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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• LULC analysis revealed seven classes 
within the Umzingwane River 
Catchment. 

• LULC analysis showed artisanal mines 
are predominantly located along rivers. 

• River ecosystem health was found to be 
significantly different across river 
systems. 

• Nutrients and metals in the river water 
were not highly correlated. 

• Study provides a foundational under-
standing of river health status.  
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A B S T R A C T   

The mining sector in various countries, particularly in the sub–Saharan African region, faces significant impact 
from the emergence of small–scale unlicensed artisanal mines. This trend is influenced by the rising demand and 
prices for minerals, along with prevalent poverty levels. Thus, the detrimental impacts of these artisanal mines on 
the natural environment (i.e., rivers) have remained poorly understood particularly in the Zimbabwean context. 
To understand the consequences of this situation, a study was conducted in the Umzingwane Catchment, located 
in southern Zimbabwe, focusing on the variations in water nutrient and metal concentrations in rivers affected by 
illegal mining activities along their riparian zones. Using multi–year Sentinel–2 composite data and the random 
forest machine learning algorithm on the Google Earth Engine cloud–computing platform, we mapped the spatial 
distribution of illegal mines in the affected regions and seven distinct land use classes, including artisanal mines, 
bare surfaces, settlements, official mines, croplands, and natural vegetation, with an acceptable overall and class 
accuracies of ±70 % were identified. Artisanal mines were found to be located along rivers and this was 
attributed to their large water requirements needed during the mining process. The water quality analysis 
revealed elevated nutrient concentrations, such as ammonium and nitrate (range 0.10–20.0 mg L− 1), which 

* Corresponding authors. 
E-mail addresses: 4206001@myuwc.ac.za (T. Dube), dalutatenda@yahoo.co.uk (T. Dalu).  

Contents lists available at ScienceDirect 

Science of the Total Environment 

journal homepage: www.elsevier.com/locate/scitotenv 

https://doi.org/10.1016/j.scitotenv.2023.167919 
Received 22 June 2023; Received in revised form 13 October 2023; Accepted 16 October 2023   

mailto:4206001@myuwc.ac.za
mailto:dalutatenda@yahoo.co.uk
www.sciencedirect.com/science/journal/00489697
https://www.elsevier.com/locate/scitotenv
https://doi.org/10.1016/j.scitotenv.2023.167919
https://doi.org/10.1016/j.scitotenv.2023.167919
https://doi.org/10.1016/j.scitotenv.2023.167919
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2023.167919&domain=pdf


Science of the Total Environment 907 (2024) 167919

2

could be attributed to mine drainage from the use of ammonium nitrate explosives during mining activities. 
Additionally, the prevalence of croplands in the area may have potentially contributed to increased nutrient 
concentrations. The principal component analysis and hierarchical cluster analysis revealed three clusters, with 
one of these clusters showing parameters like Ca, Mg, K, Hg and Na, which are usually associated with mineral 
gypsum found in the drainage of artisanal mines in the selected rivers. Cluster 2 consisted of B, Cu, Fe, Pb, and 
Mn, which are likely from the natural environment and finally, cluster 3 contained As, Cd, Cr, and Zn, which 
were likely associated with both legal and illegal mining operations. These findings provide essential insights 
into the health of the studied river system and the impacts of human activities in the region. They further serve as 
a foundation for developing and implementing regulatory measures aimed at protecting riverine systems, in line 
with sustainable development goal 15.1 which focuses on preserving and conserving terrestrial and inland 
freshwater ecosystems, including rivers. By acting on this information, authorities can work towards safe-
guarding these vital natural resources and promoting sustainable development in the area.   

1. Introduction 

Mining, a significant economic driver, plays a pivotal role in many 
countries worldwide (Liang et al., 2022; Omotehinse and De Tomi, 
2023). This industry generates substantial revenue, benefiting millions 
of people across regions such as sub–Saharan Africa, South and Central 
America, and Asia (Hodge et al., 2022). One notable example in sub-
–Saharan Africa is the Democratic Republic of Congo where mined 
minerals account for 81 % of the total exports, making a substantial 
contribution to their economy (Hodge et al., 2022). Whereas other 
countries such as Botswana and Mongolia, mining sector contribute 
between 80 % and 90 % towards their annual exports. However, the 
mining sector in different sub–Saharan African countries are heavily 
impacted by the sprouting illegal mines and/or small scale unlicensed 
artisanal mines which continued to grow and doubled between 1999 and 
2014 (Ericsson and Löf, 2019; Hodge et al., 2022). The growth can be 
attributed to the global increase in mineral prices, political and socio-
economic challenges. The estimated percentage of people in Africa who 
directly earn a living from artisanal mining varies widely across 
different regions and countries (Dalu et al., 2018, 2021). However, it is 
generally recognised that a significant portion of the population in 
certain areas relies on artisanal mining for their livelihoods and about 
20–30 % of Africa's population is engaged in artisanal mining activities 
(Seccatore et al., 2014; García et al., 2015). According to Duncan 
(2020), countries in Africa are grappling with significant environmental 
and social issues that can be attributed to unregulated illegal mining 
activities. Whereas Nasirudeen and Allan (2014) in Ghana specifically 
highlighted that illegal small–scale mining plays a significant role in 
compromising sound environmental practices within the country's 
mining industry. 

Illegal mines or small–scale unlicensed artisanal gold mines are 
typically characterised by randomly dug open pits with variable sizes 
ranging between 37 m2 and 372 m2, while their depths range between 9 
m and 18 m (Kessey and Arko, 2013). These types of mines typically 
employ basic exploratory tools and methods, operated by unskilled 
personnel who often lack knowledge about the harmful consequences of 
their mining activities on human livelihoods and the environment, 
including water resources (Owusu-Boateng and Kumi-Aboagye, 2013). 
Illegal mining operations have high water requirements for gold ore 
washing and are predominantly situated in riparian zones adjacent to 
surface water bodies such as rivers, lakes, wetlands, and streams. 
Consequently, these illegal mines frequently release untreated effluents 
containing hazardous chemicals (e.g., mercury (Hg), cyanide (CN), 
cadmium (Cd)) and heavy metals (e.g., chromium (Cr), lead (Pb)) into 
water bodies, resulting in contamination and significant adverse impacts 
on the natural environment (Dalu et al., 2017a, 2017b, 2022). These 
activities collectively contribute to the contamination of aquatic eco-
systems. Therefore, strong regulatory measures are imperative to 
effectively control and mitigate the growing prevalence of illegal mining 
activities, thereby halting their detrimental effects on both human 
livelihoods and the environment. 

The development of regulatory measures to control the emergence 

and escalating impact of illegal mines on human livelihoods and the 
environment, relies on understanding the extent of their environmental 
impact and their consequences across large spatial scales and systems. 
Despite the reported growth of illegal artisanal mines in recent years, 
there is a lack of comprehensive reporting on the adverse impacts they 
have on the environment, especially water resources, at both local and 
broader spatial extents within southern Africa (Stoudmann et al., 2016; 
Amuah et al., 2021; Quarm et al., 2022). Given the increase in illegal 
mining activities in different regions and the recognised negative effects 
they have on the environment and society, it is crucial to have a 
comprehensive understanding of the extent of these illegal mining ac-
tivities. Thus, such studies are essential for developing effective strate-
gies to control the growth and emergence of illegal mines and regulate 
those already in existence. 

This study aimed to assess the extent of variation in water nutrient 
and metal concentrations in semi–arid river systems affected by riparian 
illegal gold mining in the Umzingwane River catchment, south-
ern–western Zimbabwe. We further mapped the spatial distribution of 
illegal gold mines in relation to other land use and land cover classes 
using multi–year Sentinel–2 satellite data and advanced machine 
learning algorithms in the Google Earth Engine platform. We hypoth-
esised that river systems exposed to greater riparian activities associated 
with artisanal mining would exhibit elevated heavy metal concentra-
tions (e.g., Cd, Hg), and other associated elements (e.g., arsenic (As), K, 
Na, Mg), compared to river systems with few or no illegal gold mining 
activities within their catchments. 

2. Materials and methods 

2.1. Study area 

The study was conducted in the Umzingwane River Catchment 
(22.18694◦S 29.92556◦E) in the south–western part of Zimbabwe 
(Fig. 1). The catchment covers a total surface area of about 15,695 km2. 
For this study, the Upper Umzingwane River sub–catchment which 
covers approximately 2138 km2 was sampled for water quality assess-
ment. The area receives variable rainfall, with mean annual precipita-
tion of 300 mm per year in the southern region while the northern region 
receives about 635 mm per year (Maviza and Ahmed, 2020). Evapo-
transpiration rates in Umzingwane River catchment ranges from 1800 
mm to 2000 mm, increasing towards the north–south directions. The 
mean annual minimum and maximum temperatures are 5 ◦C and 30 ◦C, 
respectively (Chisadza et al., 2023). The surface elevation range is 300 
mm to 550 mm, with an average elevation of 1160 m above sea level 
(Sibanda et al., 2020). The dominant vegetation include the savannah 
rangeland woodlands characterised by Brachystegia spiciformis, Colo-
phospermum mopane, Terminalia spp., Acacia spp., and Combretum spp.. In 
addition to the savannah rangelands species, there is also a presence of 
some grassland species such as Hyparrhenia filipendulla and Heteropogon 
contortus (Mapaure and McCartney, 2001). The geology of the catch-
ment is characterised by the greenstone belt underlain by the granitic 
terrains for the upper part of the catchment, while the lower part is 
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characterised by Limpopo belt gneisses and Karoo basalt (Ashton et al., 
2001). The Umzingwane River catchment is characterised by variable 
land use and land cover (LULC) which includes agricultural activities (i. 
e., commercial and subsistence farming), game reserves or private safari 
operations, recreational activities, gold mining (i.e., legal and illegal), 
and fishing (Chisadza et al., 2023). 

2.2. Ground control points collection 

The collection of ground truth points (i.e., in–situ land cover sample 
points) representing the geographical locations of different land cover 
classes in Table 1 was carried out between 24 September and 9 October 
2022. A total of 1182 ground truth points were surveyed. Out of these, 
682 points were collected during field visits, while an additional 500 
points were generated from a high–resolution Google Earth image 
coinciding with the remotely sensed images used in this study. The field 
data collection of the ground truth land cover location points utilised a 
handheld geographical positioning systems (GPS) with an error margin 
of <3.25 m, following a stratified random sampling approach. To ensure 
comprehensive coverage, the catchment was divided into 14 quadrants 
(2 km × 2 km), spaced 2 km apart to avoid overlaps in the collected 
points. At least 50 points were collected in each quadrant, considering 
the heterogeneity of land cover classes observed. The collected data 
from the points, both field and Google Earth–derived, were randomly 
split into training (70 %) and validation (30 %) sets and were then used 

in the Google Earth Engine (GEE) cloud–computing platform to train 
and validate the random forest machine learning model for land use and 
land cover analysis. Additionally, water samples were collected from the 
central (i.e., mainstem river) and littoral zones of the Umzingwane, 
Insiza, Msthabezi and Inyankuni rivers within the studied catchment. 
These rivers were selected because of the identified presence of artisanal 
mines based on the LULC analysis results. The locations of the sampling 
points are highlighted in Fig. 1. 

2.3. Surface water sampling 

The study sites were randomly selected along the selected rivers 

Fig. 1. Locality of Umzingwane River Catchment in Zimbabwe highlighting the ground control points representing different land cover classes in the catchment and 
environmental variable sampling sites. Abbreviations for sites and corresponding numbers indicate sites: Um – Umzingwane River, In – Insiza River, NY – Nyankuni 
River, MS – Mtshabezi. 

Table 1 
Ground control points per land cover class.  

Cover classes Ground truth points 
per class 

Training points 
per class 

Validation points 
per class 

Artisanal mines  44  31  13 
Bare surface  122  85  37 
Settlements  92  64  28 
Official mines  75  53  22 
Water  154  108  46 
Croplands  256  179  77 
Natural 

vegetation  
437  306  131  
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based on the close proximity to the artisanal mines. Twenty samples 
were collected following a standard grab sampling approach using 500 
mL glass containers during a single sampling campaign conducted on the 
13th of October 2022. During the collection of the samples, a 500 mL 
glass container was rinsed three times using the water from the sample 
point, then a water sample was collected at a depth of 20–30 cm in the 
pelagic column according to Laxen and Harrison (1981). In brief, water 
samples were collected from the two riparian zones and the mainstem 
channel before being mixed together to form an integrated water 

sample. The bottle was tightly sealed making sure that no air bubbles 
were present and then stored on ice before sample processing in the 
laboratory. 

2.4. Remote sensing of land use and land cover analysis 

For the analysis of LULC, pre–processed Sentinel–2 Level 1C 
cloud–free images from the GEE catalogue were utilised. The processing 
steps for the Sentinel–2 data are depicted in Fig. 2. The study specifically 

Fig. 2. Conceptual framework applied for remote sensing data analysis and land use and land cover change (LULC) classifications in this study.  
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clipped the obtained images to the extent of the Umzingwane River 
catchment and filtered them by date, focusing on images captured be-
tween 1 and 3 August 2022, which coincided with the field data 
collection period. To create a representative composite image for the 
entire period while minimising atmospheric influences, the median 
composite algorithm was applied to a stack of 66 images obtained from 
the filtering process. This algorithm computes the median value of 
corresponding bands and pixels across the image stack. The resulting 
composite image effectively captures the overall conditions during the 
specified time frame and mitigates the effects of shadows and cloud 
cover. Subsequently, water and vegetation indices were computed using 
the median composite image, including the Normalized Difference 
Vegetation Index (NDVI) and Modified Normalized Difference Water 
Index (MNDWI). 

The NDVI serves to quantify vegetation greenness and distinguish 
vegetated areas from non–vegetated ones, making it a valuable tool for 
this study (McFeeters, 1996). The MNDWI is useful in enhancing water 
features and suppressing the built–up, vegetative and soil noises, thus 
minimising the spectral mixing between these classes and water during 
the classification process (Xu, 2006). It is for that reason, the MNDWI 
was used in this study. In addition to the indices, terrain parameters (i.e., 
elevation, slope, aspect) were computed using a 30 m resolution Shuttle 
Radar Topographic Mission Digital Elevation Model (SRTM–DEM) ob-
tained from the GEE catalogue. These were computed because, they can 
assist in segregating open pit artisanal mines, formal mines, zone of 
depressions as well as generally flats and sloppy surfaces. The indices 
and terrain parameters were then concatenated to the composite image 
with only near–infrared (NIR) band, visible bands (i.e., red, green, blue) 
and shortwave infrared (SWIR) bands and used in image classification in 
the GEE cloud–computing platform using the object–based random 
forest (RF) machine learning algorithm. The RF algorithm is an 
ensemble classifier comprising of many different trees generated from a 
random set of input parameters (Simioni et al., 2020). Each tree cast a 
unit vote to the popular class, the class with most votes is classified as 
that feature of interest. The algorithm was chosen because of its supe-
riority among other machine learning algorithm in various LULC studies 
(e.g., Dzurume et al., 2021; Gxokwe et al., 2021; Thamaga et al., 2022). 
The initial phase to object–based RF implementation was image seg-
mentation. This involved the partitioning of the image with concate-
nated indices and terrain parameters into equal segments based on a 
specific set criterion, using a simple non–iterative clustering (SNIC) al-
gorithm in GEE. 

The SNIC was chosen because it is simple, memory efficient and can 
maintain connectivity between pixels after it has been implemented 
(Achanta and Süsstrunk, 2017). During the implementation of SNIC, 
centroids were initiated on a regular gridded image, then individual 
pixels were merged based on the shorted distance of each pixel to the 
centroid in five–dimensional space of colour and coordinates. The out-
puts were super pixels which were added onto the concatenated image 
and their contextual (i.e., area, texture, perimeter, height) parameters 
were individually computed, and added on the concatenate image and 
the image was subjected to RF model. During the implementation of the 
RF model, the 70 % random split of the ground truth data was utilised in 
training the model. When training the RF model, the grid search values 
for mtree and mtry parameters were varied by 500 to10 000 and 1 to 5, 
respectively. The intervals for mtree parameters were 500, and optimum 
mtree and mtry values were used (i.e., 5000, 4) as input parameters to 
the RF model to classify the concatenate image. 

2.5. Random forest model validation 

To validate the RF model, three error matrices were used, and these 
included overall accuracy (OA), producer's accuracy (PA) and user's 
accuracy (UA). The OA measures the proportion of the correctly clas-
sified reference points, while PA measures the probability that a certain 
feature on the ground is correctly shown on the map, and UA gives an 

indication of how often the class on a map represents what is on the 
ground (Mtengwana et al., 2020; Gxokwe et al., 2022). When implanting 
the above–mentioned error matrices in GEE, the 30 % randomly split 
data was imported in GEE and used to sample regions corresponding to 
those points, and these were used to compute an error matrix for the 
model which was later used to compute, OA, PA and UA. In addition to 
these matrices, multi–probability approach in GEE was used to establish 
the most significant variables and their influence in the model. 

2.6. Water metal concentrations analysis 

All metal and nutrient analysis was carried out in a South African 
National Accreditation System (SANAS) certified laboratory: WaterLab 
(Pretoria). For cation elements (B, Ca, K, Mg, Na) and heavy metals (As 
(Detection Limit (DL) – 0.007 mg L− 1), Cd (DL – 0.00015 mg L− 1), Cr (DL 
– 0.0007 mg L− 1), Cu (DL – 0.0005 mg L− 1), Fe (DL – 0.0001 mg L− 1), Hg 
(DL – 0.0003 mg L− 1), Mn (DL – 0.0001 mg L− 1), Pb (DL – 0.0005 mg 
L− 1), Zn (DL – 0.0002 mg L− 1)) analyses, the inductively coupled plas-
ma–atomic emission spectrometer (ICP–AES, ACTIVA–M; Horiba 
Advanced Techno, Kisshoin, Japan) method was used. The analytical 
accuracy was determined using certified standards (i.e., De Bruyn 
Spectroscopic Solutions 500 MUL20–50STD2) and recoveries were 
within 10 % of certified values. The metal percentage recoveries for 
metals ranged between 91.8 % and 106.3 %. The accuracy of the 
instrumental methods was checked by using a certificated reference 
material (River Water Reference Material for Trace Metals, NRC Canada, 
SLRS-4) run after every 5 samples. 

2.7. Water nutrient concentration analysis 

Nitrate and nitrite concentrations were determined spectrophoto-
metrically based on the adaptation of the cadmium reduction method. 
This involved the reduction of NO3

− to nitrite (NO2
− ) using a cop-

per–cadmium reduction column, before the nitrate finally reacted with 
sulphanilamide under acidic conditions, using 
N–1–naphthylethylenediamine dihydrochloride (AgriLASA, 2004). 
Ammonium was analysed using the spectrophotometric method based 
on the adaptation of ASTM manual of water and environmental tech-
nology D1426 – the Nessler method. Phosphorus (P) and phosphate 
(PO4

3− ) concentration was analysed using the spectrophotometric 
method based on the 4500-P Phosphorus Standards Methods for Ex-
amination of Water and Wastewater as described by Rice et al. (2012). 

2.8. Water quality data analysis 

To assess overall river ecosystem health, we used a distance–based 
permutational analysis of variance (PERMANOVA) in PRIMER version 6 
add–on package PERMANOVA+ based on 9999 permutations, with 
systems as factors (i.e., Mtshabezi, Umzingwane, Inyankuni, Insiza) 
(Anderson and ter Braak, 2003; Anderson et al., 2008). Pairwise com-
parisons were conducted to assess significant differences among river 
systems. Furthermore, all data was assessed for normality and homo-
geneity of variance as was found to conform to parametric assumptions. 
An assessment of the differences of heavy metal and nutrient concen-
trations among the river systems was conducted using a one–way 
ANOVA analysis followed by a Tukey's post–hoc test among the signif-
icant variables. Furthermore, using a Pearson correlation, we tested for 
the relationships that existed between metals and nutrient concentra-
tions. All correlations and ANOVAs were carried out in IBM SPSS Sta-
tistics version 25 (SPSS Inc, 2017). 

Principal component analysis (PCA) with varimax rotation and 
cluster analysis (CA) using the average group linkage method was 
employed using the heavy metal concentrations to determine natural 
and anthropogenic sources of contamination. A two–way hierarchical 
cluster analysis (HCA) based on metal concentration data sampled 
across systems was carried out to identify patterns in the metal 
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concentrations for the different systems. The HCA was based on corre-
lation as a distance of measure and Ward's method as the group linkage 
method (Sekabira et al., 2010). All multivariate analysis was carried out 
in PC–ORD version 5.10 (McCune and Grace, 2002). 

3. Results 

3.1. Land use and land cover analysis 

The LULC analysis conducted in the Umzingwane River catchment 
unveiled seven distinct classes, each representing different types of land 
use within the area. These classes were categorized as artisanal mines, 
bare surfaces, settlements, official mines, water (including reservoirs, 
lakes, wetlands, and rivers), croplands, and natural vegetation, which 
includes trees, shrublands, and grasslands (Fig. 3). Croplands and nat-
ural vegetation dominated the landscape, covering an expansive area of 
2000 ha (ha) and 5727 ha, respectively. In contrast, the least prominent 
land cover classes were bare surfaces and artisanal mines, covering 0.13 
ha and 1.98 ha, respectively (Fig. 3). It further was observed that 

artisanal mines were primarily concentrated along the riverbanks, 
particularly along the course of the Umzingwane River. This indicated a 
strong association between illegal mining activities and their proximity 
to water bodies (Fig. 3). On the other hand, croplands were predomi-
nantly located towards the southern regions of the catchment. Addi-
tionally, the presence of settlements, official mines, and other land use 
classes were also evident throughout the catchment, contributing to the 
overall landscape dynamics. The detailed results of the LULC analysis 
not only provided a comprehensive understanding of the land use pat-
terns within the Umzingwane River catchment but also shed light on the 
spatial distribution of artisanal mines in relation to water bodies and 
agricultural activities. 

3.2. The land use and land cover accuracy assessment 

The assessment of the classification accuracy for the land cover 
classification produced satisfactory results, with an overall accuracy 
(OA) of 78.9 % and a Kappa coefficient of 72.8 %. These values fell 
within acceptable ranges, indicating the reliability of the classification 

Fig. 3. Spatial distribution of various land cover types based on RF model along the Umzingwane River catchment. The zoomed inserts highlight the areas affected 
by artisanal mining and where field sampling was conducted. Land cover classes and their areas: artisanal mines (1.98 ha), bare surface (0.13 ha), settlements (51.44 
ha), official mines (34.93 ha), water (67.95 ha), croplands (2000.17 ha) and natural vegetation (5727.64 ha). 
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model as per the ranges given in Gwitira et al. (2015). To further eval-
uate the accuracy, class accuracy results were measured using producer's 
accuracy (PA) and user's accuracy (UA) metrics for each land cover class. 

The analysis further revealed that most land cover classes achieved 
acceptable accuracy levels, with PA and UA values ranging from 60 % to 
100 % (Fig. 4). Notably, croplands exhibited relatively low PA and UA 
values, yet they still surpassed the 60 % threshold, indicating that the 
model was able to correctly identify them to a considerable extent. 
Conversely, other land cover classes, such as bare surfaces, artisanal 
mines, settlements, official mines, and water, demonstrated high accu-
racy, with PA and UA values ranging between 80 % and 100 %. 

During the analysis of variable importance, several key variables 
played significant roles in the land cover classification. The Normalized 
Difference Water Index (MNDWI), Normalized Difference Vegetation 
Index (NDVI), and elevation emerged as the most influential variables in 
the classification process. These variables effectively contributed to the 
accurate identification and differentiation of various land cover classes. 
On the other hand, terrain aspects had a relatively lesser impact on the 
classification process (Fig. 5). 

3.3. Water nutrient and metal concentrations 

Mean variation in nutrient concentrations shows that nitrate (NO3
− ) 

and ammonium (NH4
+) were the most dominant nutrient ranging be-

tween 0.10 mg L− 1 to 20.0 mg L− 1in all the rivers except in the Inyan-
kuni River where NO3

− and NH4
+ were the least dominating. 

Orthophosphate (PO4
2− ) and Phosphorus (P) were also the least domi-

nant nutrients in all the rivers ranging from 0.03 to 0.10 mg L− 1 

(Table 2). Analysis of metals revealed that Na, Ca and Mg were the most 
dominant for all the rivers ranging from 10.3 to 17.1 mg L− 1 for Na, 
22.3–32.9 mg L− 1 for Ca, and 5.7–12.1 mg L− 1 for Mg. Low concentra-
tions were observed for Pb, Zn, Hg, Cu, As, Cr and B with concentrations 
ranging from 0.001 to 2.04 mg L− 1 for all the rivers (Table 2). Based on 
the ANOVA analysis, nitrates (p = 0.034) were found to be the only 
nutrients that were significantly different across systems (Table 1). 
Tukey's posthoc analysis indicated that Mtshabezi vs Umzingwane rivers 
were the only significant (ANOVA, p = 0.025) systems in terms of nitrate 
concentrations (Table 1). In terms of water metal concentrations, Na (p 

= 0.005), Mg (p = 0.031), As (p = 0.001), B (p = 0.014), Cu (p = 0.014), 
Pb (p = 0.014) and Mn (p < 0.001) were the only significantly different 
metal concentrations among systems (Table 3). Based on pairwise 
comparisons, Umzingwane vs Inyankuni (Na), Insiza vs Inyankuni (Mg), 
Mtshabezi vs Insiza (As, B, Cu, Pb, Mn), Mtshabezi vs Umzingwane (As, 
B, Cu, Pb, Mn) and Mtshabezi vs Inyankuni (As, B, Cu, Pb, Mn) were the 
significant systems for the selected metals (Table 3). From the available 
DWAF surface water quality guidelines, most of the parameters were 
above the recommended guidelines (Table 2). 

The overall river ecosystem health was found to be significantly 
different across river systems (PERMANOVA, Pseudo–F = 1.946, p 
(Monte–Carlo (MC)) = 0.035). Using pairwise comparisons, we 
observed no significant differences for Mtshabezi vs Insiza (t = 1.065, p 
(MC) = 0.471), Mtshabezi vs Umzingwane (t = 1.255, p(MC) = 0.393), 
Mtshabezi vs Inyankuni (t = 1.435, p(MC) = 0.329), Insiza vs Umzing-
wane (t = 1.141, p(MC) = 0.286), Insiza vs Inyankuni (t = 1.242, p(MC) 
= 0.316) and Umzingwane vs Inyankuni (t = 1.273, p(MC) = 0.298). 

3.4. Relationships between the measured variables 

To analyse further the general water characteristics of the studied 
systems, we employed multivariate Pearson correlations (Table 4), 
cluster analysis (Fig. S1) and principal component analysis (PCA; 
Table 5). A correlation matrix showed that most nutrients and metals in 
the river water were not highly correlated with each other signifying a 
weak relationship (Table 4). Hence, this suggests that all metals in the 
studied water samples may have originated from different sources. For 
example, B concentrations was strongly positively correlated with Cu, 
Fe, Pb and Mn, while Mn strongly positively correlated with B, Cu, Fe 
and Pb, and Na was strongly positively correlated with Ca, Mg and P. 
The NO3

− concentration was strongly positively correlated with NO2
− , 

NH4
+, As, Fe and Mn (Table 4). Using PCA, the first two principal com-

ponents (PC) explained 53.8 % of the total variance, with PC1 and PC2 
explaining 31.7 % and 22.1 % of the total variance, respectively. The 
Eigenvalues of the two extracted PCs were both >1.0. Principal CA 
classified metals into three groups, with group 1 consisting of B, Cu, Fe, 
Pb and Mn, group 2 – Na, K, Ca, Mg and Hg, and group 3 consisting of As, 
Cd, Cr and Zn (Table 5). Hierarchical cluster analysis (HCA) results 

Fig. 4. The producer's accuracy and user's accuracy based on the RF model for the Umzingwane River catchment.  
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identified 3 distinct groups: group 1 included Na, Ca and Mg, and was 
clearly distinguishable from other 2 groups (Fig. S1). Group 2 consisted 
of K, As, Cr, Cd, Hg and Zn, and group 3 had B, Cu, Pb, Mn and Fe 
(Fig. S1). Variability in the metal concentrations can be inferred to be 
controlled by the anthropogenic point sources and local bedrock mate-
rials. For the river systems two groups were identified, with group 1 
consisting of Insiza River sites and group 2 of all the other river sites 
(Fig. S1). 

4. Discussion 

The results of the land use and land cover (LULC) analysis revealed 
that artisanal mines were predominantly situated along the rivers, 
which aligns with previous studies (Dalu et al., 2017a, 2017b, 2022) 

that have observed a preference for riparian zones due to the significant 
water requirements of these mining operations. Mhangara et al. (2020) 
in Johannesburg, South Africa showed that these illegal mining systems 
are usually located along the surface water systems due to their large 
water requirements. These findings corroborate with the findings of our 
study. Furthermore, Nyamekye et al. (2021) using unmanned vehicle 
machines and random forest machine learning algorithms highlighted 
that small scale illegal mines were mostly found along the large surface 
water bodies, therefore also corroborating with the findings of our 
study. 

Further analysis of LULC changes indicated that croplands and nat-
ural vegetation were the most dominant land cover domains, while bare 
surface and artisanal mines were the least dominant classes. The 
dominance of croplands and natural vegetation was expected as (Maviza 

Fig. 5. Random forest variable significance based on multi–probability approach for the Umzingwane River catchment. Abbreviations: B11 – short-wave infrared, B2 
– blue, B3 – green, B4 – red, B8 – near-infrared, MNDWI – modified normalized difference water index, NDVI – normalized difference water index. The B2, B3, B4 and 
B8 are Sentinel-2 spectral band channels with 10 m resolution and B11 is a Sentinel-2 spectral band channel with a ground sampling distance of 20 m. 

Table 2 
Mean variation in nutrient and metal concentration among river systems and one–way analysis of variance results. Values in bold indicate significant difference at p <
0.05. Abbreviation: df – degrees of freedom, DWAF – Department of Water Affairs (now Department of Water and Sanitation) surface water guidelines.  

Parameter DWAF Mtshabezi River Insiza River Umzingwane River Inyankuni River df F p 

Nutrients 
Nitrate (NO3

− , mg L− 1)  20.0 ± 12.7 4.6 ± 11.7 0.14 ± 0.05 0.1  3  3.692  0.034 
Nitrite (NO2

− ; mg L− 1)  0.05 0.05 ± 0.01 0.05 0.05  3  0.578  0.638 
Orthophosphate (PO4

2− ; mg L− 1)  0.10 0.10 0.10 0.10  3  0.000  1.000 
Ammonium (NH4

+; mg L− 1)  0.007 0.10 0.11 ± 0.04 0.10 0.10  3  0.578  0.638 
Phosphorus (P; mg L− 1)  0.025 0.04 ± 0.03 0.03 ± 0.01 0.05 ± 0.02 0.03 ± 0.01  3  2.978  0.063   

Metals 
Sodium (Na; mg L− 1)  16.0 ± 1.4 14.0 ± 1.2 17.1 ± 3.4 10.3 ± 0.6  3  6.286  0.005 
Potassium (K; mg L− 1)  2.1 2.4 ± 0.41 2.2 ± 1.0 1.6 ± 0.1  3  0.912  0.457 
Calcium (Ca; mg L− 1)  28.5 ± 3.5 23.6 ± 4.2 32.9 ± 12.1 22.3 ± 3.8  3  1.926  0.166 
Magnesium (Mg; mg L− 1)  0.18 8.0 12.1 ± 1.6 9.9 ± 4.1 5.7 ± 0.6  3  3.816  0.031 
Arsenic (As; mg L− 1)  0.01 0.06 ± 0.05 0.01 ± 0.01 <0.007 0.01 ± 0.001  3  8.674  0.001 
Boron (B; mg L− 1)  0.03 ± 0.004 0.03 0.03 ± 0.001 0.03  3  4.800  0.014 
Cadmium (Cd; mg L− 1)  0.0003 0.001 0.001 0.001 0.001  3  0.207  0.898 
Total chromium (Cr; mg L− 1)  0.012 0.03 0.03 0.03 0.03 ± 0.001  3  0.000  1.000 
Copper (Cu; mg L− 1)  0.0014 0.01 ± 0.002 0.01 0.01 0.01  3  4.800  0.014 
Iron (Fe; mg L− 1)  0.1 2.04 ± 1.73 0.63 ± 1.07 0.54 ± 0.29 0.53 ± 0.11  3  1.995  0.155 
Lead (Pb; mg L− 1)  0.0002 0.004 ± 0.004 0.001 0.001 0.001  3  4.800  0.014 
Manganese (Mn; mg L− 1)  0.18 0.46 ± 0.18 0.09 ± 0.08 0.13 ± 0.05 0.10 ± 0.08  3  11.379  <0.001 
Mercury (Hg; mg L− 1)  0.0004 0.001 0.001 ± 0.001 0.001 0.001  3  0.209  0.889 
Zinc (Zn; mg L− 1)  0.002 0.03 0.03 0.03 0.03  3  0.000  1.000  
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and Ahmed, 2020) in the Umzingwane River catchment, reported that 
croplands and natural vegetation were among the most dominant for the 
area and with a future growth prediction of 10.7 %. Bare surface was 
however expected to be among the least dominating class based on the 
previous estimates (Maviza and Ahmed, 2020), however, bare surface 
was one of the most dominant land cover types during the current study 
period. It was further observed that there was spectral mixing between 
the bare lands and other land cover classes, particularly official and 
artisanal mines. The spectral mixing mostly caused by the spatial reso-
lution of the remotely sensed data used In this study, which created 
spectral confusions between various classes which are known to have 
similar spectral characteristics, particularly bare surface, and exposed 
mining fields (both artisanal and official mining). This mixing resulted 
in some of the bare surface points being misclassified as official and 
artisanal mines. This outcome was anticipated due to the typical char-
acteristics of mining environments, where vegetation is cleared and the 
soil is exposed, leading to similar spectral reflectance properties be-
tween bare surface and mining areas, particularly from the optical 
remote sensing data such as Sentinel–2 used in this study. Li et al. (2022) 
highlighted that spectral library for mines had similar spectral reflec-
tance values with bare surfaces, and this corroborates with the findings 
of the current study. A similar study by Snapir et al. (2017) highlighted 
spectral confusions between mine boundaries other land cover types 
such as bare soils, and these were attributed to the spatial resolution of 
the remotely sensed data used. Similarly, Lobo et al. (2018) also re-
ported spectral confusions between bare surface and open mined envi-
ronments, with the confusions being attributed to the spatial resolution 
of the Sentinel–2 data used. Although this was the case, the use of terrain 
parameters such as slope, elevation and aspects as well as contextual 
parameters and indices proved to be useful parameters in this context, as 
such, the study managed to obtain acceptable class accuracies (>60 %). 

Nutrient concentrations in water showed that nitrate were among 
the most dominant elements across various streams within the 
Umzingwane River catchment, particularly for the Mtshabezi River sites 
1 and 2, and Inyankuni River site 1 where some nutrient concentrations 
were > 10 mg L− 1. The high nitrite and nitrate concentrations are 
usually associated with anthropogenic activities like agriculture and 
wastewater effluents discharged into the river. In this study, the elevated 
nitrate concentration could be attributed to mostly the dominating 
croplands in the region, were runoff from these regions transport nu-
trients from the application of fertilisers in fields to nearby streams and 

rivers therefore resulting in the elevated nitrate concentrations in those 
rivers (Nhiwatiwa et al., 2017; Xia et al., 2020), particularly because the 
sampling sites Mtshabezi River sites 1 and 2 which were located in areas 
dominated by croplands. This was also reported in a study by Liang et al. 
(2022) in the Yangtze River Basin in China. Another study by Xu et al. 
(2021) in the Yuntaishan River in China reported elevated nitrate con-
centrations, and these were attributed to the agricultural runoff. In 
addition, high nitrate concentrations observed could have been caused 
by the illegal mines particularly if gold is the mineral being mined. Gold 
mining involves the use of ammonium nitrate–based explosives and 
cyanide to leach out gold which gets released with the untreated effluent 
from the cleaning of the ore (Logsdon et al., 1999). 

In illegal mining, the effluent from the cleaning of the ore is not 
treated and it gets discharged to the nearby streams and rivers thus 
contributing to the elevated nitrate concentrations in these rivers, 
especially in the case of Umzingwane River, where these mines are 
located in the riparian zones of these selected rivers. A study by 
Frandsen et al. (2009), reported elevated ammonium nitrate concen-
tration around mines, with such elevated concentrations being attrib-
uted to gold mining explosives where the effluent from the ore 
containing ammonium nitrates was discharged into the nearby aquatic 
systems. Therefore, these results by Frandsen et al. (2009) further 
corroborated our findings. Another study by Häyrynen et al. (2009) 
reported elevated nitrate concentration levels from mine effluent in 
Brazil. These findings also support our argument that elevated nitrate 
concentrations in the selected sites might also be from the artisanal 
mines in the riparian zones. 

Metal analysis results indicated elevated concentrations of Ca, Na 
and Mg in most sampling sites >10 mg L− 1 and this was expected 
because of the underlying geology for the region. The lower part of the 
catchment is characterised by Limpopo belt gneisses and Karroo Basalt, 
and basaltic rocks usually contains plagioclase feldspar which is calcium 
rich. The excavation during mining and dewatering result in the release 
of water that has interacted with the Karoo basalt rock, which is Ca rich, 
thus leading to the high Ca concentrations since the mining effluent 
realised is not treated (Vazquez-Almazan et al., 2012). A study by Liu 
and Ma (2019), reported high Ca concentrations in a river in China from 
the dewatering that has interacted with a Ca rich mineral, thus 
corroborating with the findings of our study. The high Mg and Na con-
centrations observed in some of the sampling sites was expected, 
particularly for the sampling points located in the upper catchment due 

Table 3 
Tukey's pairwise comparisons among the different study systems. Values in bold indicate significant differences at p < 0.05.  

Parameter System pairs p Parameter System pairs p 

Nitrate (NO3) Msthabezi vs Insiza  0.1050 Boron (B) Msthabezi vs Insiza  0.013 
Msthabezi vs Umzingwane  0.0250  Msthabezi vs Umzingwane  0.012 
Msthabezi vs Inyankuni  0.0570  Msthabezi vs Inyankuni  0.032 
Insiza vs Umzingwane  0.6990  Insiza vs Umzingwane  1.000 
Insiza vs Inyankuni  0.8410  Insiza vs Inyankuni  1.000 
Umzingwane vs Inyankuni  1.0000  Umzingwane vs Inyankuni  1.000 

Sodium (Na) Msthabezi vs Insiza  0.7340 Copper (Cu) Msthabezi vs Insiza  0.013 
Msthabezi vs Umzingwane  0.9340  Msthabezi vs Umzingwane  0.012 
Msthabezi vs Inyankuni  0.0870  Msthabezi vs Inyankuni  0.032 
Insiza vs Umzingwane  0.0990  Insiza vs Umzingwane  1.000 
Insiza vs Inyankuni  0.1660  Insiza vs Inyankuni  1.000 
Umzingwane vs Inyankuni  0.0040  Umzingwane vs Inyankuni  1.000 

Magnesium (Mg) Msthabezi vs Insiza  0.3170 Lead (Pb) Msthabezi vs Insiza  0.013 
Msthabezi vs Umzingwane  0.8450  Msthabezi vs Umzingwane  0.012 
Msthabezi vs Inyankuni  0.8140  Msthabezi vs Inyankuni  0.032 
Insiza vs Umzingwane  0.4540  Insiza vs Umzingwane  1.000 
Insiza vs Inyankuni  0.0240  Insiza v Inyankuni  1.000 
Umzingwane vs Inyankuni  0.1810  Umzingwane vs Inyankuni  1.000 

Arsenic (As) Msthabezi vs Insiza  0.0040 Manganese (Mn) Msthabezi vs Insiza  <0.001 
Insiza vs inyankuni  583.0000  Msthabezi vs Umzingwane  <0.001 
Msthabezi vs Inyankuni  0.0030  Msthabezi vs Inyankuni  0.001    

Insiza vs Umzingwane  0.835    
Insiza vs Inyankuni  0.997    
Umzingwane vs Inyankuni  0.971  
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to the greenstone belt geology underlain by the granitic terrains. 
Greenstone belt consist of sill–like plutonic ultramafic–mafic rocks that 
are genetically related to high–Mg magmas like komatiites, boninites, 
and high–Mg siliceous basalts. Thus, the dissolution of these rocks re-
sults in the release of Mg (Ashton et al., 2001; Munyai et al., 2023). 
Similar to Ca, the dewatering during the mining process could have 
resulted in the release of Mg rich water into the studied rivers. 

The results of the Pearson correlation matrix analysis provided 
important insights into the relationship between nutrient and metal 
concentrations in the river waters. The significant relationships 
observed indicate that changes in these concentrations can be attributed 
to various anthropogenic activities occurring in the area. In particular, 
the presence of illegal mines in the riparian zones of the rivers appears to 
have a significant impact on water quality. The proximity of the mines to 
the rivers and their associated riparian zones facilitates the direct entry 
of contaminants into the water, potentially leading to increased levels of 
nutrients and metals (Dube et al., 2023). The Principal Component 
Analysis and hierarchical cluster analysis revealed the presence of three 
distinct groups with significant variations (>50 %) between the clusters. 
The first cluster comprised Na, Mg, and Ca, which are associated with 
the hardness of water caused by mineral gypsum and probable come 
from illegal mining areas and this finding probable indicates the influ-
ence of mining activities, particularly the artisanal mines located in the 
riparian zones. In areas dominated by artisanal mining activities, the 
presence of mercury in water bodies poses a significant concern for 
water quality. Artisanal and small–scale gold mining commonly involves 
the use of mercury as a means of extracting gold from ore. As a result, 
water sources in these areas can become contaminated with mercury. 
This process releases mercury into the environment, leading to wide-
spread pollution of water sources due to widespread use of mercury to 
extract gold by the illegal miners (Thandekile Dube, pers. Observ.). 
These might results highlight the complex interactions between different 
sources of water pollution within the study area as most parameters 
were above the surface water guidelines and the PCA analysis high-
lighted potential different sources of origin for the metals. 

The study findings indicate that the presence of artisanal mines, 
along with other land cover types, along Umzingwane River catchment 
have an impact on river water quality as the water contaminated with 
different metals and they made the river to be very turbid, with high 
sediment load. These findings provide a valuable baseline understand-
ing of the overall river health and the influence of surrounding 
anthropogenic activities in the area. It is therefore crucial to use this 
information in the development and implementation of regulatory 
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  Table 5 

Principle component analysis (PCA) results for metal concentrations for the 
entire study area. Factor loadings >0.5 are highlighted in bold.  

Factors PC 1 PC 2 

Eigenvalue 4.435 3.091 
% of variance 31.679 22.081 
Cum. % of variance 31.679 53.76  

Metals Factor loadings 
Sodium (Na) 0.23 ¡0.84 
Potassium (K) − 0.12 0.66 
Calcium (Ca) 0.2 ¡0.90 
Magnesium (Mg) − 0.06 ¡0.84 
Arsenic (As) 0.29 0.16 
Boron (B) 0.96 0.10 
Cadmium (Cd) − 0.08 0.00 
Total Chromium (Cr) 0.12 − 0.13 
Copper (Cu) 0.96 0.10 
Iron (Fe) 0.78 0.20 
Lead (Pb) 0.96 0.10 
Manganese (Mn) 0.91 − 0.10 
Mercury (Hg) − 0.01 ¡0.51 
Zinc (Zn) 0.08 0.23  
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measures to protect and preserve our aquatic systems, as well as 
strengthen existing regulations. The mitigation of mercury pollution 
resulting from artisanal mining activities is crucial for achieving the 
Sustainable Development Goals (SDGs), particularly SDG 15.1, which 
focuses on the protection, restoration, and conservation of terrestrial 
and inland freshwater systems and their ecosystem services (Arora and 
Mishra, 2019). Artisanal and small–scale gold mining has been recog-
nised as a significant source of mercury contamination in water bodies 
(Cordy et al., 2011; Telmer and Veiga, 2009). Mercury is used in the 
amalgamation process to extract gold from ore, leading to environ-
mental contamination and posing risks to human health (Veiga and 
Baker, 2004; García et al., 2015). Furthermore, the findings of this 
research directly align with SDG 3.9, which aims to reduce water-
–related deaths caused by water contamination (United Nations, 2015). 
Mercury–contaminated water can have severe health impacts, including 
neurological disorders, developmental issues, and organ damage (Bose- 
O’Reilly et al., 2010; Esdaile and Chalker, 2018). Minimising the use of 
mercury in artisanal mining and implementing proper waste manage-
ment practices are crucial steps in reducing water contamination and 
associated health risks (Bose-O’Reilly et al., 2010; Hilson and 
McQuilken, 2014). 

Therefore, implementing strategies such as promoting mercury–free 
gold processing techniques, providing training and support to artisanal 
miners, and strengthening regulatory frameworks are essential for 
addressing the challenges posed by mercury pollution in artisanal 
mining areas (Hilson and McQuilken, 2014; García et al., 2015). 
Collaborative efforts involving governments, mining communities, 
non–governmental organizations, and international institutions are 
necessary to achieve sustainable mining practices and contribute to the 
attainment of the SDGs. 

4.1. Policy implications of the study 

The findings of this study have significant policy implications that 
align with several sustainable development goals (SDGs). The findings 
highlight the need for stringent regulations and policy frameworks to 
control artisanal mining activities along rivers and riparian zones, as 
well as promoting sustainable agricultural practices, contribute to SDG 6 
(clean water and sanitation) through the safeguarding of water quality 
and preserving aquatic ecosystems. Additionally, promoting sustainable 
agricultural practices can help reduce nutrient runoff from croplands, 
while policy measures to minimise Hg use in artisanal mining and 
enforce proper waste management can prevent widespread contamina-
tion of aquatic ecosystems and safeguard human health. The study has 
significant policy implications that call for stringent regulations to 
control artisanal mining operations situated along unprotected rivers 
and riparian zones. Furthermore, designating protected areas along river 
ecosystems aligns with SDG 14 (life below water) and SDG 15 (life on 
land) as it preserves sensitive aquatic ecosystems and contributes to 
biodiversity conservation. There is a need for the establishment of robust 
monitoring systems and collaborative governance efforts involving 
multi–stakeholder cooperation and knowledge exchange for effective 
water resource management. Also, public awareness campaigns and 
educational programs addressed by SDG 4 on promoting responsible 
water use and environmental awareness is therefore crucial. By inte-
grating policy implications into decision–making processes, policy-
makers can actively work towards achieving various SDGs, ensuring the 
sustainable management of water resources, protecting ecosystems, and 
promoting overall sustainable development. 

5. Conclusions 

The analysis of LULC in the studied area identified seven distinct 
classes, including artisanal mines, with an acceptable overall accuracy. 
This suggests that the classification approach successfully captured the 
different land cover types present in the Umzingwane River catchment. 

Interestingly, the study found that artisanal mines were predominantly 
located along the riparian zones of the rivers, which can be attributed to 
their significant water requirements for mining operations. Water 
quality analysis revealed elevated concentrations of nitrate and nitrite in 
the rivers, which can be linked to the presence of croplands and po-
tential artisanal mining activities in the area. The use of fertilisers in 
agriculture contributes to the increased nitrate and nitrite levels, while 
the mining activities, including the use of ammonium nitrate explosives, 
contribute to the elevated ammonium concentrations. These mining-
–related activities release ammonium into the river systems as untreated 
effluents, further impacting water quality. These findings provide 
valuable insights into the health status of the rivers in the Umzingwane 
River catchment and the impacts of anthropogenic activities, particu-
larly artisanal mining and agriculture. By understanding the spatial 
distribution of land cover classes, including the location of artisanal 
mines, and identifying the associated water quality variations, policy-
makers and environmental managers can make informed decisions to 
mitigate the negative impacts on river ecosystems. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.scitotenv.2023.167919. 
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