 to 2000 using Landsat TM and Enhanced Thermatic 
Mapper Plus (ETM+). Sonnenschein et al.  (2011) used Landsat TM 

F I G U R E  4 The spatial distribution of woody plants and grassland within the Letaba River catchment.

F I G U R E  5 The spatial distribution of grassland and plantation within the Letaba River catchment.
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and ETM+ in vegetation dynamics in a Mediterranean environment 
based on different vegetation indices, and all these studies demon-
strated success in mapping vegetation change using Landsat data.

However, using Landsat data to map woody plants can be difficult 
because woody plants can have high spatial and temporal dynamics 
and can be the dominant vegetation type or a transitional vegetation 
formation (Petraitis, 2013). According to Leitão et al. (2015), woody 
plants have different developmental stages and densities, resulting 

in diverse landscape patterns. Landsat's spatial resolution of 30 m is 
likely to result in a high degree of spectral mixing within each 30 m 
pixel. However, using Landsat data, the current study produced re-
liable results.

5  |  CONCLUSIONS

Woody plant encroachment has a negative impact on grasses 
and other species, resulting in an unbalanced ecosystem. As a 
result, analysing the spread and distribution of woody plants 
will provide insight into their nature of occurrence, structures 
and establishment, as well as valuable information about the re-
lationship between woody plants and grassland and other LULC. 
Conservationists can also use the data to develop effective man-
agement strategies to reduce WPE. The study will also provide in-
formation on the distribution of woody plants, which is currently 
lacking in semi-arid areas. Through the analysis of past and current 
data, this will allow the prediction of future trends in the distribu-
tion and abundance of woody plants. Analysing WPE trends can 
help identify some of the most important implications of complex 
interactions between social and environmental processes. The 
study will also help catchment managers take the necessary steps 
to control the spread of woody plants. Long-term monitoring of 
WPE is required to improve understanding of broad-scale changes 
in woody vegetation and the potential link between such changes 
and ecosystem resilience or degradation. A retrospective analysis 
has yielded useful information about the rate of change in WPE 
as well as the nature of the occurrence. Landsat data have been 
used for decades and have proven to be a reliable tool in map-
ping WPE and other LULC change. We discovered that WPE is 
increasing steadily and rapidly at the expense of grassland using 

F I G U R E  6 Change in the area (%) covered by shrubland, 
grassland and plantation in the Letaba River catchment area from 
1989 to 2019.

TA B L E  8 Derived land use and land cover classification accuracies for 2019 in the Letaba River catchment, South Africa.

Forest Waterbodies Plantation
Non-veg 
(bare land)

Non-veg 
(settlements) Shrubland Grassland Total

Commission 
error (%)

User's 
accuracy 
(%)

Forest 59 0 0 0 0 0 0 59 0.00 100.00

Waterbodies 0 36 0 0 0 0 0 36 0.00 100.00

Plantation 0 0 59 0 0 2 0 61 3.40 96.60

Non-vegetated (bare 
land)

0 0 0 63 0 1 1 65 3.00 97.00

Non-vegetated 
(settlement)

1 0 1 0 46 0 0 48 4.20 96.80

Shrubland 1 0 1 1 0 64 0 67 4.40 96.60

Grassland 0 2 6 1 0 0 55 64 14.10 85.90

Total 61 38 67 65 46 67 56 400

Omission error (%) 330.00 5.20 11.90 3.10 0.00 4.50 1.80

Producer's accuracy (%) 96.70 94.80 88.10 96.90 100.00 95.50 98.20

Overall accuracy (%) 95.50

Kappa coefficient 0.8

Abbreviations: non-veg, non-vegetated; OA, overall accuracy; PA, producer accuracy; UA, user accuracy.
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Landsat data and a random forest classifier. Overall, we conclude 
that the findings of this study show that remote sensing can be 
used to successfully map WPE. Furthermore, the study's findings 
show that the Random Forest classifier can produce high overall 
accuracies. Savannah and grasslands are undergoing rapid land 
cover transformation because of WPE. An increase in the density 
of woody plants along the Letaba Catchment decreased grass rich-
ness and agricultural land, as a result, this might have an impact on 
forage production for livestock, therefore, leading to food inse-
curity. Therefore, the study recommends that there must be poli-
cies that aim to encourage sustainable land use practices, together 
with the control of WPE and the restoration and rehabilitating 
of degraded ecosystems. Methods such as mechanical, chemical 
and combination treatments should be used to control and reduce 
the increase in densities of woody plants. Other methods such as 
mechanical which includes cutting, uprooting and burning of the 
plant is reported to be time consuming; although, it has proven to 
be an effective and successful method used thus far. Moreover, 
government-based and community-based projects aimed at con-
trolling or mitigating the problem of WPE is required.
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