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Abstract
The encroachment of woody plants into grassland and the conversion of grasslands 
to woodlands is a worldwide phenomenon and has been regarded as a major global 
problem for decades. The rate of woody plant encroachment (WPE) varies across bi-
omes and can be influenced by land use activities and climate conditions. As a result, 
the current study assessed the spatial distribution of woody plants and land use and 
land cover (LULC) change within the Letaba River catchment in the Limpopo province 
of South Africa's subtropical region. Landsat Thematic Mapper (TM) and Operational 
Land Imager (OLI) satellite data sets were used to map and quantify WPE and other 
LULC	 changes	 in	 the	 Letaba	 River	 catchment	 over	 a	 30-	year	 period	 (1989–2019).	
Random forest classifier was used to determine of the rate of change of WPE and 
LULC within the study area. The results indicated that the Letaba River catchment 
has undergone a significant change with an increase in woody plant species. The 
woody	plant	cover	had	increased	from	36,014 ha	in	the	year	1989	to	approximately	
561,493 ha	by	2019.	Meanwhile,	grassland	has	declined	by	486,322 ha	(33.7%)	from	
1989	 to	2019.	The	overall	 classification	 accuracy	 (OA)	 ranged	between	91.7%	and	
95.5%.	The	study	findings	will	provide	critical	insights	and	baseline	information	about	
the state of WPE in semi- arid environments, as well as provide catchment managers 
with the information they need to take the necessary actions to manage the rapid 
increase in woody plants. However, fire and herbivory are important factors that in-
fluences the WPE, and this might have also played an important role in the findings. 
The study suggests that WPE is an ongoing process and management strategies are 
required to mitigate and maintain the intensity of woody plants.

K E Y W O R D S
land use and land cover change, Letaba catchment, random forest classifier, semi- arid 
environments, woody plants encroachment

Résumé
L'envahissement des prairies par les plantes ligneuses et la conversion des prairies 
en forêts constituent un phénomène mondial et est considéré comme un problème 
mondial	majeur	depuis	des	décennies.	Le	taux	d'empiètement	des	plantes	ligneuses	
(WPE) varie selon les biomes et peut être influencé par les activités d'utilisation des 
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1  |  INTRODUC TION

Several studies (e.g. Acharya et al., 2018; Caterina, 2012; De 
Klerk, 2004; Moleele et al., 2002; Ward, 2005) have suggested that 
the world's savannah and grasslands are being altered by a process 
known as woody plant encroachment (WPE). The WPE is a type of 
ecological succession in which woody plants replace herbaceous 
vegetation like grasses and forbs (Ding et al., 2020; Mokgotsi, 2018; 
Mokoka, 2016; Mpati, 2015). Bush thickening, woody plants invasion 
and plant regrowth are all synonyms for WPE (Acharya et al., 2018; 
Kiswaga et al., 2020; Malapane et al., 2024). It includes a wide range 
of woody plant species, from shrubs to trees, evergreen to decidu-
ous, deciduous and broad- leaved to needle- leaved (Liu et al., 2013; 
Stahl, Hérault, et al., 2013; Stahl, Kattge, et al., 2013).

The WPE has been classified as another type of land degradation 
and is regarded as one of the most significant ecological changes 
(Oldeland et al., 2010). For more than a century, it has been rec-
ognised as a global rangeland problem (Eldridge et al., 2011; Grellier 
et al., 2013; Liao et al., 2020; O'Connor et al., 2014; Russell & 
Ward, 2014;	Wilcox	et	al.,	2022). However, not all forms of encroach-
ment are harmful to the ecosystem, some are natural vegetation suc-
cession, that play an important role in improving the infiltrability of 
soil and percolation in semi- arid regions (Leite et al., 2020). The WPE 
can	be	due	 to	overgrazing,	 increased	atmospheric	 carbon	dioxide,	
fire suppression, loss of browser herbivores, warmer temperatures 

and altered rainfall patterns (Belayneh & Tessema, 2017; Brunelle 
et al., 2014; Daskin et al., 2016; Kraham, 2017). Grazing can reduce 
fuel loads, resulting in the reduction fire frequency and intensity 
that historically kept woody plants suppressed (Venter et al., 2018). 
Increase	in	carbon	dioxide	concentration	favours	woody	plants	that	
have the C3 photosynthetic pathway over grasses that have the C4 
photosynthetic pathway (Quirk et al., 2019). Venter et al. (2018) re-
ported that rainfall is identified as one of the main causes of WPE. 
Nevertheless, on local scale, increase in temperatures have shown 
to be the main cause of WPE through declines in frost- induced 
tree mortality. Nonetheless, WPE is mostly associated with over-
grazing and has been particularly widespread in arid and semi- arid 
savannahs,	with	approximately	20	million	hectares	 (ha)	affected	 in	
South Africa alone (Belayneh & Tessema, 2017; Case & Staver, 2017; 
Moleele et al., 2002; Sankaran & Anderson, 2009).

Herbivory grazing reduces biomass, therefore reducing the 
chances of fire, which have kept WPE in check (Pierce et al., 2019). 
Moreover, heavy livestock grazing has caused the replacement of pal-
atable grass species by less palatable bushes and shrubs (Symeonakis 
& Higginbottom, 2014).	South	Africa	has	lost	about	50%	of	grazing	
capacity in rangelands due to the replacement of palatable grass by 
less palatable bushes and shrubs (Gigliotti et al., 2020; Grossman 
& Gandar, 1989). Savannahs have also lost their mammalian fauna; 
therefore, this has further affected the maintenance of savannahs 
as they also dependant on mammals for maintenance. Fire is now 

terres et les conditions climatiques. Par conséquent, la présente étude a évalué la 
distribution spatiale des plantes ligneuses et les changements dans l'utilisation et 
l'occupation des sols (LULC) dans le bassin versant de la rivière Letaba, dans la province 
de Limpopo, qui se situe dans la région subtropicale de l'Afrique du Sud. Les données 
des satellites Landsat Thematic Mapper (TM) et Operational Land Imager (OLI) ont 
été utilisées pour représenter et quantifier les changements du WPE et d'autres LULC 
dans	le	bassin	versant	de	la	rivière	Letaba	sur	une	période	de	30	ans	(1989-	2019).	Un	
classificateur	de	forêts	d'arbres	décisionnels	a	été	utilisé	pour	déterminer	le	taux	de	
changement du WPE et de la LULC dans la zone d'étude. Les résultats indiquent que 
le bassin versant de la rivière Letaba a subi un changement considérable avec une 
augmentation des espèces de plantes ligneuses. La couverture des plantes ligneuses 
est	passée	de	36	014	ha	en	1989	à	environ	561	493	ha	en	2019.	Quant	aux	prairies,	
elles	ont	diminué	de	486	322	ha	(33,7	%)	entre	1989	et	2019.	La	précision	globale	de	
la	classification	(OA)	était	comprise	entre	91,7	%	et	95,5	%.	Les	résultats	de	l'étude	
fourniront des informations cruciales et des données de base sur l'état du WPE dans 
les environnements semi- arides, ainsi que les informations dont les responsables des 
bassins	versants	ont	besoin	pour	prendre	les	mesures	nécessaires	à	la	gestion	de	la	
croissance rapide des plantes ligneuses. Cependant, les incendies et les herbivores 
sont des facteurs importants qui influencent le WPE, ce qui pourrait également avoir 
joué un rôle important dans les résultats. L'étude suppose que le WPE est un processus 
continu et que des stratégies de gestion sont nécessaires pour atténuer et maintenir 
l'intensité des plantes ligneuses.
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the main factor left to maintain savannahs (Murphy et al., 2015). 
According to Kavwele et al. (2017), WPE in isolated ecosystems can 
lead	to	reduction	or	extinction	of	indigenous	species	and	can	poten-
tially affect the diversity of species, distribution and abundance. The 
WPE can also change the biogeochemical, energy, processes, grass-
land microclimate, decrease the diversity of herbaceous species, al-
ters the nutrient cycle, soil hydrological properties and ecosystem 
water budget (Petersen & Stringham, 2008).

It has also been demonstrated that an increase in woody plants 
has a significant impact on rangeland- based agriculture and biodi-
versity (Ayalew & Mulualem, 2018).	About	10–20	million	ha	of	South	
Africa's agricultural land has declined, and this has affected agricul-
tural production and biodiversity due to WPE (Stafford et al., 2017). 
Furthermore, WPE alters species composition, ecosystem processes, 
carbon and nutrient cycles, groundwater recharge and increases 
carbon and nitrogen pools in plants and soils (Caterina et al., 2014; 
McKinley & Blair, 2008; Zou et al., 2016).

The WPE is most severe in arid to semi- arid environments, 
which	cover	nearly	40%	of	the	world's	land	and	are	used	for	range-
land	 activities	 on	 about	 50%	 of	 it	 (Huang	 et	 al.,	 2018; Malapane 
et al., 2024; Shikangalah & Mapani, 2020). According to Belayneh 
and Tessema (2017), semi- arid rangelands around the world have 
gone	 from	 grasslands	 to	 woodlands	 in	 the	 last	 50 years.	 Woody	
plants	now	dominate	approximately	45	million	ha	of	savannah	eco-
systems worldwide (Uchezuba et al., 2019). South Africa alone has 
lost	8	million	ha	of	grazing	or	cultivation	land	because	of	WPE,	result-
ing in decreased food security (Stafford et al., 2017). However, there 
are still grasslands with less trees and savannahs with high woody 
cover savannahs that are healthy systems and there are savannahs 
that are transitioning to woodlands. The transition of vegetation in 
arid savannahs differs among regions, with Africa and India transi-
tioning to closed dry thicket, South America to hummock grassland 
and Australia transition to shrub- like Triodia vegetation type. There 
are areas which are dry to support grass growth and areas that can 
support grass growth; however, other vegetation outcompetes the 
grass and hinders their growth.

For several decades, researchers have used remote sensing tech-
niques to map and monitor vegetation change (Feng et al., 2015; 
Rawat & Kumar, 2015; Zhang et al., 2020), with WPE being one of 
the most performed assessments (Graw et al., 2016; Liao et al., 2018; 
Oldeland et al., 2010; Symeonakis & Higginbottom, 2014). Remote 
sensing is currently widely used as an effective tool for providing 
spatial and temporal information about tree cover change in sa-
vannah and grassland environments (Pérez- Cabello et al., 2021), 
as remote sensing techniques provide relatively accurate and up- 
to- date information (Adam et al., 2010; Çömert et al., 2019; Khalid 
et al., 2018; Wachowiak et al., 2017).	Although	it	 is	 less	expensive	
and takes less time than actual field surveys, a combination of field 
surveys and remote sensing techniques produce the best results 
(Weiss et al., 2020).

Since	 the	 year	 1984,	 Landsat	 data	 have	 been	 used	 to	 record	
continuous LULC changes at spatial and temporal resolutions 
(Wulder et al., 2012, 2016). Landsat is the longest operating earth 

observation satellite; therefore, it is ideal for studying long- term 
environmental changes (Song et al., 2021). Landsat data have also 
been used to assess long- term changes in forests, croplands and 
prairies at the local, regional and national levels (Dong et al., 2015; 
Helber et al., 2019; Müller et al., 2015; Zhang et al., 2014). There 
are	 various	 classification	 techniques,	 ranging	 from	 pixel-	based	 to	
object classification (Qu et al., 2021; Sibaruddin et al., 2018; Vogel & 
Strohbach, 2009; Zhang et al., 2019). Deep learning classifiers have 
recently evolved and can achieve high accuracy in land cover clas-
sification (Abdi, 2020; Helber et al., 2019; Pan et al., 2022; Rumora 
et al., 2020). Because WPE is a continuous process, assessment 
techniques that can quickly identify and monitor these changes 
are required. Studies have focused on mapping woody plants in 
areas dominated by shrubs and grasses (e.g. Brandt et al., 2016; 
Higginbottom et al., 2018; Ludwig et al., 2016). As a result, the rate 
of	change	in	woody	plants	is	expected	to	vary	across	regions	in	re-
lation to LULC types/changes (Archer et al., 2017). Therefore, it is 
critical to map and monitor the WPE in areas as well as changes in 
other LULC. The Letaba River catchment contains a variety of LULC 
types, including agriculture and urbanisation. Thus, using Landsat 5 
TM	and	8	OLI,	this	study	assessed	the	extent	of	WPE	over	a	30-	year	
period. Landsat data were used because it contains historical infor-
mation that can be utilised to map the long- term spatial distribution 
of WPE (Tokar et al., 2018). The study further evaluated the changes 
that occurred over the 30- year period to determine the changes in 
LULC. While WPE is another form of land degradation not all form 
of WPE have negative impact to the environment. There are areas 
that	are	experiencing	WPE	but	are	healthy	regardless	of	the	transi-
tion. Moreover, WPE has been previously reported to have effect on 
grass species than on other LULC. However, in this study, reduction 
of areas covered by other LULC due to WPE is observed such as the 
reduction of agricultural land and grassland. Nonetheless, the study 
hypothesised	that	WPE	increased	with	time	at	an	expense	of	other	
LULC particularly grassland.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

The Letaba River catchment is part of the Limpopo River basin and 
spans	14,086 km2. The Letaba River has three main tributaries: the 
Klein Letaba River in the northwest, the Middle Letaba and Groot 
Letaba rivers in the southwest, and other major tributaries includ-
ing the Nsama, Letsitele and Molototsi rivers (Querner et al., 2016). 
The river together with the tributaries flow from the mountain area 
in the western part of the catchment to the east, where it meets 
the Kruger National Park's western boundary. The Letaba River 
flows into the Olifants River near the Mozambican border, then 
into the Limpopo River before emptying into the Indian Ocean 
(Ndara, 2017). The mountainous topography at the western head-
waters of the Letaba Catchment results in a higher rainfall with the 
mean	annual	rainfall	ranging	between	700	and	1500 mm,	while	the	



4 of 15  |     MALAPANE et al.

mean annual rainfall for the remainder of the catchment varies from 
450	 to	 800 mm	 (Mkwalo,	2011; Raubenheimer, 2018). The catch-
ment has a diverse geology composed primarily of sedimentary 
rocks in the north and rocks in the south (Holland, 2011). The north-
ern part of the Kruger National Park consists of high- quality coal 
deposits,	while	the	mineral	rich	Bushveld	igneous	complex	is	found	
on the southern parts of the water management area (DWAF, 2004). 
Moreover, the western part of the Letaba Catchment is comprised 
of granite and gneiss with dolerite intrusions, quartzite, shale and 
sandstone. Furthermore, the eastern part consists of basalt, rhyo-
lite and granophyre, and granite and gneiss with dolerite intrusions 
(Ndara, 2017). The Letaba River basin has a diverse range of soils, 
with sandy soils being the most common. In mountainous areas, 
composite and deep fractured aquifers predominate in relatively im-
permeable bedrock. The average annual precipitation in the Letaba 
catchment	region	is	612 mm,	with	more	than	60%	captured	in	only	
6%	of	 the	total	area,	which	 is	 the	mountainous	region	 in	 the	west	
(Olivier	 &	 Jonker,	 2013). The precipitation in the western moun-
tainous	areas	ranges	from	500	to	1800 mm,	while	the	east	receives	
450–700 mm	(Heritage	et	al.,	2001). The annual evaporation average 
is	 estimated	 to	 be	1669 mm	 (Olivier	&	 Jonker,	2013). At lower el-
evation (<650 m	NN),	the	area	is	dominated	by	savannah	vegetation	
(grass and shrubs) which are interspersed by agricultural activities 
particularly along the river. However, the high elevation is comprised 

of forests, especially monoculture of eucalyptus, pine and acacia 
(Krause et al., 2014; Figure 1).

2.2  |  Field surveys

2.2.1  |  Reconnaissance	survey

Before analysing the satellite images, an overview field survey of the 
study area was conducted. Visual observations were made to learn 
about the topography, vegetation, soil and general characteristics of 
the Letaba River catchment. Table 1 describes in detail the observed 
LULC classes within the study area. The classes were used to assess 
the accuracy of classified maps. This stage aided in the preparation 
of satellite images for classification as well as the collection of data 
on LULC types in the study area.

2.3  |  Image selection

Landsat	5	TM	and	8	OLI	with	high	spatial	resolution	were	used.	The	
years	1989,	1998,	2004	and	2019	were	chosen	to	evaluate	the	ex-
tent of WPE and other LULC changes in the Letaba River catchment 
(Table 2). The selection of these specific years of satellite images was 

F I G U R E  1 Letaba	River	catchment	in	the	Limpopo	Province,	South	Africa.
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entirely based on the quality (e.g. radiometric and geometric errors) 
and long- time series availability. It must also be noted that four im-
ages of the same month was mosaicked into one image. During the 
mosaicking process it was noted that, most of the images between 
2004 and 2019 had a misfit, resulting in a large gap when compared 
to space between other years chosen. Misfit in this case mean other 
images were flipped or rotated such that features do not appear to 
be	where	there	are	supposed	to	be.	For	examples	rivers	connection	
were not clearly or well represented on the satellite images. This 
would have affected the general findings of the study because LULC 
types would have appeared where they are not supposed to appear, 
for	example,	riparian	vegetation	would	have	appeared	to	be	at	the	
edge of the study area instead of where there is rivers connection 
are. Therefore, land cover such as riparian vegetation would have 
appeared where there are no river connections. The Landsat sat-
ellite imagery was chosen because it has enough historical data, it 
is freely available, and it has been shown to perform well in other 
land cover classification and woody plant analysis studies (e.g. 
Fashae et al., 2020; Ghaderpour & Vujadinovic, 2020; Symeonakis 
et al., 2016; Wang et al., 2017; Yang & Crews, 2019). The Landsat im-
ages	were	obtained	from	the	Earth	Explorer	program	of	the	United	
States Geological Survey (USGS) (usgs. gov). Landsat imagery is suit-
able for mapping woody plant encroachment due to its wide swath 
width	and	moderately	high	spatial	resolution	(30 m).

2.4  |  Image pre–processing

The satellite imagery was pre- processed with the goal of correcting 
defects inherent in remotely sensed data (i.e. radiometric and geo-
metric distortions) and improving the raw data quality to facilitate 
data interpretation. The images were enhanced further to improve 
visual interpretation and the appearance of land features. Image 

enhancement techniques such as linear contrast stretching, and edge 
enhancement filters were used to improve the image visual interpreta-
tion. Image restoration was also used to compensate for image errors, 
noise and geometric distortions caused by scanning, recording and 
playback operations. This was accomplished using ERDAS imagine 
2014's geometric correction, radiometric correction (haze compensa-
tion) and noise reduction filters. The goal was to make the restored 
image easier to read the type of LULC for better classification maps.

2.5  |  Image processing

The	layer	stacking	tool	in	ArcMap	10.8	software	was	used	to	com-
bine the individual monochromatic bands. This was accomplished by 
importing	Landsat	5	TM	bands	1–7	and	Landsat	8	OLI	bands	1–11	
into the software and combining them with the layer stacking tool 
to create the necessary data set (i.e. a true colour composite map). 
It should be noted that the acquired remotely sensed data were in 
the form of individual monochromatic bands (i.e. visible bands, VNIR 
bands and SWIR bands) (Table 3). Because the individual bands were 
ineffective at identifying different LULC types, they were com-
bined to form a single data set that could then be used to identify 
different LULC types. During layer stacking, the nearest neighbour 
resampling	method	was	used	to	ensure	that	all	pixels	 in	the	bands	
were reordered appropriately, and that the radiometric integrity of 
the data was preserved. The composited images were then overlaid 
with the Letaba River catchment shapefile to ensure that only the 
study	region	was	extracted.	Random	forest	classifier	(RF)	was	used	
to generate classified LULC maps, because RF has a non- parametric 
nature, high classification accuracy and the ability to determine 
change or variability within the catchment (Desai & Ouarda, 2021; 
Janitza	et	al.,	2018; Rodriguez- Galiano et al., 2012; Soleimannejad 
et al., 2019; Zhao et al., 2022).

Classes Description

Forest Natural forest

Plantation Agricultural activities, farmlands and cultivated lands

Non- vegetated Developed lands (urbanisation), including residential, 
commercial and socio- economic infrastructure and bare land 
(area without or with little vegetation cover)

Waterbodies Rivers, dams, streams and lakes

Shrubland Shrubs and bushes

Grassland Herbaceous layers such as grass and forbs

TA B L E  1 Description	of	LULC	classes	
within the Letaba River catchment.

Sensor Date of acquisition Source

Landsat 5 TM (Thematic Mapper) 12	September	1989 USGS (United States of 
Geological Survey)20	August	1998

25 August 2004

Landsat8	OLI	(Operational	Land	Imager) 25 May 2019

TA B L E  2 Landsat	data	images	used	in	
this study.

http://usgs.gov
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2.6  |  Accuracy assessment

Accuracy assessment is a critical final step in the classification 
process. The accuracy assessment goal was to quantify how well 
the	pixels	were	classified	 into	the	correct	 land	cover	classes.	RF	
focus	for	accuracy	assessment	pixel	selection	was	on	every	part	
of the area to avoid biasness. It was done to compare the per-
formance of RF classifiers for classified images. Using classified 
images,	accuracy	assessment	points	were	created	in	ArcGIS	10.8.	
The points were then converted to KML files and imported into 
Google Earth. The goal of using Google Earth in this case was to 
determine	which	pixels	of	each	land	cover	were	correctly	classi-
fied and which were incorrectly classified. A total of 400 points 
were chosen at random. According to Parece and Campbell (2013), 
selecting many points yields a more reliable set of results. The 
points were then represented on an attribute table to validate the 
classified land classes.

3  |  RESULTS

3.1  |  Spatial distribution of WPE and other land use 
and land cover types

According	to	the	classified	maps,	shrubland	has	increased	from	1989	
to 2019. The area covered by shrubs has increased significantly from 
36,014 ha	(2.6%)	in	1989–561,493 ha	(46.9%)	in	2019;	however,	the	

area	covered	by	grasses	has	decreased	from	507,454 ha	(37.1%)	to	
21,132 ha	 (1.7%)	 (Figure 2; Table 4). Overall, shrubland increased 
by	 525,479 ha	 (44.3%),	 while	 grassland	 decreased	 by	 486,322 ha	
(35.4%)	 (Figures 4 and 6).	 In	 1989,	 grasslands	 predominated	 over	
shrubland and other land use activities in the catchment area, 
covering	approximately	507,454 ha	 (37.1%)	of	the	total	area,	while	
non-	vegetated	areas	covered	approximately	653,460 ha	(47.8%).	In	
1998,	 shrubland	 increased	 by	 36,014 ha–146,053 ha	 (8%).	 The	 re-
sults	also	show	increase	in	area	of	plantation	from	1989	to	2004	of	
approximately	10.3%	(Figures 5 and 6). Increase in area of plantation 
has negative environmental impacts (Spawn et al., 2020). Reduced 
grassland cover leaves soils less protected from soil erosion leading 
to reduced soil organic matter. In addition, application of commer-
cial fertiliser can lead to high amounts of nutrient inputs into soils 
and eutrophication of waterways through runoff or leaching (Zhang 
et al., 2021).

Water bodies, forests, and non- vegetated land have all fluctuated 
over	the	last	30 years	(Table 4). Waterbodies, forest, plantation and 
non-	vegetated	 areas	 covered	 approximately	 13,747 ha,	 81,919 ha,	
74,236 ha	and	653,460 ha,	respectively,	in	1989.	Waterbodies,	for-
est,	and	non-	vegetated	area	cover	21,444 ha,	54,157 ha,	109,402 ha	
and	427,128 ha,	respectively,	in	2019.	Figure 2 depicts the changes 
in shrubland and other LULC types that occurred within the Letaba 
River catchment. The resulting RF classifier for the LULC clas-
sifications for the four chosen years shows a significant increase 
in woody plants, particularly in the western part of the region 
(Figures 2 and 3).

Landsat 8 sensor Band name
Wavelength 
(mm)

Spatial 
resolution (m)

Landsat 8 OLI

1 Coastal/ aerosol 0.43–0.45 30

2 Blue 0.45–0.52

4 Green 0.53–0.60 30

5 Red 0.63–0.68 30

4 Near infrared (NIR) 0.85–0.89 30

5

6 Short- wave infrared (SWIR)1 1.56–1.66 30

7 Short- wave infrared (SWIR)2 2.10–2.30 30

8 Panchromatic 0.500–0.68 15

9 Cirrus 1.360–1.39 30

10 Long- wave infrared (LWIR) 1 10.60–11.20 30

11 Long- wave infrared (LWIR) 2 11.50–12.50 30

Landsat 5 TM

1 Visible blue 0.45–0.52

2 Visible green 0.52–0.60 30

3 Visible red 0.63–0.69 30

4 Near infrared (NIR) 0.76–0.90 30

5 Short- wave infrared (SWIR)1 1.55–1.75 30

6 Thermal 10.40–12.50 120

7 Short- wave infrared (SWIR) 2 2.08–2.35 30

TA B L E  3 Bands	description	for	
Landsat	8	OLI	and	Landsat	5	TM	band	
specifications	used	for	1989–2019.
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3.2  |  Accuracy assessment derived classified maps

Validation was carried out using the four classified maps. A total 
number of 400 random points was distributed across the scene with 
a	minimum	number	of	38	points	and	maximum	number	of	111	points	
allocated to the smallest class and highest class (i.e. waterbodies and 
nonvegetated area), respectively to ensure that an adequate num-
ber of samples was used for the assessment of every class. The RF 
classifier achieved high overall classification accuracies ranging from 
91.7%	to	95.5%	between	1989	and	2019	(Tables 5–8). Overall clas-
sification	accuracies	achieved	 in	1989,	1998,	2004	and	2019	were	
91.7%,	93.2%,	95.2%	and	95.5%,	 indicating	 that	 there	was	 agree-
ment between reality on the ground and satellite- derived images. 
Furthermore, the accuracies of the producer and user ranged from 
82%	 to	100%,	 respectively.	Furthermore,	 the	 results	 revealed	 low	
error	of	omission	and	commission	rates	ranging	from	0%	to	18%,	re-
spectively (Figure 4).

4  |  DISCUSSION

Over	 a	 30-	year	 period,	 the	 researchers	 examined	 the	 spatial	 dis-
tribution	 of	 woody	 plants	 (years	 1989–2019).	 According	 to	 the	
findings, the catchment region has undergone significant changes 
due	 to	 an	 increase	 in	woody	plants.	 From	1989	 to	2019,	 the	 area	
covered	 by	 woody	 plants	 increased	 by	 44.3%,	 while	 grassland	
decreased	 by	 35.4%.	 Similarly,	 other	 studies	 (e.g.	 Symeonakis	 &	
Higginbottom, 2014; Mpati, 2015; Browning et al., 2014) have linked 
an	increase	in	woody	plants	to	a	decrease	in	grasslands.	Over	20 years,	
Symeonakis and Higginbottom (2014) observed a significant aerial 
increase	 in	 woody	 plants	 from	 58%	 to	 67%	 and	 a	 significant	 de-
crease	in	grasslands	from	41%	to	33%	in	South	Africa's	North-	West	
Province. Doyo et al. (2019)	study	in	Ethiopia	found	a	70%	increase	
in woody plants in the Borana Rangelands region, which supports 
the current study findings. González- Roglich et al. (2015) discovered 
a	27%	increase	in	woody	plant	density	in	the	Caldenal	savannahs	of	

F I G U R E  2 The	spatial	distribution	of	WPE	and	other	identified	LULC	types	within	the	Letaba	River	catchment.

TA B L E  4 Area	(ha)	coverage	in	the	Letaba	River	system	catchment	region	between	1989	and	2019.

LULC 1989 Cover (%) 1998 Cover (%) 2004 Cover (%) 2019 Cover (%)

Shrubland 36,014 2.6 146,053 10.6 366,841 28.7 561,493 46.9

Grassland 507,454 37.1 457,555 33.4 358,669 28 21,132 1.7

Plantation 74,236 5.4 67,874 4.9 201,517 15.7 109,402 9.1

Forest 81,919 5.6 88,823 6.4 82,583 6.4 54,157 4.5

Non- vegetated 653,460 47.8 601,651 44.01 263,708 20.64 427,128 35.75

Waterbodies 13,747 1 4873 0.3 4157 0.3 21,444 1.7

Abbreviation: LULC, land use and land cover.
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central Argentina in the 1960s, transitioning from open savannahs to 
a mosaic of dense woodlands with additional agricultural clearings. 
Similarly, Nill et al. (2022) reported similar findings in the Western 
Canadian Arctic. Stevens et al. (2016)	discovered	an	8%	increase	in	
woody plant cover across sub- Saharan Africa over a 30- year period. 
Skowno et al. (2017)	measured	the	extent	to	which	woodlands	re-
placed grasslands in South Africa's grassland over a 23- year period 

and discovered that woodlands replaced grasslands by more than 
57,000 km2.

Woody plant cover is increasing most rapidly in savannahs, 
according to Stafford et al. (2017), most likely due to fire suppres-
sion and land fragmentation. However, changes in grassland and 
savannah ecosystems to woodlands vary across different areas 
(Skowno et al., 2017).	Areas	with	more	than	500 mm	of	mean	annual	

F I G U R E  3 Change	in	the	area	(ha)	covered	by	shrubland	and	other	LULC	types	in	the	Letaba	River	catchment	area	from	1989	to	2019.

TA B L E  5 Derived	land	use	and	land	cover	classification	accuracies	for	1989	in	the	Letaba	River	catchment,	South	Africa.

Forest Waterbodies Plantation

Non- veg 
(bare 
land)

Non- veg 
(settlement) Shrubland Grassland Total

Commission 
error (%)

User's 
accuracy 
(%)

Forest 52 0 0 0 0 0 0 52 0.00 100.00

Waterbodies 0 33 1 1 0 0 0 35 5.70 94.30

Plantation 9 0 55 0 0 0 1 65 15.30 84.60

Non- vegetated (bare 
land)

0 0 2 63 2 1 0 68 7.30 92.60

Non- vegetated 
(settlement)

0 2 1 0 44 0 0 47 6.30 93.60

Shrubland 0 1 2 1 0 66 1 71 7.00 93.00

Grassland 0 2 6 0 0 0 54 62 12.90 87.10

Total 61 38 67 65 46 67 56 400

Omission	error	(%) 14.70 13.10 17.90 14.00 4.30 1.40 3.70

Producer's accuracy 
(%)

85.20 86.80 82.00 98.60 95.60 98.60 96.40

Overall	accuracy	(%) 91.70

Kappa coefficient 0.8

Abbreviations: non- veg, non- vegetated; OA, overall accuracy; PA, producer accuracy; UA, user accuracy.
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precipitation	have	higher	woodland	rate	expansions	than	areas	with	
less	 than	500 mm.	Furthermore,	 elephant–protected	 areas	 show	a	
clear loss of woodlands, whereas commercial and traditional range-
lands	 show	 an	 increase	 in	 woodland	 extent.	 Huang	 et	 al.	 (2018) 
found	no	increase	or	decrease	in	woody	cover	over	a	28-	year	period	
in southern Arizona. As a result, changes in woody plants can be af-
fected by factors such as precipitation and other climatic conditions.

The Letaba catchment is dominated by rural areas and most of 
these rural communities practice livestock production. Livestock 
grazing is the main use of grasslands globally (Asner et al., 2004) 

and is often associated with WPE. Livestock grazing removes fuel 
loads, which reduces the frequency and intensity of fire leading to 
WPE (Madany & West, 1983). Moreover, the introduction of live-
stock can be linked with displacement of indigenous browsers and 
seed predators, releasing woody plants from top- down controls. 
Furthermore, land abandoned can also influence WPE such as 
transition of forest to agricultural land and later abandon it. As ob-
served from the results plantation decrease with increase in woody 
plats cover. While land management practices are seen as the main 
contributor of WPE (Wigley et al., 2009), increase in atmospheric 

TA B L E  6 Derived	land	use	and	land	cover	classification	accuracies	for	1998	in	the	Letaba	River	catchment,	South	Africa.

Forest Waterbodies Plantation

Non- veg 
(bare 
land)

Non- veg 
(settlements) Shrubland Grassland Total

Commission 
error (%)

User's 
accuracy 
(%)

Forest 50 0 0 0 0 0 0 50 0.00 100.00

Waterbodies 0 34 1 1 0 0 0 36 5.50 94.40

Plantation 9 0 58 0 0 0 0 67 13.40 86.50

Non- vegetated (bare 
land)

1 1 0 64 0 1 1 68 5.80 94.10

Non- vegetated 
(settlement)

0 0 0 0 46 0 0 46 0.00 100.00

Shrubland 1 1 2 0 0 66 0 70 5.70 94.30

Grassland 0 2 6 0 0 0 55 63 12.70 87.30

Total 61 38 67 65 46 67 56 400

Omission	error	(%) 18.00 10.50 13.40 1.40 0.00 1.40 1.40

Producer's	accuracy	(%) 82.00 89.40 86.50 98.60 100.00 98.60 98.60

Overall	accuracy	(%) 93.20

Kappa coefficient 0.80

Abbreviations: non- veg, non- vegetated; OA, overall accuracy; PA, producer accuracy; UA, user accuracy.

TA B L E  7 Derived	land	use	and	land	cover	classification	accuracies	for	2004	in	the	Letaba	River	catchment,	South	Africa.

Forest Waterbodies Plantation

Non- veg 
(bare 
land)

Non- veg 
(settlements) Shrubland Grassland Total

Commission 
error (%)

User's 
accuracy 
(%)

Forest 58 0 0 0 0 0 0 58 0.00 100.00

Waterbodies 0 36 1 0 1 1 0 39 7.60 92.40

Plantation 0 0 59 0 1 2 0 62 4.80 95.10

Non- vegetated (bare 
land)

0 1 2 64 0 0 1 68 5.80 94.20

Non- vegetated 
(settlement)

2 1 0 1 44 0 1 49 10.20 89.80

Shrubland 1 0 1 0 0 64 0 66 3.30 96.70

Grassland 0 0 4 0 0 0 54 58 6.90 93.10

Total 61 38 67 65 46 67 56 400

Omission	error	(%) 4.90 5.20 11.90 1.50 4.30 4.40 3.50

Producer's accuracy 
(%)

95.20 94.70 88.10 98.50 95.70 95.60 96.50

Overall	accuracy	(%) 94.70

Kappa coefficient 0.80

Abbreviations: non- veg, non- vegetated; OA, overall accuracy; PA, producer accuracy; UA, user accuracy.
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concentration	of	greenhouse	gases	such	as	carbon	dioxide	has	also	
been documented to be one of the primary factors that influence 
WPE (Stevens et al., 2016). Archer et al. (2017) reported that pre-
cipitation can accelerate the growth and density of woody plants 
further	explains	that	precipitation	can	also	be	the	cause	of	WPE	as	
mesophytic	 grasses	 transition	 to	 xerophytic	 bushes.	With	 regards	
to the Letaba catchment the pattern and trends of WPE might have 
also been influenced by minimal precipitation.

Mapping the spatial distribution of woody plants over time is 
critical for detecting and monitoring changes as well as understand-
ing trends. Remote sensing data have been shown to be accurate 

in mapping environmental changes, and it is also freely available 
(Bechtel et al., 2015; Dong et al., 2016; Gómez et al., 2016; Tulbure 
et al., 2022). As a result, Landsat data with a spatial resolution of 
30 m	were	used,	and	the	spatial	distribution	of	WPE	has	been	suc-
cessfully	mapped	 for	 over	 30 years.	Hostert	 et	 al.	 (2003) mapped 
vegetation change in central Crete, Greece, between 1977 and 1996 
using Landsat TM and the multispectral Scanner System (MSS). 
Röder et al. (2008) assessed the spatio- temporal patterns of vege-
tation cover development in a rangeland system in northern Greece 
from	 1984	 to	 2000	 using	 Landsat	 TM	 and	 Enhanced	 Thermatic	
Mapper Plus (ETM+). Sonnenschein et al. (2011) used Landsat TM 

F I G U R E  4 The	spatial	distribution	of	woody	plants	and	grassland	within	the	Letaba	River	catchment.

F I G U R E  5 The	spatial	distribution	of	grassland	and	plantation	within	the	Letaba	River	catchment.
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and ETM+ in vegetation dynamics in a Mediterranean environment 
based on different vegetation indices, and all these studies demon-
strated success in mapping vegetation change using Landsat data.

However, using Landsat data to map woody plants can be difficult 
because woody plants can have high spatial and temporal dynamics 
and can be the dominant vegetation type or a transitional vegetation 
formation (Petraitis, 2013). According to Leitão et al. (2015), woody 
plants have different developmental stages and densities, resulting 

in	diverse	landscape	patterns.	Landsat's	spatial	resolution	of	30 m	is	
likely	to	result	in	a	high	degree	of	spectral	mixing	within	each	30 m	
pixel.	However,	using	Landsat	data,	the	current	study	produced	re-
liable results.

5  |  CONCLUSIONS

Woody plant encroachment has a negative impact on grasses 
and other species, resulting in an unbalanced ecosystem. As a 
result, analysing the spread and distribution of woody plants 
will provide insight into their nature of occurrence, structures 
and establishment, as well as valuable information about the re-
lationship between woody plants and grassland and other LULC. 
Conservationists can also use the data to develop effective man-
agement strategies to reduce WPE. The study will also provide in-
formation on the distribution of woody plants, which is currently 
lacking in semi- arid areas. Through the analysis of past and current 
data, this will allow the prediction of future trends in the distribu-
tion and abundance of woody plants. Analysing WPE trends can 
help	identify	some	of	the	most	important	implications	of	complex	
interactions between social and environmental processes. The 
study will also help catchment managers take the necessary steps 
to control the spread of woody plants. Long- term monitoring of 
WPE is required to improve understanding of broad- scale changes 
in woody vegetation and the potential link between such changes 
and ecosystem resilience or degradation. A retrospective analysis 
has yielded useful information about the rate of change in WPE 
as well as the nature of the occurrence. Landsat data have been 
used for decades and have proven to be a reliable tool in map-
ping WPE and other LULC change. We discovered that WPE is 
increasing	 steadily	and	 rapidly	at	 the	expense	of	grassland	using	

F I G U R E  6 Change	in	the	area	(%)	covered	by	shrubland,	
grassland and plantation in the Letaba River catchment area from 
1989	to	2019.

TA B L E  8 Derived	land	use	and	land	cover	classification	accuracies	for	2019	in	the	Letaba	River	catchment,	South	Africa.

Forest Waterbodies Plantation
Non- veg 
(bare land)

Non- veg 
(settlements) Shrubland Grassland Total

Commission 
error (%)

User's 
accuracy 
(%)

Forest 59 0 0 0 0 0 0 59 0.00 100.00

Waterbodies 0 36 0 0 0 0 0 36 0.00 100.00

Plantation 0 0 59 0 0 2 0 61 3.40 96.60

Non- vegetated (bare 
land)

0 0 0 63 0 1 1 65 3.00 97.00

Non- vegetated 
(settlement)

1 0 1 0 46 0 0 48 4.20 96.80

Shrubland 1 0 1 1 0 64 0 67 4.40 96.60

Grassland 0 2 6 1 0 0 55 64 14.10 85.90

Total 61 38 67 65 46 67 56 400

Omission	error	(%) 330.00 5.20 11.90 3.10 0.00 4.50 1.80

Producer's	accuracy	(%) 96.70 94.80 88.10 96.90 100.00 95.50 98.20

Overall	accuracy	(%) 95.50

Kappa coefficient 0.8

Abbreviations: non- veg, non- vegetated; OA, overall accuracy; PA, producer accuracy; UA, user accuracy.



12 of 15  |     MALAPANE et al.

Landsat data and a random forest classifier. Overall, we conclude 
that the findings of this study show that remote sensing can be 
used to successfully map WPE. Furthermore, the study's findings 
show that the Random Forest classifier can produce high overall 
accuracies. Savannah and grasslands are undergoing rapid land 
cover transformation because of WPE. An increase in the density 
of woody plants along the Letaba Catchment decreased grass rich-
ness and agricultural land, as a result, this might have an impact on 
forage production for livestock, therefore, leading to food inse-
curity. Therefore, the study recommends that there must be poli-
cies that aim to encourage sustainable land use practices, together 
with the control of WPE and the restoration and rehabilitating 
of degraded ecosystems. Methods such as mechanical, chemical 
and combination treatments should be used to control and reduce 
the increase in densities of woody plants. Other methods such as 
mechanical which includes cutting, uprooting and burning of the 
plant is reported to be time consuming; although, it has proven to 
be an effective and successful method used thus far. Moreover, 
government- based and community- based projects aimed at con-
trolling or mitigating the problem of WPE is required.
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