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ABSTRACT 

The present study analyzes the impact of climate change on agricultural production and food 

inflation in Southern Africa by employing quantitative analysis of annual data from 1981 to 2020. 

Annual mean temperature and average rainfall are employed as proxies for climate change, the 

analysis focuses on the agricultural production and food inflation as the dependent variables. To 

assess the order of integration of both the regressands and regressors of interest, three panel unit 

root tests are employed; Levin, Lin and Chu (LLC); Im, Pesaran, and Shin (IPS); and Fisher Chi-

square tests. Furthermore, the PMG/Panel ARDL approach for cointegration is employed to 

evaluate the long run relationship among the variables. The results indicate that temperature and 

rainfall patterns have a negative and significant impact on agricultural productivity as a 1C 

increase in temperature leads to 16.63 units of decrease in agricultural output. It could therefore 

be contended that the agricultural sector in Southern Africa is particularly at risk from climate 

change due to the unique geology and farming systems of this region. On the other hand, only 

temperature has a positive and significant impact on food inflation, since temperature is a critical 

determinant of crop yields, warmer temperatures negatively affect the growth cycles of staple crops 

by causing heat stress and reducing water availability, hence increased food prices.  To mitigate 

these challenges, this study recommends climate-resilient farming practices, input tariff 

reductions, enhancement of regional trade integration, and support for renewable energies so that 

productivity improves while food prices remain stable. Flexible monetary policies and increased 

social protection measures will thus be substantially instrumental in safeguarding livelihoods and 

food security for the population, fostering a strong agricultural economy against both structural 

and climatic challenges. 

Keywords:  

Climate Change, Agricultural Production, Food Inflation, PMG/Panel ARDL 

 

 

 

 

 



 

 

vii 

TABLE OF CONTENTS 

DECLARATION OF COPYRIGHT ........................................................................................................ II 

DECLARATION ON PLAGIARISM .................................................................................................... III 

DEDICATION ........................................................................................................................................... IV 

ACKNOWLEDGEMENTS ...................................................................................................................... V 

ABSTRACT ............................................................................................................................................... VI 

LIST OF TABLES ..................................................................................................................................... XI 

LIST OF FIGURES ................................................................................................................................ XII 

LIST OF ACRONYMS ......................................................................................................................... XIII 

CHAPTER ONE: INTRODUCTION ....................................................................................................... 1 

1.1. BACKGROUND OF THE STUDY ................................................................................................ 1 

1.2. STATEMENT OF THE RESEARCH PROBLEM ...................................................................................... 3 
1.3. RESEARCH QUESTIONS ..................................................................................................................... 4 

1.4. RESEARCH OBJECTIVES ................................................................................................................... 5 

1.4.1. PRIMARY OBJECTIVE ........................................................................................................................... 5 

1.4.2. SECONDARY OBJECTIVES ..................................................................................................................... 5 
1.4.3. EMPIRICAL OBJECTIVES ....................................................................................................................... 5 

1.5. HYPOTHESIS OF THE STUDY ............................................................................................................. 5 

1.6. SIGNIFICANCE OF THE STUDY .......................................................................................................... 6 

1.7. METHODOLOGY ................................................................................................................................ 7 
1.8. ETHICAL CONSIDERATION ............................................................................................................... 7 

CHAPTER 2: THE DYNAMICS OF CLIMATE CHANGE IN SOUTHERN AFRICA ..................... 9 

2.1. INTRODUCTION ..................................................................................................................................... 9 

2.2. THE CASE OF SOUTH AFRICA ............................................................................................................... 9 
2.2.1. IMPLICATIONS OF CLIMATE CHANGE ON THE MAIN SECTORS .............................................................. 9 

2.2.2. IMPLICATIONS OF CLIMATE CHANGE ON THE FOOD INFLATION ......................................................... 11 

2.2.3. FUTURE CLIMATE PROJECTIONS........................................................................................................ 13 

2.3. THE CASE OF ZIMBABWE .................................................................................................................... 14 
2.3.1. SOCIOECONOMIC VULNERABILITY TO CLIMATE CHANGE .................................................................. 14 



 

 

viii 

2.3.2. IMPACT OF CLIMATE CHANGE ON THE AGRICULTURAL SECTOR ......................................................... 15 

2.3.3. FOOD INFLATION DYNAMICS AS A RESULT OF CLIMATE CHANGE ....................................................... 16 

2.3.4. PROJECTED CLIMATE CHANGES BY 2050 ........................................................................................... 17 
2.4. THE CASE OF ZAMBIA ......................................................................................................................... 19 

2.4.1. OVERVIEW OF THE ECONOMY AND AGRICULTURE IN ZAMBIA .......................................................... 19 

2.4.2. IMPLICATIONS OF CLIMATE CHANGE ON CROP PRODUCTION IN ZAMBIA .......................................... 20 

2.4.3. IMPLICATIONS OF CLIMATE CHANGE ON FOOD INFLATION IN ZAMBIA .............................................. 21 
2.4.4. PROJECTED CLIMATE TRENDS ........................................................................................................... 22 

2.5. THE CASE OF MOZAMBIQUE .............................................................................................................. 23 

2.5.1. BROADER KEY MACROECONOMIC IMPACTS AND VULNERABILITIES ............................................... 23 

2.5.2. OVERVIEW OF THE AGRICULTURAL SECTOR IN MOZAMBIQUE .......................................................... 24 
2.5.3. PROJECTED CLIMATE TRENDS ........................................................................................................... 25 

2.6. THE CASE OF BOTSWANA .................................................................................................................... 26 

2.6.1. IMPLICATIONS OF CLIMATE CHANGE ON AGRICULTURAL PRODUCTIVITY ......................................... 26 

2.6.2. IMPLICATIONS OF CLIMATE CHANGE ON FOOD PRICES IN BOTSWANA ............................................... 27 
2.6.3. PROJECTED CLIMATE KEY TRENDS ................................................................................................... 28 

2.7. THE CASE OF LESOTHO ...................................................................................................................... 29 

2.7.1. IMPLICATIONS OF CLIMATE CHANGE ON THE ECONOMIC SECTORS.................................................... 29 

2.7.2. IMPLICATIONS OF CLIMATE CHANGE ON FOOD PRICES ...................................................................... 31 
2.7.3. PROJECTED FUTURE CLIMATE TRENDS ............................................................................................. 32 

2.8. THE CASE OF MALAWI ........................................................................................................................ 33 

2.8.1. SOCIO-ECONOMIC VULNERABILITIES ............................................................................................... 33 

2.8.2. OVERVIEW OF THE MALAWIAN AGRICULTURAL SECTOR .................................................................. 35 
2.8.3. IMPLICATIONS OF CLIMATE CHANGE ON FOOD INFLATION ................................................................ 35 

2.8.4. FUTURE CLIMATE TRENDS ................................................................................................................. 35 

2.9. THE CASE OF NAMIBIA ....................................................................................................................... 37 

2.9.1. IMPLICATIONS OF CLIMATE CHANGE ON THE HYDROLOGY SECTOR .................................................. 37 
2.9.2. IMPLICATIONS OF CLIMATE CHANGE ON THE AGRICULTURAL SECTOR .............................................. 38 

2.9.3. IMPLICATIONS OF CLIMATE CHANGE ON FOOD INFLATION ................................................................ 40 

2.10. CONCLUSION ..................................................................................................................................... 41 

CHAPTER 3: LITERATURE REVIEW ................................................................................................ 42 

3.1. INTRODUCTION ................................................................................................................................... 42 

3.2. THEORETICAL FRAMEWORK ............................................................................................................. 42 

3.2.1. KEYNESIAN THEORY OF INFLATION .................................................................................................. 42 

3.2.2. COST-PUSH INFLATION ...................................................................................................................... 43 
3.2.3. CONCEPTUAL APPROACH ................................................................................................................... 48 

3.3. EMPIRICAL LITERATURE .................................................................................................................... 50 

3.3.1. CLIMATE CHANGE AS A DRIVER OF FOOD AND OVERALL INFLATION ................................................. 50 

3.3.2. CLIMATE CHANGE AS A CONTRIBUTING FACTOR TO LOWER AGRICULTURAL OUTPUT ....................... 55 
3.4 ASSESSMENT OF LITERATURE ............................................................................................................. 59 

3.5. CHAPTER SUMMARY ........................................................................................................................... 59 

CHAPTER 4: RESEARCH METHODOLOGY ................................................................................... 61 



 

 

ix 

4.1. INTRODUCTION ................................................................................................................................... 61 

4.2. RESEARCH DESIGN .............................................................................................................................. 61 

4.3. MODEL 1: AGRICULTURAL PRODUCTION ......................................................................................... 61 
4.3.1. DATA SOURCES AND SAMPLING ......................................................................................................... 61 

4.3.2. MODEL SPECIFICATION AND DISCUSSION OF VARIABLES ................................................................. 62 

4.4. MODEL 2: FOOD INFLATION ............................................................................................................... 65 

4.4.1. DATA AND METHODS ......................................................................................................................... 65 
4.4.2. MODEL SPECIFICATION AND DISCUSSION OF VARIABLES .................................................................. 65 

4.5. ESTIMATION TECHNIQUES AND PROCEDURES ................................................................................... 68 

4.5.1. DESCRIPTIVE STATISTICS TEST .......................................................................................................... 68 

4.5.2. CORRELATION ANALYSIS .................................................................................................................. 69 
4.5.3. PANEL UNIT ROOT TEST .................................................................................................................... 69 

4.5.4. LAG LENGTH SELECTION .................................................................................................................. 70 

4.5.5. PANEL COINTEGRATION TEST ........................................................................................................... 70 

4.5.6. POOLED MEAN GROUP (PMG)/PANEL AUTOREGRESSIVE DISTRIBUTED LAG (ARDL) ................... 71 
4.5.7. PANEL DATA ANALYTIC MODELS ...................................................................................................... 72 

4.6. DIAGNOSTIC TESTS ............................................................................................................................. 74 

4.6.1. NORMALITY TEST .............................................................................................................................. 74 

4.6.2. CROSS-SECTION DEPENDENCE TEST ................................................................................................. 75 
4.7. CHAPTER SUMMARY ........................................................................................................................... 76 

CHAPTER 5: EMPIRICAL ANALYSIS AND RESULTS .................................................................... 77 

5.1. INTRODUCTION ................................................................................................................................... 77 

MODEL 1: AGRICULTURAL PRODUCTION ................................................................................................ 77 
5.2. DESCRIPTIVE STATISTICS TEST ......................................................................................................... 77 

5.3. CORRELATION ANALYSIS ................................................................................................................... 78 

5.4. UNIT ROOT TEST................................................................................................................................. 79 

5.5. PANEL PMG/ARDL RESULTS ............................................................................................................ 80 
5.5.1. OPTIMAL LAG SELECTION ................................................................................................................. 80 

5.6. PANEL COINTEGRATION TEST ........................................................................................................... 80 

5.6.1. PEDRONI TEST .................................................................................................................................... 81 

5.5.2. KAO TEST .......................................................................................................................................... 82 
5.6.2. LONG RUN PANEL ARDL EMPIRICAL RESULTS .................................................................................. 82 

5.6.3. SHORT RUN PANEL ARDL EMPIRICAL RESULTS ................................................................................. 87 

5.7. HAUSMAN TEST ................................................................................................................................... 88 

5.8. DIAGNOSTIC TESTS ............................................................................................................................. 90 
5.8.1. NORMALITY TEST .............................................................................................................................. 90 

5.8.2. CROSS SECTION INDEPENDENCE TEST .............................................................................................. 91 

MODEL 2: FOOD INFLATION ..................................................................................................................... 92 

5.9. DESCRIPTIVE STATISTICS ................................................................................................................... 92 
5.11. UNIT ROOT TEST ............................................................................................................................... 94 

5.12. PANEL PMG/ARDL RESULTS .......................................................................................................... 95 

5.12.1. OPTIMAL LAG SELECTION ............................................................................................................... 95 

5.13. PANEL COINTEGRATION TEST ......................................................................................................... 95 
5.13.1. PEDRONI TEST .................................................................................................................................. 96 



 

 

x 

5.12.2. KAO TEST......................................................................................................................................... 97 

5.13.2 LONG RUN PANEL ARDL EMPIRICAL RESULTS ................................................................................. 97 

5.13.3. SHORT RUN PANEL ARDL EMPIRICAL RESULTS ............................................................................. 101 
5.14. HAUSMAN TEST RESULTS ................................................................................................................ 102 

5.15. DIAGNOSTIC TESTS ......................................................................................................................... 102 

5.15.1. NORMALITY TEST .......................................................................................................................... 103 

5.15.2. CROSS SECTION DEPENDENCE ...................................................................................................... 104 
5.16. CHAPTER SUMMARY ....................................................................................................................... 104 

CHAPTER 6: SUMMARY, RECOMMENDATIONS AND CONCLUSION ................................... 106 

6.1. INTRODUCTION ................................................................................................................................. 106 

6.2. SUMMARY OF THE FINDINGS ............................................................................................................ 106 
6.3. POLICY RECOMMENDATIONS ........................................................................................................... 107 

6.3.1. MODEL 1: AGRICULTURAL PRODUCTION MODEL ........................................................................... 107 

6.3.2. MODEL 2: FOOD INFLATION MODEL ............................................................................................... 110 

6.4. CONCLUSION ..................................................................................................................................... 112 
6.5. FUTURE DIRECTIONS ........................................................................................................................ 113 

REFERENCES ........................................................................................................................................ 114 

APPENDIX .............................................................................................................................................. 140 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

xi 

LIST OF TABLES 

Table 4.1 Variable Description  

Table 4.2 Variable Description 

Table 5.1 Individual Sample: Descriptive Statistics of Variables from 1981-2020 

Table 5.2 Correlation Analysis Results 

Table 5.3 Panel Unit-Root Test Results 

Table 5.4 Optimal Lag Section Results 

Table 5.5 Pedroni Residual Co-integration Test Results 

Table 5.6 Kao Co-integration Test Results 

Table 5.7 Long-run panel ARDL estimates 

Table 5.8 Short run results of panel ARDL 

Table 5.9 Hausman test results 

Table 5.10 Cross Section Dependence Results 

Table 5.11 Individual Sample: Descriptive Statistics of Variables from 1981-2020 

Table 5.12 Correlation Analysis Results 

Table 5.13 Panel Unit-Root Test Results 

Table 5.14 Optimal Lag Selection Results 

Table 5.15 Pedroni Residual Co-integration Test Results 

Table 5.16 Kao Co-integration Test Results 

Table 5.17 Long-run panel ARDL estimates 

Table 5.18 Short run results of panel ARDL 

Table 5.19 Hausman test results – Random Effects Model 

Table 5.20 Cross Section Dependence results 



 

 

xii 

LIST OF FIGURES 

Figure 2.1  Blended Inflation Rates 

Figure 2.2  Forecasted changes of weather conditions in Mozambique at the national level 

Figure 2.3 Historical and predicted average temperatures in Botswana from 1986 to 2099 

Figure 2.4 Annual average precipitation in Botswana from 1986 to 2099 

Figure 2.5 Projected Average Temperature for Lesotho 

Figure 2.6 Projected trends in precipitation and mean daily maximum temperature for the  

warmest month for the wettest three-month period, 2020s to 2060s 

Figure 2.7  Annual percentage (%) changes of farming activities 

Figure 3.1 Flow of climate change impact on the agricultural sector 

Figure 5.1 Normality Test   

Figure 5.2 Normality Test     

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

xiii 

LIST OF ACRONYMS 

ADF    Augmented Dickey Fuller  

ARDL    Auto-Regressive Distributed Lag 

FAO    Food and Agriculture Organization of the United States 

FAOSTAT   Food and Agriculture Organization Statistics 

FISP    Malawi’s Farm Input Subsidy Programme 

GDP    Gross Domestic Product 

GHG    Green House Gas 

IPCC    Intergovernmental Portal of Climate Change 

IPS    Im, Pesaran, and Shin 

LLC    Levin, Lin, and Chu 

NASA POWER National Aeronautics and Space Administration, Prediction Of 

Worldwide Energy Resources 

PMG    Pooled Mean Group 

SAGIS    South African Grain Information Service 

SARB    South African Reserve Bank 

SDG    Sustainable Development Goal 

STATSSA   Statistics South Africa  

UNDRR   United Nations Office for Disaster Risk Reduction 

WDI    World Development Index 

Zimstat   Zimbabwe Statistics



 1 

CHAPTER ONE: INTRODUCTION 

______________________________________________________________________________ 

1.1. Background of the study 

Intergovernmental Panel on Climate Change (IPCC) defined climate change as the assembly of 

weather in various temporal scales, spanning from several months to hundreds of thousands of 

years, and generally involves factors which include temperature, rainfall, and wind (Le Treut et 

al., 2007). In relation to that, IPCC has explained extreme climate events as extreme deviation 

from the normal statistical levels in a particular region (McPhillips et al., 2018). 

Climate change has had a variety of consequences on global agriculture during the past several 

years as a result of changes in both temperature and rainfall patterns. High temperatures, for 

example, reduce crop yields by reducing the soil moisture content and increasing weed and pest 

infestations. On the other hand, high temperatures may speed up frost periods, thus promoting the 

possibility of cultivation in cooler but marginally cropped areas (Lesk et al., 2021). Precipitation 

variability further amplifies the probability of crop failure and extended production decline. This, 

in turn, affects rainfed agricultural systems with great variability, especially in the rainfall pattern, 

which restricts soil moisture and adds to vulnerability (Zaveri et al., 2020). While irrigation 

reduces some of the risk from climate variability, these systems depend on reliable water supplies 

in their own right and are thus subject to alterations in river flow quantity in both space and time. 

For instance, the fourth assessment report by the IPCC discussed the future impacts of climatic 

changes on agriculture and foresees a general rise in average temperature, increase in 

desertification, heat waves, water stress, and intense rainfall events across nearly every part of the 

world (Bhattacharyya et al., 2020). Such extreme weather conditions significantly affect countries 

whose economies rely heavily on agriculture and whose GDP comprises a significant proportion 

of agricultural output. Anderson et al. (2020), projected that a temperature rise of not less than 

2.5°C or even greater could lead to crop yields falling and substantial food price increases due to 

surging global demand beyond expanded capacity in food production. Climate change may 

increasingly be vulnerable to the rainfed agricultural systems of Africa. Furthermore, over 70% of 

Africa's population is located in the rural areas, and to a large extent rely on agriculture. Moreover, 

upwards of a quarter of all continental GDP emanates from agriculture (Moyo, 2016). Besides 
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presenting uncertainties within agricultural productions, climate change decreases soil nutrient 

availability, hence impacting productive capacity. Due to this, agricultural output decreases 

ultimately causing food to become more costly. Rising food prices indicate demand and supply 

imbalances and increasing deficiencies of resources, which can be caused by supply factors 

inclusive of decreased productivity from climatic changes and decreased agricultural land resulting 

from the degradation of soil and transition into alternative uses, or demand factors consisting of 

population growth and income advancement (Odongo et al., 2022).  

However, despite the vast body of literature on climate change and its impact on agricultural 

productivity, there remains a gap in understanding its implications for food inflation and economic 

stability in Southern Africa. Most of the studies that are presently published including that of 

Kilroy (2015), focus on the bio-physical impacts of climate change, such as changes in temperature 

and precipitation, while mainly neglecting the socio-economic impacts, such as inflation of food 

items and availability of food at the household level. Moreover, there are limited studies that 

explicitly examine the extent to which climate variability influences the production level in areas 

that heavily rely on agriculture for survival and economic development. This study aims to address 

this gap by examining the impacts of climate change on agricultural productivity and food price 

inflation in Southern Africa, thereby offering essential regional evidence that can guide policy 

formulation and adaptation strategies. 

In order to carry out an in-depth analysis, this study focuses on Malawi, Lesotho, Zimbabwe, 

Botswana, Namibia, Mozambique, South Africa, and Zambia, due to their heavy dependence on 

agriculture, range of climatic variations, and most notably, availability of credible data. All these 

countries a combination of arid, semi-arid, and tropical climates, making them vulnerable to 

climatic variability and its impacts on food security and inflation. Malawi and Zimbabwe are 

heavily reliant on rain-fed maize production and therefore are susceptible to irregular rainfall and 

prolonged drought, which usually results in food shortage (Mapila et al., 2022). Lesotho is 

vulnerable to periodic cycles of drought and soil erosion, which threaten its smallholder agriculture 

and livestock production (Pryor et al., 2022). Botswana struggles to maintain its subsistence 

farming and cattle sector due to its semi-arid conditions and lack of cultivable land (Nhamo et al., 

2019). Desertification and drought reduce farm output in Namibia, which is the region's driest 

country (Liu and Zou, 2021). On the other hand, Mozambique is experiencing regular food 
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shortages as a result of the tropical cyclones and floods, which destroy crops and infrastructure 

(Okou et al., 2022). 

South Africa, the largest producer in the region, is facing intensifying water stress and rising 

temperature variation destabilizing many practices of agriculture (Shikwamba et al., 2023). While 

Zambia, a country largely dependent on agriculture for employment and GDP is encountered with 

irregular rainfall patterns and prolonged dry periods, posing a threat to the country’s farm 

production and economic sustainability (Phiri et al., 2020). There is no continent more familiar 

with climate change and its effects on agricultural productivity than Africa, where the majority of 

national economies still rely heavily on the agricultural and other climate-sensitive sectors. 

1.2. Statement of the research problem 

In any economy, maintaining stable prices is the essential objective of monetary policy. However, 

in developing nations where the impoverished utilize a significant amount of their disposable 

income on consumption of food, high food price inflation impacts not solely macroeconomic 

stability but also small farmers and impoverished consumers (Pawlak & Kołodziejczak, 2020).  

Southern Africa is presently facing a decline in agricultural output and an increase in food costs 

due to long-lasting droughts, erratic rainfall, and higher temperatures (Nhemachena et al., 2020). 

Although extremely vulnerable to climate change, agriculture remains a key industry for economic 

stability considering that it employs more than 60% of the population and contributes significantly 

to GDP. However, efforts aimed at mitigating the impacts of climate change, including 

conservation agriculture and the cultivation of drought-resistant crops, have not entirely alleviated 

the adverse effects on agricultural output and food inflation (Mabhaudhi et al., 2019). Cereal 

production in the region is projected to decline by almost 50% by 2080, consequently intensifying 

food insecurity (Yerlikaya et al., 2020). 

 

In Southern Africa, increasing temperatures and decreasing precipitation have resulted in 

diminished agricultural productivity, contributing to heightened volatility in food prices. For 

instance, in South Africa, the drought of 2015-2016 resulted in a 45% reduction in maize 

production, contributing to a food inflation rate of 12% by December 2016 (StatsSA, 2018). In 

2022, Zimbabwe saw a 45% decrease in maize yields, while food inflation rose to 55.3% in March 

2024 (Zimstat, 2024). In February 2024, maize prices in Mozambique increased by 12%, 
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surpassing the five-year average by 20% (FAO, 2024). Meanwhile, Botswana experienced a peak 

in food inflation at 14.6% in 2023, which subsequently declined to 1.2% in 2024 as a result of 

decreasing global cereal prices (StatsBots, 2024). In Lesotho, ongoing crop failures compelled 

41% of rural households to allocate more than half of their income to food (Sekaran et al., 2021). 

In Malawi, maize prices increased by 160% relative to the five-year average, resulting in a 32.3% 

inflation rate in April 2024 (IPC, 2024). The 2019 drought in Namibia caused a 2% increase in the 

price of food, which increased to 6% in 2021 when there was a global increase in gas prices (Liu 

& Zhou, 2021; Shikangalah, 2020). The inability to regulate agricultural productivity has dire 

economic repercussions as inflationary pressures in the agricultural sector accelerate poverty and 

cause macroeconomic uncertainty. Current climate adaptation and food security policies have been 

unable to effectively to address these concerns, rendering numerous countries susceptible to 

external shocks including global food price swings and catastrophic weather events (England et 

al., 2018). 

 

This may be evidenced by the South African National Climate Change Adaptation Strategy 

(NCCAS), which presents a general structure for climate change adaptation across sectors, 

including agriculture. Its operation is greatly disabled by the lack of adequate enforcement 

measures and insufficiency of budgetary allocation (Khavhagali et al., 2024). Critics point out that 

despite a well-defined plan, it fails to convert objectives into concrete action, especially at local 

levels, where farm firms are particularly exposed (Matikinca et al., 2024). This current study 

explores the relationship between climate change and its impact on agricultural production and 

food inflation in Southern Africa, based on a panel ARDL econometric model.  

1.3. Research questions 

Understanding the impact of climate change on agricultural production and food inflation in 

Southern Africa is imperative. More specifically, this study seeks to address the following 

questions: 

• How do climate change risk indicators impact agricultural output in Southern Africa? 

• How does climate change impact food inflation in Southern Africa? 

• What is the impact of climate change on the relationship between agricultural production 

and food inflation in this region? 
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1.4. Research objectives 

1.4.1. Primary objective  

The main objective of this study is to analyze the impact of climate change on agricultural 

production and food inflation in Southern Africa over the period of 1981 to 2020.  

1.4.2. Secondary objectives  

Theoretical objectives 

In line with this study, the following theoretical objectives are formulated:  

• To review and discuss the theories on agricultural production, food inflation and climate 

change.  

• To conduct a literature review on the empirical studies that analyzed the relationship 

between agricultural production and food inflation. 

1.4.3. Empirical objectives 

In line with the research questions of the study, the following empirical objectives are formulated: 

• To assess the impact of climate change on agricultural production in Southern Africa. 

• To evaluate the impact of climate change on food inflation in Southern Africa. 

• To analyze the relationship between agricultural production and food inflation in Southern 

Africa. 

1.5. Hypothesis of the study 

The study hypothesizes the following three sets of hypotheses: 

Hypothesis 1 

H0: Climate change and related variables do not exhibit any significant relationship with 

agricultural output. 

H1: Climate change and related variables exhibit a significant relationship with agricultural output. 

Hypothesis 2 

H0: Climate change and related variables do not exhibit any significant relationship with food 

inflation. 
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H1: Climate change and related variables exhibit a significant relationship with food inflation. 

Hypothesis 3 

H0: Agricultural output and food inflation do not exhibit any significant relationship. 

H1: Agricultural output and food inflation exhibit a significant relationship. 

1.6. Significance of the study 

Instead of addressing local adaptation measures, most studies dealing with the probable effects of 

climate change on world food supplies, including that by Fischer et al. (1994), tend to focus on the 

inherent vulnerabilities of agricultural systems. Moreover, most of the studies that are presently 

published focus on the bio-physical impacts of climate change, such as changes in temperature and 

precipitation, while mainly neglecting the socio-economic impacts, such as inflation of food items 

and availability of food at the household level. More holistic methods that consider both the 

biophysical and the socioeconomic aspects are required, as suggested by Mendelsohn et al. (2000). 

The cross-sectional analysis and simulation models commonly applied in previous studies do not 

precisely capture the dynamic and complex nature of the effects.  

This research project will therefore inform on practical and region-specific initiatives that may 

offset the adverse effects of climate change on agriculture through research into local adaptation 

techniques and their efficacies. This study, therefore, tries to address the above-mentioned 

methodological deficiencies by integrating empirical data with econometric modeling tools for a 

comprehensive understanding of implications. 

The present study will therefore help in informed decision-making by farmers and the government 

on how variable climatic conditions impact yields and water availability for crops, livestock 

management, and its related practices to enhance resilience and sustainability in agriculture. Food 

price variability may affect food accessibility and enhance poverty, affecting general economic 

stability and social wellbeing through inflation rates. This research therefore contributes further to 

the proactive measures that countries within Southern Africa and the respective central banks may 

wish to take in mitigating climate change-related impacts on agricultural output and eventually 

food inflation. 
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1.7. Methodology 

To investigate the impact of climate change on agricultural production and food inflation Southern 

Africa, the study's empirical analysis employs quantitative secondary data that was obtained 

from FAOSTAT, NASA POWER, and WDI database. The study makes use of panel data 

spanning from 1981 to 2020. The first regressand of this study is agricultural production while 

regressors encompass the following agricultural aspects, livestock, land, labor, machinery, total 

fertilizer consumption and temperature and rainfall. The second dependent variable for this study 

is food inflation while independent variables include crop production, food exports, agricultural 

raw material imports, total fertilizer consumption, rainfall and temperature. Several diagnostic 

tests were carried out including the normality test and cross section dependence test in order to 

evaluate the model's validity.  

The Panel ARDL cointegration approach is used in this study after considering the results of the 

panel unit root test. EViews 12 was further employed to conduct the previously suggested 

econometric analysis. Chapter 4 offers a further explanation on the methodology employed to 

ascertain the correlation between the variables. 

1.8. Ethical Consideration 

The current study employs secondary data derived from the FAOSTAT, NASA POWER, and WDI 

data sources. The obtained data involves yearly quantitative data pertaining the selected climate 

change, agricultural production and food inflation variables. The aforementioned database renders 

the data utilized in the study to be publicly available, and it believed that these data sources follow 

and comply with the fundamental principles of ethical use when gathering and disseminating data. 

The study acknowledges the data source and additional information sources presented in the study. 

1.9.Outline of the study 

The study encompasses the following chapters: 

Chapter 1: Introduction and background of the study 

This chapter covers the introductory framework and contextual background of the research, as well 

as stating the research problem statement together with the related objectives. It further highlights 
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the hypothesis of the study. Finally, it explains the significance of the study, its methodology, 

ethical considerations, and gives an outline of the structure of the study. 

Chapter 2: Dynamics of climate change in Southern Africa 

This chapter explores the intricate relationship between climate change, extreme weather events 

and the socio-economic landscape of Southern Africa. Furthermore, it discusses the historical and 

projected trends of climate change and the potential effects these have on various sectors, including 

agriculture, water resources, and food prices in the selected countries. 

Chapter 3: Literature Review 

This chapter gives a detailed discussion of the literature. The literature review covers inflation 

theories, including the Keynesian theory of inflation through the lens of cost-push inflation. The 

chapter further employs a conceptual approach to theoretically examine the impact of climate 

change on agricultural output. Conclusively, this chapter discusses the empirical literature by 

drawing references from previous studies. 

Chapter 4: Methodology 

This chapter provides the methodology, including a brief review of data sources, specification of 

the model, and variable description. The chapter further addresses the various tests utilised in the 

study, including the diagnostic tests, unit root test, cointegration test, and Panel ARDL model. 

Chapter 5: Results and discussion 

Chapter 5 of this study presents the findings from the tests performed on EViews 12 software. The 

chapter also includes a detailed explanation of the results to provide valuable knowledge on the 

correlation between the variables in the Southern African context. 

Chapter 6: Conclusion and Recommendation 

This final chapter concludes the assessment of the impact of climate change on agricultural 

production and food inflation by summarising the study's findings. It further provides research 

recommendations and prospects for future studies.   
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CHAPTER 2: THE DYNAMICS OF CLIMATE CHANGE IN SOUTHERN AFRICA 

______________________________________________________________________________ 

2.1. Introduction 

The Southern Africa region has been highlighted as a climate change hotspot, that is, a place where 

climate change impacts are unusually high within a global context. These changes in climate are 

largely driven by human activities, especially the global burning of fossil fuels and the conversion 

of natural vegetation into croplands, pastures, and human settlements. Thus, the current chapter is 

an attempt at analyzing socioeconomic vulnerability in light of climate change concerning South 

Africa, Zimbabwe, Zambia, Mozambique, Botswana, Lesotho, Malawi, and Namibia; for example, 

emphasizing potential impacts sector-by-sector with further discussions on historical trending’s 

and possible future scenarios. 

2.2. The case of South Africa 

The country is situated in an area that is termed a 'drought belt' and is the fifth utmost water scarce 

nation across Sub-Saharan Africa. South Africa is extremely sensitive to climatic variability and 

change considering its strong dependency on rain-fed agriculture and natural resources, 

widespread levels of poverty, and a limited adaptive capacity (Shikwamba et al., 2023). 

2.2.1. Implications of climate change on the main sectors 

Hydrology sector 

Due to its geology, South Africa has always received irregular precipitation, thus experiencing the 

uneven distribution of river and groundwater resources. The country has a high level of scarcity 

brought about by low and variable rainfall, high evaporation rates, and increasing demands from 

agriculture, industry, and urban areas (Mabhaudhi et al., 2021). Decreasing rainfall and higher 

evaporation rates, exacerbated by rising temperatures, are expected to reduce soil moisture, leading 

to diminished river runoff and groundwater recharge (Nkosi et al., 2021). In semi-arid areas such 

as South Africa if the rainfall decreases, for example by 1 litre (1 millimeter per square meter in a 

year), the amount of water available as a usable resource decrease by about 3 litres (Scholes and 

Engelbrecht, 2021). This non-linear response means even slight drops in that ratio might switch 

perennial rivers into the intermittent category. Make no mistake, the majority of South Africa's 

freshwater resources, especially in areas that may be barely adequate to begin with, are very 

vulnerable to climate change, and under future climate change projections, this could get worse 
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under an even (further) warming world, but only if those impacts are not curtailed through 

aggressive mitigation (Mabhaudhi et al., 2021). 

However, the problem goes beyond scarcity to include deteriorating water quality. At the moment, 

40% of freshwater systems are in a critical state, while 80% have been degraded due to increased 

pollution levels (Du Plessis, 2017). The country is experiencing water shortage problems, with 

98% of the available water already being allocated. Such that it is unable to meet rising demand 

for water-based power generation and agricultural production, the catalysts for employment and 

economic well-being (Seetal., 2021). Vulnerable agricultural communities are also stressed by 

climate variability and changing precipitation patterns. Hence, adaptation strategies must consider 

these dynamics to ensure agricultural productivity supported primarily by irrigation-based 

agriculture of vegetables, fruits, and wine. Only 1.5% of land is irrigated in the country, but it 

contributes to 30% of all the crops, proving the importance of irrigation in the South African sector 

(Christian et al., 2018). 

Agricultural sector 

According to Kwame et al. (2022), the agriculture sector in South Africa is one of the key sectors 

in the overall economy where over 860 000 workers have direct employment in the sector thereby 

contributing to the country`s food security. Agro-industrial commodity chains for wheat, sugar 

cane and rice make up a consumption of approximately 94% in the country while maize is the 

largest crop in this sector (Muroyiwa and Mushunje, 2017). Climate change's effects on agriculture 

cannot continue to be disregarded, as agricultural productivity depends greatly on the accessible 

supply of water. Furthermore, dry-land farmers who rely on rain-fed crops for their sustenance are 

extremely susceptible (Boonwichai et al., 2018). Climate change continues to adversely affect 

agriculture with severe reduction in crop yield contributing to increasing food insecurity 

worldwide (Olabanji et al., 2020). The reason is that most agricultural crops considered important 

for ensuring food security maize, wheat and rice, for example, have relatively high consumptive-

use intensity in their production. For instance, the estimated amount of water necessary to produce 

one kilogram of all three of these crops is 1.5m3, 1.0m3, and 2.5m3, respectively (Thomas et al., 

2022). 

As a result, regions with low supply of water brought about by the impact of climatic changes 

suffer severe reductions in crop yields, jeopardizing long-term security of food. Agriculture 
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accounts for only about 4% of the country's GDP (Nhemachena et al., 2020). However, regardless 

of this relatively insignificant contribution to the economy of the country, the agricultural sector 

contributes to almost 10% of the overall labor force in the country, and around one-third of the 

country's total produce of crops is exported with significant returns on investment (Olabanji et al., 

2020).  

In addition, climate change has currently more than tripled the risks of long-term droughts in the 

winter’s low precipitation zone, a risk which will continue to escalate with increased global 

warming. For example, South Africa suffered one of the most severe multiyear droughts during 

2015 to 2017, during which a Cape Town disastrous weather-related drought extended to 

agriculture, hydrological and socio-economic impacts (Naik and Abiodun, 2024). During this 

protracted drought period, the storage of water levels in the main reservoirs of the Western Cape 

decreased roughly 23% while the remaining 12% of the water from dams was not usable (Botai et 

al., 2017). The province became known as a catastrophic area, and the crisis led the local 

government to enforce strict controls of water on agricultural and industrial users while scrambling 

to find a way to prevent the taps from running totally dry. The drought has significantly affected 

agriculture, livelihoods and communities Naik and Abiodun (2024). 

For example, the agricultural industry experienced losses of around R5.9 billion and a loss of at 

least 30 000 jobs (Oluwatayo and Braide, 2022). On the other hand, the projected decrease in 

rainfall in the Western Cape by 2050 could be about 30% compared to the level recorded in 2019, 

hence showing possible shifts in climate pattern (Steyn et al., 2019). Such rainfall declines could 

have a major effect on agriculture by affecting surface water budgets and dam levels (Naik and 

Abiodun, 2020). Therefore, drought and climate change may have major effects on long-term 

availability of water and agricultural productivity, in addition to increasing temperatures and 

evaporation. 

2.2.2. Implications of climate change on the food inflation 

Climate change and dire weather events are intensifying and disrupting South Africa’s fragile food 

system (Johnston et al., 2024). The cascading effects of droughts, storms, flooding, rising sea levels 

and increased pests and disease all impact the country’s ability to produce food, leading to food 

insecurity and increased food prices. South Africa is recuperating from one of its most severe 

droughts in the past decade (Baudoin et al., 2017). The period between 2015 to 2016 was 
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disastrous, with 2015 being the most drought-prone year in history since rainfall measurements 

commenced in 1904 (StatsSA, 2018).  

These weather conditions have immediately affected the food supply and prices in South Africa. 

According to the World Bank (2022), it is estimated that since 1961, climate change has prompted 

a 21% decrease in worldwide productivity of agriculture. General food price inflation during the 

2015 and 2016 droughts jumped by more than 15%, as reported by Adam and Paice, (2017). 

According to data from South African Grain Information Service (SAGIS), commercial maize 

production in particular fell by 45% in 2015 to 2016 compared to previous years, as a result South 

Africa had to import significant volumes of maize to balance the supply with demand (StatsSA, 

2018). The decrease in agriculture production contributed to the rise in food inflation in 2016, 

which reached a peak of 12% in December of that year (StatsSA, 2018). Throughout 2016, sugar 

prices rose by 34% and vegetable oil prices increased by 11.4% (FAO, 2017). The resulting food 

supply shocks have ever since driven double digit inflation in South Africa for essentials, such as 

grains, cereals, vegetables and cooking oils (StatsSA, 2022). 

Further supply restrictions and increased input costs resulted in global food prices reaching an all-

time high in 2022, stretching back to January 2009. South Africa's total inflation rate in October 

2022 was 7.6%, while food inflation stood well above that, with food price increases of 12% from 

the previous year (SARB, 2022). Rising food prices, which are required expenditures, increase 

poverty and deprivation, food insecurity, and the economy (Mbajiorgu and Odeku, 2023). This 

disproportionately affects the low-income household, which spends a greater proportion of their 

income on food. In 2023, the annual average of food price inflation was 11%, slightly higher than 

9.5% recorded in 2022; this stood at 6.5% in 2021 and 4.8% in 2020 (StatsSA, 2024). 

Furthermore, wholesale prices of white maize grain have increased by 3.3% compared to May 

2024 and a 38.7% increase compared to June 2023 (FAO, 2024). The prices in South Africa heavily 

influence prices in the import dependent countries of Botswana, Lesotho, Namibia and Eswatini. 

These inflationary pressures can be largely attributed to gradual climate-related impacts 

experienced in previous years. Therefore, climate change contributes to the country’s weak food 

system and makes it more vulnerable to price shocks as it negatively impacts significant crops that 

make up nearly half of the world’s food supply (Masipa, 2017).  
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2.2.3. Future Climate Projections 

Increased rainfall variability and long-duration droughts  

Higher rainfall irregularity along with increased temperatures are currently predicted to have 

severe consequences on South African agricultural output (Botai et al., 2016). For example, a study 

by Theron et al. (2020), forecast a decrease in precipitation in the Western Cape area, which would 

result in a decrease in water readily accessible to agriculture, with associated socioeconomic 

consequences for farmers in this area. This, therefore, means that the projected 1.2 °C in 2020, 

2.4 °C in 2050, and 4.2 °C by the year 2080 rise in temperature and a projected decline in rainfall 

of about 5 to 10% over the next 50 years consequently poses a high risk to South Africa's 

availability of food and socio-economic stability (Olabanji et al., 2020).With global warming 

reaching 1.5°C or more, the more frequent high-pressure systems which reduce summer rainfall 

will also increase multi-year droughts in the summer rainfall zone (Engelbrecht et al., 2024). As 

global warming continues, regional droughts will be more frequent, longer in duration, and more 

intense, which presents a serious risk to agriculture and water delivery systems. Considering the 

socioeconomic significance of agriculture and food security, there is a pressing need to develop 

and continually assess viable adaptation strategies to manage climate change effectively (Kwame 

et al., 2022). 

Decrease in yield and viability of most major agricultural products  

Most of the major agricultural products are thus expected to show a steep decline in yield and 

viability. Each crop has optimum temperature at different stages of development. The daytime 

mean temperature for most crops’ ranges between 27°C and 30°C. Cereals, for example, 

experience almost complete failure of pollination at temperatures above 40°C during the day and 

above 30°C at night, with 50% success reduction when daytime temperatures are above 36°C and 

nighttime temperatures are above 26°C (Scholes and Engelbrecht, 2021). 

Furthermore, for crops to successfully complete their life cycles, the soil must be sufficiently moist 

for a minimum amount of time. In South Africa, crop yields tend to increase linearly with soil 

moisture duration during the growing season, within their tolerance ranges (Thornton and Herrero, 

2015). However, the country is already too dry for optimal crop production over most of its extent. 

In the majority of areas, further dryness will result in lower crop yields. Reduced water resources 

and competition from other industries limit the potential to make up for this through improved 
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irrigation. Additionally, the viability of the livestock is compromised under rising temperatures. 

Overall, agriculture in South Africa, including downstream value addition, is already under climate 

stress, which will intensify with global warming. Throughout South Africa's interior, temperatures 

are rising rapidly than expected, and drier soils are becoming more prevalent. In 2019, 

approximately 11% of South African’s population was classified as food insecure (Ziga, and 

Karriem, 2022). The risk of food insecurity, and the challenge to national food sovereignty, will 

increase in South Africa with a global temperature rise of 1.5°C, and even more so with further 

warming (Satgar and Cherry, 2021). 

2.3. The case of Zimbabwe 

Zimbabwe, a landlocked country in Southern Africa, shares borders with Zambia, Mozambique, 

Botswana, and South Africa. The subsequent sections cover Zimbabwe's economic susceptibility 

to climate change, the effect of climate change on agriculture and food price increases, and 

ultimately the expected climate projections for 2050. 

2.3.1. Socioeconomic vulnerability to climate change 

Between 1980 and 1990, Zimbabwe experienced rapid economic growth; the average growth of 

the GDP is 5.5% with a high record compared to the average in Sub-Saharan Africa (Ncube, 2019). 

However, the quality of economic stability worsened between 2000 and 2008 due to governance 

issues, economic mismanagement, and decreased international support (Moyo and Tsakata, 2017). 

The introduction of Zimbabwe's Fast Track Land Reform Programme in 2000, which was set to 

redistribute commercial farms to the landless indigenous populations for historical land 

inequalities and promoting family farmers, further disrupted commercial agricultural production 

and led to an economic decline. According to Mkodzongi and Lawrence (2019), this program 

undermined investor confidence, and foreign direct investment was therefore reduced in 

Zimbabwe's agriculture. Uncertainty over property rights and land tenure further discouraged both 

local and international investors from investing in agricultural infrastructure and technology. As 

shown by Moyo and Tsakata (2017), such a decline in agricultural productivity was coupled with 

reduced export earnings from agriculture, adding to broader economic instability.  

The GDP growth rate fell for Zimbabwe, and it negatively impacted the levels of poverty while 

increasing dependence on exploiting natural resources for survival. According to Matandare 

(2017), this was the period between 2000 to 2008, which also corresponded with environmental 
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issues of rising temperatures, erratic rainfall, and frequent droughts. It most affected rural areas, 

as 62% of the population is located there, and agriculture comprises 15 to 18% of Zimbabwe's 

GDP while accounting for 60% of inputs and 40% of export earnings. 

The heavy reliance on agriculture that is dependent on rainfall, along with high poverty levels, low 

human and physical capital, and inadequate infrastructure, contributes to the country's high 

vulnerability to climate change. Not having enough irrigation infrastructure that would dampen 

the consequences of droughts further worsens the effects on agriculture. The negative 

consequences of climate change have led to a decline in export earnings, a factor that has 

negatively contributed to GDP and increased unemployment rates. In the last twenty years, these 

effects have called for the need for climate change adaptation strategies as a sure way of securing 

economic stability (Mkodzongi and Lawrence, 2019). 

2.3.2. Impact of climate change on the agricultural sector 

Zimbabwe's agricultural production is diverse in comparison to numerous other tropical countries. 

Sugar, cotton, maize, tobacco and sugar dominate crop production, with groundnuts, wheat, 

sorghum, coffee, citrus, tea, and vegetables providing substantially less monetary contributions.  

The economy and livelihoods of Zimbabwe's poor are especially vulnerable to climate change due 

to their reliance on rain-fed agriculture. In this country, variation in rainfall is directly related to 

economic growth, reflecting the agricultural sector's dominance and vulnerability to water stress. 

Drought poses a significant problem to agriculture, impacting both cattle and crops. In 2015, 

agricultural output declined by 5%, and in 2016, by a further 3.6% (World Bank, 2017). Both years 

were characterized by drought conditions, which peaked in the 2015-2016 El Nino-induced 

drought that caused 2.8 million individuals in the country to suffer from food insecurity (Matunhu 

et al., 2022). Pests and diseases affecting crops and livestock pose a big challenge, especially given 

the likelihood that climate change would shift their distribution and prevalence.  

For instance, the fall armyworm emerged in 2016, a pest that had not been previously identified in 

the country and has the potential to result in maize crop losses of up to 70% if not effectively 

managed (Tambo et al., 2021).Therefore, climate change in semi-arid areas presents significant 

concerns to natural processes that promote food supply for cattle and moisture for rain-reliant crop 
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cultivation (Descheemaeker et al., 2018). In particular, change in climate is predicted to 

result in the growth of marginal lands, which is currently occurring in Zimbabwe. 

2.3.3. Food inflation dynamics as a result of climate change 

Zimbabwe, located in the region's sensitive agricultural belt, has repeatedly encountered negative 

effects of El Niño from 1982 to current times (Mugiyo et al., 2023). Historically, El Niño events 

in Zimbabwe have been linked to disruptions of climatic patterns, including rainfall, resulting in 

both localized and widespread impacts on livelihoods and ecosystems. El Niño is climatic 

phenomena characterized by rising temperatures of the sea surface in the central and eastern 

equatorial parts of the Pacific Ocean (Mugiyo et al., 2023).  

In the year 2022, the country was experiencing a protracted drought; this was the driest year in this 

region in 40 years. With maize yields 45% lower than in 2021, as a result an estimated 2.9 million 

people faced extreme food insecurity from January to March of 2022 (Mugiyo et al., 2023). Due 

to the continuous decrease in maize yields of the previous years, Zimbabwe is grappling with high 

inflation driven by food prices. The annual inflation rate in Zimbabwe continued to rise in March 

2024, hitting an over one-year high of 55.3%, up from 47.6% in February, amid the sharp 

depreciation of the local currency (Zimstat, 2024). On a monthly basis, consumer prices rose by 

4.9% in March, following a 5.4% surge in the previous month (Zimstat, 2024). In Zimbabwe, 

annual food inflation has trended upward since August 2023, Zimbabwe’s annual blended inflation 

rate rose from 55.3% in March to 57.5% in April 2024 as illustrated in figure 2.1 (Zimstat, 2024). 
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Figure 2.1: Blended Inflation Rates 

 

Source: ZimStats (2024) 

Consumer prices were 2.9% higher month on month compared to 4.9% during the previous month. 

The continued increase in inflation is exerting pressure on all commodity prices and eroding 

household purchasing power across the country (Zimstat, 2024). Poor crop production has resulted 

in an atypically poor market supply of grains in the drought-affected areas of Zimbabwe. In 

Zimbabwe, staple grain prices are now higher than those recorded during the peak lean season in 

February and March 2024, and the alternative maize meal prices in July were 20% to 25% higher 

than normal (FAO, 2024). The lack of rain induced by the El Nino global weather pattern has also 

affected electricity production, as Zimbabwe relies on hydroelectric power (Dube and Nhamo, 

2023). 

2.3.4. Projected climate changes by 2050 

Increase in temperature  

Compared to historical average of 24.8 to 25.5°C, temperatures are projected to increase by at least 

1.8°C in 2050, with increases of 2 to 2.7°C in the hottest months of October to December (Duube, 

2023). A similar rise of 1.8 to 2.2°C is expected for all other months, including the cooler winter 

and high summer months (Tesfaye et al., 2015). Added to this, the forecast decrease in precipitation 

is likely to have a complex effect on Zimbabwe's agricultural sector. High-temperature increases, 

particularly for October to December reaching about 2 to 2.7°C, will increase crop water 
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requirements and evapotranspiration losses from the soils of farming areas, concurrent with low 

rainfalls within these months (Hunter et al, 2020).  

The combination exacerbates the risk of crop failure in crops such as maize, tomatoes, and peppers 

that are highly sensitive to climate stress during the establishment phase. In addition, increased 

average temperatures will likely include an increase in frequency or intensity of heat waves and 

unusually hot days, which further enhances the loss through evapotranspiration of water and crop 

stress. A combination of decreased rainfall and increasing temperature has a greater likelihood 

of reducing agricultural productivity, partly through decreased yield or outright crop failure, 

especially of those heat- and drought-sensitive agricultural produce, including wheat and maize 

(Hunter et al., 2020). 

Reduction in rainfall  

A consistent prediction for all ten provinces in Zimbabwe is a reduction in both mean monthly and 

total yearly rainfall from the baseline to 2050. Specifically, rainfall at the commencement of the 

rainy season in October and November is expected to decrease significantly, from 24.4 to 10.6mm 

per month and from 73.9 to 54mm per month, respectively, resulting in total reductions of 14mm 

and 20mm per season (Panagos et al., 2022). Further declines are expected in the peak of the rainy 

season between December and March, with monthly rainfall decreasing by 10 to 12mm per month 

(Panagos et al., 2022). These declines over the course of the rainy season will serve to lower the 

overall seasonal rainfall between October and March by 14%, from 572 to 494mm per season 

(Hunter et al, 2020).  

An additional effect of these changes is the likely variation in the timing of rainfall onset at the 

start of the growing season, which will differ between provinces and agroecological zones. This 

could lead to insufficient precipitation necessary for successful cultivation during the traditional 

commencement of the growing season in some areas. As a result, changes in the climate could 

impede the expected start of rainfall in comparison to the traditional agricultural timeline. shifting 

the onset of key activities like field preparation and sowing. In general, the overall reduction in 

monthly rainfall and the probable delay in the onset of rainfall are expected to result in major shifts 

in local crop choices and agricultural practices, hence requiring far-reaching adjustments in 

farming strategies to suit the changing climatic conditions by 2050 (Mpala and Simatele, 2024). 



 19 

2.4. The case of Zambia 

2.4.1. Overview of the economy and agriculture in Zambia 

Climate change in Zambia has presented itself in the form of a greater degree of extreme weather 

occurrences that seriously affect crop yields, particularly maize, which is the staple food for most 

Zambians. In excess of 98% of the smallholder households cultivate maize, occupying more than 

54% of agricultural land (Phiri et al., 2020). The traditional schedule of farming is altered by this 

unpredictability of extreme weather conditions, thus resulting in poor harvests and low agricultural 

productivity. In addition to food security being at risk, this further lowers the standards of living 

for farmers, who constitute 65% of the labor force (Ngoma et al., 2021). Effects spiral across the 

economy, since a reduced agricultural output translates to higher food prices, increased poverty, 

and increasing vulnerability to other exogenous economic shocks. More than 57.5% of the 

population, as of 2015, lived below the poverty threshold, and the average unemployment rate 

from 2015 to 2018 was approximately 7.31% (Phiri et al., 2020). The inflation rates were 10.11% 

in 2015, 17.87% in 2016, 6.58% in 2017, and 7.49% in 2018, driven by currency depreciation, 

increased electricity tariffs, and lower food commodity supplies (Kamuhuza and Jianya, 2022). 

Moreover, climate change exacerbates fiscal challenges in Zambia. Because of this, the 

government is forced to divert resources to address climate-related damages and support affected 

communities-straining already overburdened public finances with high debt levels. The debt-to-

GDP ratio increased from 25% in 2012 to 61% in 2016, showing the fiscal pressure on the country 

(Tembo et al., 2020). This, in essence, reduces the government's scope to invest in other important 

sectors such as health, education, and building infrastructure. This therefore hampers the wheel of 

economic growth and development in the long run. Further consequences of climate change in the 

country include the dependence for a great part of its energy supply on hydropower which makes 

the economy of Zambia vulnerable to climatic occurrences such as droughts (Borowski, 2022). 

Reduced rainfall has led to energy deficits, decreasing productivity in the manufacturing industry 

by 60 to 70%, which accounted for an average of 7% of GDP from 2010 to 2017, thus introducing 

significant uncertainty to Zambia's overall economic growth (Tembo et al., 2020). 

In Zambia, there exist policies, for instance, the National Agriculture Policy under the Ministry of 

Agriculture, formulated with an intention to foster development within the agricultural sector. This 

provides guidelines for agricultural development, utilization of sustainable resources, irrigation 
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promotion, production of crops, agro-processing, livestock, and fishery development. Besides that, 

institutional and legislative frameworks are dealt with, cooperatives supported, and climate change 

issues addressed as stated by Bwalya and Deka, 2016. Despite of this policy, among others, the 

agricultural sector still suffers from low irrigation, low mechanization at smallholder level, low 

private sector participation, and low access to finance and credit. There is also a decline in 

investment in agricultural research, unsustainable natural resource utilization, and low resilience 

to climate change effects. 

2.4.2. Implications of climate change on crop production in Zambia  

The agricultural industry remains vital in Zambia, accounting for approximately 6% of national 

GDP (World Bank, 2019). The industry further generates approximately 22.3% of employment 

creation within the country, with 4.3% in the formal sector and 18% in the informal sector 

(Zamstats, 2019). The sector mainly comprises smallholder farmers, who mostly produce maize 

and rain dependent crops (Juliet et al., 2016). This production strategy has rendered the country, 

and especially rural smallholders, more prone to climate fluctuations and variations. Crop 

production is the main objective of small and medium-scale agriculture for two reasons: sustenance 

and earnings from marketed output (Ngoma et al., 2021). Climatic changes and variations have 

contributed to crop and livelihood losses, increasing food insecurity, and a decrease in agriculture's 

contribution to the country's GDP (Alfani et al., 2019). Rainfall is projected to get more 

unpredictable, and rainfall patterns are likely to fluctuate, rendering Zambian agriculture more 

susceptible to climate shocks. This is exacerbated by the fact that more than 90% of the crop grown 

by smallholders is reliant on rainfall (Ngoma et al., 2021). 

Since the 1990s, extreme climate events have had a significant influence on crop output in the 

country; droughts are the most common climate shock that rural small-scale farmers in Zambia 

encounter, with 76% of small-scale farmers identified as prone to vulnerability. According to 

Alfani et al. (2019), households impacted by the El Niño drought from 2015 to 2016 endured a 

20% decline in maize output and up to a 37% decrease in earnings, all other things being 

equal. Other repercussions include considerable fluctuations in maize and maize meal prices as a 

result of shortages in supply accompanied by poor irrigation; in certain years, maize yields have 

been barely 40% of the long-term average (Mulenga et al., 2019). Long dry spells within a season, 

as well as shorter rainfall seasons, have contributed significantly to the country's low yield over 
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the last two decades. These factors impede progress towards food security and hunger eradication. 

Currently, cereals account for approximately 63% of Zambia's energy requirements, however 

cereals such as maize, the main grain, are prone to climate change (Mulenga et al., 2019).  

However, since sorghum is a drought-tolerant crop, it is being promoted particularly in drought-

prone areas to increase food security in places with frequent short rain periods. Climate change 

has posed a threat to sustainable agricultural practices, food security, and the country's GDP, 

necessitating a better understanding of the magnitudes of climate change's impacts on agriculture 

in order to support national adaptation strategy (von Grebmer et al., 2019).  

2.4.3. Implications of climate change on food inflation in Zambia 

In the past decade, Zambia experienced high inflationary episodes increasing from 7.9% in 

December 2014 to 21.1% in December 2015 prior to decreasing to 6.6% in 2017 (Chipili, 2022). 

The resumption of high inflationary pressures in this country in 2015 was caused by the steep 

increase in domestic fuel pump prices and the decreased availability of agricultural produce caused 

by drought, primarily maize, which is the primary staple (Chemura et al., 2022). High inflation 

was linked to the drought years of 1995, 1998, 2001, 2003, 2005, 2013, 2015, 2016, and 2018 

(Chipili, 2022). Considering that agricultural production depends on rainfall, while food makes up 

a significant portion of the CPI basket, climate change had a huge impact on inflation (Tembo et 

al., 2020), consequently highlighting the impact of supply shocks on inflation 

The country experienced a severe drought that started in mid-January 2024, affecting close to half 

of Zambia's population (Ngoma et al., 2024). In the country, a continued dry spell damaged about 

43% of the planted grain, leading to a complete crop failure (Ngoma et al., 2024). This has raised 

the prices of food in all provinces in Zambia and reduced the level of access to affordable 

foodstuffs, hence aggravating food insecurity for millions of people across the country (World 

Bank, 2024). Besides, inflation reached 13.70% in April 2024, while the annual inflation rate in 

Zambia increased to 15.5% in August 2024, reaching its peak level since December 2021, from 

15.4% in the previous month (Zamstats, 2024).This is primarily due to the increase in inflation 

caused by El Niño drought, which has resulted in increased food prices from 17.4% to 17.6% 

(Funyina et al., 2024).The horrific drought has resulted in poor crop yields, reduced hydropower, 

and increased import costs. In Zambia, annual food inflation in June 2024 was 16.8 percent, up 

from 16.2 percent the previous month, and is projected to increase further (Zamstats, 2024). 
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2.4.4. Projected Climate Trends 

Severe impacts on the economy 

According to Tembo et al. (2020), it is estimated that by 2045 to 2050, climate change could cause 

Zambia's GDP to decline by approximately 6%. It is further expected that the effect will increase 

gradually over time (Ngoma et al., 2021). A study by Arndt et al. (2019), projects that if worldwide 

carbon emissions are not regulated, Zambia's average level of GDP between 2046 and 2050 is most 

probable to be between -3% and -1%. According to a 2019 report published by the United Nations 

Office for Disaster Risk Reduction (UNDRR) and the Centre for International Media Assistance 

(CIMA), droughts have the potential to more than quadruple the impact on GDP in a high-emission 

scenario. The assessment takes into account the yearly average of possible GDP affected from 

2016, with reduced production of hydropower playing an integral part in these losses. 

Increase in temperature across Zambia  

According to Hamududu and Ngoma (2019), temperatures will rise by 1.9°C and 2.3°C by 2050 

and 2100, respectively, under a high emissions scenario. Similarly, a study conducted by Ngoma 

et al. (2021), predicts that temperatures will be roughly 1.8°C higher on average by 2046 to 2050 

if global GHG emissions are not limited; the study also indicates that temperature rise in Zambia 

might reach 3.6°C. According to the study's estimate, increases in temperature from all Zambian 

areas will most certainly exceed the commonly used 1.5°C threshold. Another study by Mulungu 

et al. (2021), predicts that the average annual temperature will rise by 1.2 to 3.4°C in 2060, with 

warming occurring at a faster rate in the south and west. Based on the analysis, the regularity of 

warmer days and nights is expected to significantly increase. Similarly, a report by SADRI (2021), 

projects that hot days will increase by 15 to 29% by 2060, while warm nights will rise by 26 to 

54% in the same period.  

Decrease in rainfall in the Southern and Western regions  

According to Hamududu and Ngoma (2019), rainfall will decline by roughly 3% by mid-century 

and by down to 0.6% by the end of the century across the country. However, the study finds 

significant geographic disparities, with the southern, eastern, and western regions predicted to be 

far severely impacted compared to the north. Ngoma et al. (2021), similarly forecast significant 

decrease in precipitation in the southern and western regions, averaging 3% to 4%. However, in 
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the worst-case scenario, these regions might encounter a 20 to 30% decrease in rainfall, making 

them extremely susceptible to climate change.  

2.5. The case of Mozambique 

Situated along the Indian Ocean in southeast Africa, Mozambique is extremely sensitive to the 

changing climate and is shares borders South Africa, Malawi, Tanzania, Zambia, Eswatini, 

Zimbabwe. 

2.5.1. Broader Key Macroeconomic Impacts and Vulnerabilities 

Effects of climate change on food inflation and its implications for food security 

Despite being a net importer of food, Mozambique's primary exports include sugar, tobacco, 

soybeans, legumes, seeds, and nuts, while its primary imports are wheat, palm oil, rice, sugar, and 

maize (FAO, 2021). Inflation reached a five-year high of 9.8% in 2022 and moderated to 7.1% in 

2023 as global commodity prices subsided (World Bank, 2024). A study by Odongo et al. (2022), 

revealed that temperature fluctuations and rainfall greatly raise the country's food and total 

inflation rates. The results also showed that temperature fluctuations have an impact on 

Mozambique's ability to produce energy, which impacts the cost of food and other commodities in 

the consumer basket. According to a study by Baez et al. (2020), food markets near regions 

impacted by adverse weather conditions show more fluctuation in the price of maize in particular, 

which may additionally heighten the risks to food security for those in need in Mozambique.  

A study conducted by Odongo et al. (2022), observed that in Mozambique, there is a significant 

spillover of foreign inflation by means of imported prices into domestic prices. Severe weather 

conditions having regional effects will exacerbate food inflation and, consequently, food security 

challenges as the country depends on the regional market for some of its essential food imports, 

including wheat. Given that climate change is also predicted to have a detrimental impact on maize 

output in the majority of neighboring countries, including Zambia and Malawi, Mozambique's 

lower maize yields may increase the country's dependency on imports, which are projected to 

become increasingly costly (Thomas et al., 2022). Overall, food inflation is expected to affect 

Mozambique's already susceptible population, as over 60% of the country's population suffers 

from abject poverty (World Bank, 2023). According to a study by Amosi and Anyah (2024), the 

impact of climate change on the recent agricultural season due to the recent Tropical Storm Filipo 
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which led to strong winds, heavy rainfall, along with flooding and other cumulative effects of 

multiple and recurrent shocks over recent years due to Tropical Cyclone Freddy in the previous 

year have dire consequences of increased food insecurity. These climate change-related shocks 

have destroyed 31,000 hectares of various crops, food stocks and sources of income for numerous 

households (USAID, 2024). In February 2024, the average price of maize grain rose by 12%, this 

is usually the case during this time of the year (FAO, 2024). In February, the average price of maize 

grain increased by 20% from the previous five-year average and 24% from the previous year (FAO, 

2024). The accumulated negative effects of challenges over the last five years constitute the root 

cause of this year's high costs. The prices of rice and maize meal remained generally stable between 

January and February. However, they were, on average, 7% higher than last year's prices and 

almost 20% higher than the five-year average (FEWS NET, 2024). 

Headline inflation in the region is likely to continue rising due to lower production, increased 

import prices, and rising energy costs. Poor macroeconomic conditions, such as inflation and 

decreasing currency exchange rates, are likely to increase the consequences of regional shortages 

in production on the ability of households to meet their fundamental needs (Okou et al., 2022). 

Limited fiscal space for climate adaptation actions in Mozambique 

Government debt in Mozambique was at 102.6% in 2022, with interest payments accounting for 

10.7% of total revenues that year (IMF, 2023). Mozambique is vulnerable to currency risk since 

71.0% of its total debt is in foreign currency (IMF, 2023). Climate change may impact its trade 

balance in the future. While adaptability efforts may be less costly than frequent disaster support 

systems, they are projected to have a substantial impact on Mozambique's fiscal positions within 

the existing climate finance framework (Aligishiev et al., 2022). The Belgian government's recent 

offer of a €2.4 million "debt-for-climate swap" may be a significant start-up towards enhancing 

Mozambique's climate and economic resilience (IMF, 2023). 

2.5.2. Overview of the agricultural sector in Mozambique 

Agricultural land represents 52.7% of Mozambique's land area, with the remaining portion being 

covered by forests (World Bank, 2020). However, since the majority farming occurs in areas that 

are vulnerable to drought and flooding, only 7.2% of the land is arable, whereas less than 10% of 

the arable land is utilized (World Bank, 2020). Only a small portion of the land in the southern 

provinces is suitable for irrigation, despite their greatest need for it. While groundwater is used 
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sparingly, mostly by smallholders, the majority of irrigation projects use surface water from rivers 

(FAO, 2016). Approximately 95% of agricultural production is produced by smallholder farmers, 

who are subject to climate variability because they primarily engage in rainfall-dependent 

agriculture (Armand et al., 2019). According to Manuel et al. (2020), maize is the main crop for 

nutrition and makes up 72% of all small and medium-sized farming units and is then followed by 

beans and cassava.  

Climate change is projected to worsen the possibilities of flooding, thus affecting essential value 

chains such as sesame and pigeon pea, with negative consequences for local markets and farmers' 

income (Mulungu et al., 2021). For instance, a study by Baez et al. (2020), estimated that when 

cyclones, floods, or drought hit an economy, the consumption of food may decline up to 25 to 

30%. Furthermore, rural communities are more vulnerable to the negative effects of severe weather 

conditions on agricultural output, in which 90% rely on agriculture as the primary source of 

livelihood Ayanlade et al., (2022). Pre-existing vulnerabilities in Mozambique's agricultural sector 

are expected to undermine the country's capacity to adjust to climate change concerns. These 

include lack of water infrastructure, interruptions in electricity supply, insufficient storage and 

logistics facilities, and underinvestment (ITA, 2022). The significant proportion of small-scale 

farmers is likely to give rise to shortcomings with implementation for adaption strategies and the 

wider adoption of climate-smart methods of cultivation. While irrigation may contribute to 

reducing the risks of climate change, water supply is expected to decrease and demands for 

irrigation in Mozambique are likely to be unmet (Mulungu et al., 2021). 

2.5.3. Projected Climate Trends 

Low rainfall and increased temperature 

Temperatures are projected to increase across the country, with rainfall becoming more erratic, 

particularly in Mozambique's south. Figure 2.2 depicts the expected changes in Mozambique's 

temperature and yearly rainfall. According to World Bank forecasts, temperature increases are 

predicted to continue until 2090, although yearly precipitation does not change considerably over 

time however is estimated to be more variable than previous averages.  

Mozambique's Nationally Determined Contributions (NDCs) predict a rise in temperature 

throughout the country, accompanied by variety of warm days, and also increased fluctuations and 
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intensity of precipitation (Mavume et al., 2021). Mozambique's National Climate Change 

Adaptation and Mitigation Strategy (NCCAMS) includes forecasts of a 2 to 9% decline in average 

precipitation by 2075. According to a report by Irish Aid (2017), temperatures along with the 

duration of hot days will rise on average, although precipitation is unlikely to change significantly, 

despite the sole exception of an increase in rainfall intensity.  

Figure 2.2: Forecasted changes of weather conditions in Mozambique at the national level

 

Source: World Bank Climate Change Knowledge Portal (2023 

2.6. The case of Botswana 

2.6.1. Implications of climate change on agricultural productivity  

In order to ensure its food security, Botswana imports 90% of its total food and is heavily reliant 

on the performance of neighbouring country's agricultural sectors (Bahta et al., 2017).  Botswana's 

agriculture is primarily rain-fed, rendering the country particularly vulnerable to climatic 

unpredictability and change. Climate change trends are expected to jeopardize regional grain 

production in addition to the export and import of essential primary crops in Botswana and 

throughout Southern Africa (Nhamo et al., 2019). This alone affects import supply, food prices, 

and thus the availability of food, as crop production have already decreased in recent years. 

For Botswana, the price of grains and market reliance are strategically linked, and the country 

depends on imports for sustaining the national demand for fundamental goods including sorghum 

and maize, which are primarily sourced from South Africa (Masipa, 2017). For instance, while 

South Africa's low rainfall in 2002 did not result in food shortages, this was regionally 
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concerning considering that South Africa is the Botswana's primarily food exporter (Masipa, 

2017). A healthy sorghum crop requires approximately 300mm of water in the root zone, which is 

already difficult to achieve in Botswana due to inadequate rainfall (Dietz et al., 2021). Due to high 

evapo-transpiration, the crop is water-stressed for the majority of the time and cannot produce 

optimal yields.  

Over fifty percent of the populace resides in rural regions and relies primarily on sustenance 

agriculture and livestock husbandry. Domestic agriculture accounts for only a small portion of 

local food needs and contributes minimally to GDP; despite this, it still serves as a social and 

cultural benchmark. Botswana's crop output is further limited by conventional farming practices, 

frequent droughts, erosion, and infestations of pests. Livestock, which is dominated by cattle and 

is currently projected to be 2 to 3 million head, has been declining for several years (Urich et al., 

2021). Given the forecast of rising temperatures and decreased precipitation, specifically in key 

agricultural zones in the country's east, sorghum and maize yields are projected to decrease by 

10% to 35% by mid-century, posing serious challenges for livestock (Urich et al., 2021). An 

effective land use management approach will be necessary to restrict land usage and minimize 

pressure during periods of average to below-average rainfall (Atkinson et al., 2019). 

2.6.2. Implications of climate change on food prices in Botswana 

The overall production of cereal is forecasted at 73 000 tons in 2023, about 15% lower than the 

five-year average, reflecting the less-than-average rainfall amounts and uneven temporal 

distribution. High temperatures during the cropping season also worsened the risks of reduced 

rainfall on crop yields. However, the yearly food inflation rate decelerated during all of 2023 and 

was pegged to 9% in August 2023 from 13% a year earlier, in particular, because of an easing 

bread-and-cereals price (StatsBots, 2023). Given that the bulk of the country's national cereal 

requirements are imported, deceleration in price growth largely reflects a decline in commodity 

prices on the international market and a relatively stable exchange rate (FAO, 2023). Inflation-or 

a general rise in the level of prices for goods and services-has been easing this 2024, moving from 

14.6% in August 2023 to 9.3% at the beginning of the year and down to 1.2% in August of the 

same year (Statsbots, 2024). However, such decline has largely been influenced by the slide in the 

prices of fuel earlier on this year and more or less stable price movements in other commodity 

groups other than the commodity grouping of food and non-food, non-alcoholic drinks. 
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2.6.3. Projected Climate Key Trends 

Increased temperature  

Temperature is estimated to rise in Southern Africa, particularly in Botswana, with average 

monthly temperature changes increasing by 2.5°C in the 2050s and 5.0°C by the end of the century 

under a high-emission scenario (Urich et al., 2021). According to Mulungu et al. (2021), under a 

high-emission circumstance, the frequency of days with high temperatures is predicted to rise by 

138 days by the end of the century, with the largest significant spikes occurring between November 

and March. Higher temperature will also have the consequence of more frequent and intense heat 

waves, with higher evapotranspiration rates. These consequences will impact many aspects of local 

economic development, agricultural productivity, and beyond. As can be seen in Figure 2.3, during 

a high-emission circumstance (RCP 8.5), minimal temperatures are bound to rise at a rapid pace 

by the middle of the century. More records of heat and conditions of extreme heat will pose serious 

ramifications for both livestock and human health, ecosystems, agriculture, and the production of 

energy. 

Figure 2.3: Historical and predicted average temperatures in Botswana from 1986 to 2099 

 

Source: WB Climate Change Knowledge Portal (CCKP, 2020) 

Reduced precipitation  

Given Botswana's enormous dimensions, arid environment, and diverse geography, the majority 

of the country is predicted to receive less precipitation; however, the northeast portions are 

expected to see more precipitation (Matenge et al., 2023). From April to September, conditions are 

expected to be slightly drier, increasing the frequency of droughts and dry spells. The graph below 

depicts changes in monthly precipitation, with the greatest decline projected in the course of the 
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country's main rainy season from October to April (World Bank Group, 2021). Water supplies are 

likely to be more strained in regions with lower precipitation forecasts. In addition to rising 

temperatures, the country's evapotranspiration rate is predicted to rise further. With increasing 

severity and frequency of droughts, the Southern African region may face significant implications 

on the quality and supply of water, threatening the health of wetland ecosystems, agriculture, and 

cattle populations (World Bank Group, 2021). Under the RCP8.5 high emissions scenario, annual 

average precipitation is projected to decline partially by the end of the century. 

Figure 2.4: Annual average precipitation in Botswana from 1986 to 2099 

 

Source: WB Climate Change Knowledge Portal (CCKP, 2020) 

2.7. The case of Lesotho 

2.7.1. Implications of climate change on the economic sectors 

Reduced water availability 

Lesotho is known to have ample water resources, forming one of the major water catchment areas 

in Southern Africa, which supplies over 50% of the total catchment runoff (Pryor et al., 2022). The 

national economy highly relies on climatic conditions, where water serves as a major source of 

energy and one of the prominent exports to South Africa. The water supply is vital to promoting 

socioeconomic growth and the country's ecosystem sustainability, given that more than 95% of 

electricity consumed in Lesotho is from hydropower (MEMWA, 2013). While Lesotho has 

substantial levels of poverty and wealth inequality, water accounts for approximately 10% of the 

total GDP (World Bank Group, 2021). A significant amount of this benefit is derived from revenues 

related with the Lesotho Highlands Water Project, a multistage infrastructure project that permits 
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water to be transferred from Lesotho's water-rich highlands to the African continent's economic 

engine in Gauteng while also contributing to the advancement of hydropower resources in Lesotho 

(Wendt, 2023). Despite its enormous water resources, Lesotho is highly susceptible to the effects 

of frequent and recurring floods and droughts.  

The severe drought of 2015 to 2016 resulted in a 21% decline in wheat production and an urgent 

water scarcity as the country endured protracted dry spells characterized by low rainfall and high 

temperatures, causing large-scale agricultural damage (Dick-Sagoe et al., 2023). According to the 

Disaster Management Authority (2015), total national cereal production (maize, sorghum, and 

wheat) was estimated to be 89,000 tonnes to feed a population of around 350,948 tonnes. Small-

scale farmers and households with agricultural livelihoods were particularly affected and faced 

disruptions as an immediate consequence of reduced production and rising costs, which increased 

the risk of food insecurity and malnutrition. These vulnerable populations also experienced 

temporary food insecurity from 2015 to 2017 (Dick-Sagoe et al., 2023). The country's biophysical 

features, particularly its significant amount of high-altitude rangeland and acutely erodible soils in 

the lowlands, make it more vulnerable to precipitation fluctuations and reduces water availability. 

Declining crop production in Lesotho 

Agriculture in Lesotho is primarily rainfed and is therefore extremely sensitive to the variation in 

precipitation, making attempts to increase food security extremely challenging. This sector is also 

vital in the creation of employment opportunities in the country since it creates about 60% to 70% 

of the labor income generated from farming. Major crops grown constitute maize, sorghum, and 

wheat, which form approximately 60%, 20%, and 10%, respectively, of the total area cropped 

(Verschuur et al., 2021). Lesotho's agricultural industry is characterised by low and diminishing 

production, which is which has recently been worsened by the implications of climate variation. 

As it stands, both the food and agricultural industries face significant risks not solely from 

historical yearly precipitation, but also from changes in climate (Nhemachena et al., 2020). 

Weather conditions account for 80% of the variability in agricultural productivity in Lesotho, 

particularly in rainfed systems. Rainfall variability affects not just the amount of land cultivated 

but also the consequent agricultural yields (Wendt, 2023).  

Future climate projections regarding rainfall variability show that it would very likely lead to food 

inadequacy due to pressure from decreasing precipitation and increased temperatures. Effective 
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adaptation measures notwithstanding, the trend of crop yields decline may continue nationwide. 

While Lesotho's geographic setting and location present numerous opportunities, the country's 

basic economic structure is extremely vulnerable to subsequent shifts in weather patterns. Ensuring 

a strong system for sustainable management and prospective growth of water resources will be 

crucial for achieving long-term improvements through economic development in the commercial, 

service, industrial, and agricultural sectors (Verschuur et al., 2021). 

2.7.2. Implications of climate change on food prices 

Lesotho experienced one of the worst droughts in 35 years, primarily caused by El Niño (World 

Food Program, 2015). The drought, combined with Lesotho's dependence on rain-fed agriculture, 

means that many households depended on food purchases for the most of 2016 and 2017. 

Throughout 2016, the general consumer price index increased, so did food inflation. Food prices 

rose by 15% per year in May 2016, and by 10% in September 2016, showing that food costs are 

rising faster than the entire basket (Lesotho Bureau of Statistics, 2016). 

Maize meal prices increased during 2015, above both the previous year's average and the preceding 

five years' average, according to the Lesotho Disaster Management Authority (2015). Increases in 

prices fluctuated between 20% in Qacha's Nek to 32% in Butha Buthe during December 2014 and 

December 2015 (Disaster Management Authority, 2015). This continuous rise in food costs is 

projected to diminish consumer purchasing power and worsen Lesotho's food security situation 

(FAO, 2016). As a result, Lesotho faces a major food security crisis due to the impact of the El 

Niño-induced drought. The main factor contributing to local price increases in Lesotho and South 

Africa has been the tightening of maize supplies due the production failure caused by the El Niño-

induced drought (Veschuur et al., 2021). 

Persistent crop failures, dwindling food production, water shortages, and skyrocketing food prices 

have severely hit the country’s agricultural production with 41% of rural households now forced 

to spend more than half of their income just to put food on the table (Sekaran et al., 2021). The 

inflation rate was forecasted to reach 7.6% in 2022, decreasing to 5.9% in 2023, mainly due to a 

rise in the rate of food price inflation which fell to 8% in December from 8.10% in November 

2022 (Central Bank of Lesotho, 2023). Headline inflation in April was 7.1%, surpassing 4.5% in 

July 2023. The highest level recorded so far this year was 8.2% in January 2024. Inflationary 

pressures may have been exacerbated by dryness conditions during important growing phases, 
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which had an adverse effect on crops and fed into increased prices, causing households to purchase 

food earlier than usual (IMF, 2024). 

2.7.3. Projected Future Climate Trends 

Increase in temperature  

Temperatures are anticipated to rise in the region, with mean monthly temperature variations 

increasing by more than 2.0°C in the 2050s and 4.4°C by the end of the century under a high-

emission scenario (Climate Change Knowledge Porta, 2021). Heat waves are projected to occur 

more frequently, as are increasing rates of evapotranspiration, which will have an impact on many 

areas of local economic development and agricultural output. Across all emission scenarios (RCP 

2.6, RCP 4.5, RCP 6.0, and RCP 8.5), temperatures in Lesotho are expected to rise over the century.  

 

As demonstrated in Figure 2.5, under a high-emission scenario, average temperatures are predicted 

to rise substantially over the next century. Temperature is projected to rise throughout the year due 

to the seasonal cycle. Increased and intense heat waves will have adverse effects on human and 

animal health, agriculture, and ecosystems. Predicted rises in temperatures could widen up new 

agricultural areas, enabling cultivation in formerly unproductive areas; yet persistent 

challenges with shallow soils on steep slopes may raise the risk of soil erosion (Climate Change 

Knowledge Portal, 2021). 

Figure 2.5: Projected Average Temperature for Lesotho  

 

Source: WBG Climate Change Knowledge Portal (CCKP, 2021) 
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Decrease in precipitation  

Higher temperatures are projected to increase the rate of evapotranspiration in Lesotho and 

Southern Africa, putting pressure on water resources. As droughts become more regular and 

severe, the region's water supply and agriculture are likely to suffer. A concomitant increase in 

flooding episodes poses major water pollution concerns to wetland habitats, agriculture, and 

animal groups. Precipitation in Lesotho is widely diverse; northern portions of the country are 

projected to experience less than average rainfall through mid-century, with moderately more than 

normal precipitation until the end of the century (Climate Change Knowledge Portal, 2021).  

According to the World Bank Group (2021), southern Lesotho is anticipated to experience below-

average rainfall of 50 to 100mm annually till the end of the century. Lesotho's projected 

precipitation regime will only minimally deviate from documented historical patterns under the 

highest emissions scenario. However, variations in rainfall patterns in Lesotho are expected to 

result in a rise in severe rainfall events, along with the likelihood of long dry intervals between 

storms. These changes may intensify the country's drought zones, and decreased precipitation 

could result in a significant decline in crop yield (Wendt, 2023). 

2.8. The case of Malawi 

Malawi is an attenuated, landlocked country in southeast of the continent, shares borders with 

Tanzania, Zambia, and Mozambique. The country is prone to a range of climatic variabilities, 

including heavy precipitation and hurricanes, periodic conditions of drought, and unpredictable 

cyclones. 

2.8.1. Socio-Economic Vulnerabilities 

Malawian economy in the face of climate change 

Climate-sensitive industries characterize Malawi's economy, where fishing, forestry, and 

agriculture comprised 22.7% of the GDP and 62% of the total labor force as of 2021. This is 

according to data obtained from the World Bank for 2023. It was tobacco, however, that continued 

to remain the significant cash crop for Malawi and accounted for nearly 50% of revenue earned 

through exports. Other major agricultural exports include tea, sugar, and cotton from Malawi, 

which accounts for at least 85% of its total exports. Furthermore, most of the facilities such as 

roads, energy, and water supply remain poorly developed; therefore, any deterioration due to 
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climate change is more likely to have a worse effect on other sectors. Malawi's most recent 

Nationally Determined Contribution (NDC) projects that climate change will cost the country at 

least 5% of its GDP each year (Chirambo, 2020).  

According to Arndt et al. (2014), the effects of changes in climate on the economy of Malawi are 

anticipated to worsen over time, as a result of decreased crop productivity and increased 

impairment to transportation infrastructure as the prevalence and magnitude of severe weather 

events increases. A World Bank Group report (2022), analyses five potential climatic scenarios and 

concludes that changes in climate could lower Malawi's GDP by amounts greater than those 

forecasted by the NDC should the ongoing trajectory of low-growth development persists. 

Corresponding to Arndt et al. (2014), the report concludes that impairment of bridges and roads is 

projected to be the primary channel of the impact of variations in climate on Malawi's economy, 

notably in a rainy scenario, due to the country's roadway vulnerability to flooding. The second 

most important channel is expected to be a decrease in the productivity of labor, specifically in 

extreme temperature scenarios. This is followed by reductions in crop production as a result of 

temperature and precipitation fluctuations in a dry scenario. 

Malawi’s unsustainable fiscal position   

As of July 2022, the International Monetary Fund (IMF) determined that Malawi's external and 

total public debt was in distress (IMF, 2022). In 2022, the government debt increased to 76.6% of 

GDP, resulting in a fiscal deficit of 8.8% of GDP. It worsened because of the rising commodity 

prices resulting from the conflict between Russia and Ukraine, which raised food costs, caused a 

severe lack of foreign exchange, and caused inflation to skyrocket to 26.7% as of October 2022 

(World Bank, 2023). Continuous climate-related shocks continue to make Malawi economically 

vulnerable and distressed by debt, causing frequent and severe weather events disrupting 

agriculture, reducing economic growth, increasing government spending on disaster response, 

creating foreign exchange shortages, and driving inflation. The government tried to achieve fiscal 

consolidation to reduce the deficit through the reduction of non-priority spending and enhancing 

revenue collection. Despite these developments, Malawi till date has enormous fiscal ultimatums 

that lie ahead in its efforts toward poverty and inequality reduction, considering the increasing 

investment required in infrastructure, social services, and response to climate change (Raga, 2023). 
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2.8.2. Overview of the Malawian agricultural sector 

The agriculture sector accounts for a large percentage of the economy of Malawi and employs a 

great deal of the workforce. In Malawi, just a minimal amount of agricultural land is irrigated, and 

commercial estates manage the majority of it. Despite the fact that irrigation is becoming more 

popular, with 61 977 hectares expected by 2019, it comes at a high expense (Mapila et al., 2022). 

Consequently, crop yield in Malawi continues to be heavily dependent on precipitation. Large-

scale farmers focus solely on exporting sugar, tea, tobacco, and macadamia. Small-scale producers 

are primarily subsistence farmers that grow legumes, maize, cassava, rice, and sweet potatoes. 

Ultimately, 80% of Malawi's populace lives in communities that rely on rain-dependent harvesting 

agriculture (World Bank, 2018). Many essential crops have demonstrated diminishing agricultural 

yield. Investment in agriculture is required to improve productivity and provide greater resilience 

to unfavorable climate events. Potential economic shocks are made more severe by the increased 

likelihood of minimal yield seasons in agriculture. In the case of high emissions, these effects are 

likely to be substantially greater. Climate warming may double the frequency of low-yield 

occurrences for maize (Stevens and Mandani, 2016). 

2.8.3. Implications of climate change on food inflation 

Inflation increased from 20.8% in 2022 to 28% in 2023. Malawi continues to experience high 

levels of inflation, with a year-on-year inflation rate of 32.3% for April 2024, and elevated food 

prices, with maize prices averaging 160% above the five-year average (IPC, 2024). The high cost 

of agricultural inputs in 2023 has further exacerbated the situation for the poorest and most 

vulnerable households (FAO, 2023). Increased costs of transporting imported foods and 

agricultural inputs, due to devaluation and depreciation of the Malawi currency, are thus elevating 

transportation costs for such food and agricultural inputs during the lean season of November 2024 

to April 2025 (FAO, 2023). Recurrent climate shocks have left a considerable number of Malawian 

families needing emergency food assistance. Forecasted La Niña conditions are projected to result 

in above-average rainfall with floods predicted in many of the drought affected districts toward 

the last quarter of 2024 to the first quarter of 2025 rainy season (IPCC, 2022). 

2.8.4. Future climate trends  

The average temperature is projected to rise further during the 2020s and 2060s, maybe much 

higher if global emissions reduction efforts fail. Thomas et al. (2022), employed a broad ensemble 



 36 

of climate estimates from 2000 to 2069 to generate frequency ranges for temperature and rainfall, 

displayed in Figure 2.6. The figures show the average daily maximum temperature for the warmest 

month during the most humid three months of the year for each pixel, in addition to the total 

amount of rainfall for the most humid three months of the year for each pixel for the specified 

decade. The scenario with lower emissions is shown in the figure as 2C, and the scenario with 

greater emission levels is shown as PF. Under the less emission scenario, the variation in the daily 

peak temperature during the warmest months of the year is minimal, whereas, under the higher 

emissions scenario, it is enormous. 

Figure 2.6: Projected changes in rainfall and average daily peak temperatures for the wettest 

three-month and the hottest month period from 2020s to 2060s 

 

Source: Thomas et al. (2022) 
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The combined fluctuation and unpredictability of precipitation throughout Malawi's wettest 

months, especially under a heightened emissions scenario, escalates the risk of drought, 

particularly in the south. Although the average rainfall of the wettest three months is expected to 

change minimal at the country level, for the most extreme emission forecast (that is, the ‘reference' 

forecast, which is moderately greater than the PF forecast); a slight decrease in average rainfall 

and moderately greater variation in rainfall indicate an approximate double of drought frequency 

in the south and a potential increase of 50% for the majority of the country. This potential 

variability is due to rainfall patterns and greater vulnerability (Thomas et al., 2022). World Bank 

(2018) also reported an increasing risk of reduced precipitation, notably in Malawi's southern 

regions accompanied by additional days of prolonged dryness each year. A corresponding study 

by IFAD (2020), predicts a total drop in Malawi's yearly and seasonal rainfall by mid-century, with 

a 10.5% decrease in seasonal precipitation from October to April. 

2.9. The case of Namibia 

The nation is experiencing water stress, which is mostly manifested by extremely high evaporation 

rates of 83% and low and highly unpredictable average annual rainfall. Natural disasters are 

common in Namibia, the country therefore struggles with drought and flooding (Shikangalah, 

2020). 

2.9.1. Implications of climate change on the hydrology sector 

Drought impacts on the hydrology sector 

Water is essential in many economic areas, including agriculture, cattle, fishing, mining, and 

industry. Despite its small contribution to GDP, agriculture consumes up to 75% of total water 

output in Namibia (Liu and Zou, 2021). However, agriculture's water productivity is far lower than 

normal. Droughts are now a regular occurrence in most parts of the country; in recent decades, 

droughts occurred from 2012 to 2013 and in 2019. The drought in 2012 to 2013 was expected to 

be the most severe of the decade, with almost 42% of the overall populace experiencing food 

insufficiency (Shikangalah, 2020). The El Niño Southern Oscillation (ENSO) had a substantial 

impact on Namibia's rainfall and temperature, resulting in lesser than average rainfall which was 

received during the ENSO (Shikangalah, 2020). 
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According to Mupambwa et al. (2021), the average yearly precipitation for nearly two-thirds of 

the country is 250mm during normal rainy seasons and less during ENSO. With such little average 

rainfall, the country is primarily reliant on groundwater systems for supply. It is believed that only 

2% of Namibia's precipitation ends up as surface run-off, with only 1% accessible to recharge 

groundwater. The remaining 97% is lost through direct evaporation (83%) and evapotranspiration 

(14%). Rainfall frequently evaporates before reaching the ground, and a 1% change in rainfall has 

an effect of 1.2 to 1.6% on carrying capacity. A slight decline in the amount of precipitation as a 

result of changes in climate will exacerbate water scarcity, reduce livestock, decrease agricultural 

productivity in Namibia (Liu and Zou, 2021). 

Projected climate trends in the hydrology sector 

Changes in precipitation across Angola and Zambia of 10 to 20% by 2050 would have a 20 to 30% 

impact on discharge and drainage of perennial rivers in northern Namibia (Thorn et al., 2023). 

Furthermore, the majority of the country's irrigation projects are situated along the perennial 

northern rivers that form its borders. As a result, diminishing flow from these rivers may jeopardize 

irrigation development for greater food production, as envisaged by Namibia's government. As 

temperatures rise over 3°C, evaporation also rises by 5% to 15%, making even less water 

accessible for discharge and storage (Spear et al., 2018). Daily peak temperature is expected to rise 

by 5 to 6°C by the end of the century. Namibia's groundwater often serves as a drought buffer in 

many areas; however, persistent future droughts are projected to lead to descending groundwater 

tables and declining flows of surface water (Thorn et al., 2023). 

2.9.2. Implications of climate change on the agricultural sector 

Drought impacts on the agricultural sector 

The agricultural industry is essential to Namibia's economy and food security, accounting for 7% 

to 10% of the country's GDP (World Bank, 2018). Seventy percent of Namibia's population 

is reliant on rain-fed agricultural output, with about 48% of rural households relying on 

subsistence farming. Agricultural exports, particularly livestock, beef, and grapes, are a significant 

element of the country's trade portfolio. However, with the recent and ongoing climate shocks in 

the country, there has been a sharp decrease in agricultural output, thus disrupting economic 

stability (Simaku and Sheefeni, 2017).  
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For instance, during the 2019 drought, Namibia and Botswana's annual agricultural output was 

predicted to be less than 50% of the 5-year average (FAO, 2019). Furthermore, production in the 

sector decreased by 17.5%, with crop growth being the most severely hit. Figure 2.7 shows that as 

the cultivated area decreased in 2019, output fell from a significant 10% in 2018 to a negative 

18%. Furthermore, livestock production was already negative in 2018, and it fell even worse in 

2019. As total production of crop decreased during 2019, the production of cereal was predicted 

to be 53% less than in 2018 and 42% lesser than the 20-year average. In Figure 7, "P" represents 

projection. 

 

Figure 2.7: Annual percentage (%) changes of farming activities 

 

Source: Shikangalah (2020) 

The agricultural sector's sensitivity to climate, in addition to its dependence on rainfall and water 

supplies, have significant repercussions for Namibian farmers and the economy as a whole. 

Projected climate trends in the agricultural sector 

Agriculture in Namibia (crop production, livestock husbandry, and fishing) is extremely vulnerable 

to weather conditions. Temperatures across the country are expected to rise by an average of 3.8°C 

to 5.1°C. Together, these conditions and future extreme climates will have an enormous impact on 

crop productivity and livestock (Spear et al., 2018). Climate change could have significant 

implications for agriculture, and thus GDP. Even heat-tolerant crops inclusive of millet are 

expected to suffer due to climate change in Namibia's drought-prone regions. Cereal crop yields 
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are expected to decrease by up to 20% in the northeastern region and 50% in the northcentral 

region under rainfed circumstances (Karunaratne et al., 2015). Heat and water stress on livestock 

are likely to reduce feed intake, milk output, and reproductive rates. Climate change is expected 

to reduce livestock carrying capacity across the country by 10% in the northeastern region, 15% 

to 30% in the northcentral region, and 35% in the central region (Nhamo et al., 2019). These 

changes will put more pressure on grazing lands and animal management systems. Cattle numbers 

are expected to fall to around 51% of current levels by 2080 as carrying capacity declines (Spear 

et al., 2018). 

2.9.3. Implications of climate change on food inflation 

In 2019, Namibia experienced a nationwide drought, and most of its provinces are still recovering 

from the disaster (Shikangalah, 2020). The impact of the drought affected both crop and livestock 

production.  During this period, food and nonfood prices increased twice by 2 to 6% until 2021. 

This price increment was further triggered by the increased global fuel prices, as a result, people’s 

purchasing power reduced (Liu and Zhou, 2021). 

In addition, poor rainfalls in the northern crop-producing area during the 2022-2023 farming 

season and localized flooding in the northeast in January 2023 led to poor crop productions 

(USAID, 2024). This has been the cause of the increases in the prices of foods and non-foods that 

started in March 2022 and are expected to last throughout 2023, partly supported by high import 

costs for fuel, food, and fertilizers. High and erratic global commodity prices negatively affected 

the purchasing power of the poor. In 2023 to 2024, poor communities experienced a prolonged 

lean season due to inadequate food supply. On the other hand, food prices peaked at 14.6% during 

the peak lean season for households dependent on food markets but has been consistently 

decreasing since then. This coincides with Namibia's most significant trading partner, South 

Africa, where it stabilized in December 2023 at 7.4% (Namibian Statistics Agency, 2023). 

Prolonged dry spells and erratic rainfall, exacerbated by El Niño, in the 2023 to 2024 rainfall 

season have had a negative impact on crop and livestock production in 2024 (IPC, 2023). The 

Namibia Metrological Service Climate Bulletin report for March 2024 indicated that the rainfall 

performance over Namibia has been minimal with the bulk of the country having received below-

normal rainfall for the period of October 2023 to April 2024 (IPC, 2024). According to the 

Namibian Statistics Agency (2023), the average annual inflation rate for May 2024 stood at 5.2%, 
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this also exacerbates the existing food security challenges and demanding increased humanitarian 

support, livelihoods recovery, and resilience building.  

2.10. Conclusion 

Based on this review, it is undisputed that climate change poses substantial risks to key economic 

sectors and has far-reaching consequences for achieving developmental goals such as alleviation 

of poverty and development sustainability. Southern Africa faces a multifaceted challenge, mostly 

affecting the water and agricultural sectors due to decreased rainfall and rising temperatures. These 

changes jeopardise water availability and agricultural systems' ability to supply rising food demand 

from a growing population while also contributing to sustainable development. As a result, 

comprehending how change in climate and its unpredictability affect water supplies and 

agricultural systems is critical in developing response strategies to establish resilient systems. 

Most African countries, including those discussed in this research, have limited fiscal 

flexibility and large public debt. As a result, macro-level climate change mitigation policies that 

require huge financial easing may be unfeasible in the short to medium term. 
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CHAPTER 3: LITERATURE REVIEW 

______________________________________________________________________________ 

 3.1. Introduction 

This section reviews the literature by looking at the theories that inform the relationship between 

climate change, agricultural production and food inflation. To address the objective of this 

literature, a comprehensive and critical discussion of relevant academic articles, reports and 

empirical studies focusing on the economic impacts of climate change on agricultural output and 

food inflation will be analyzed. This section will further highlight literature gaps that the study 

intends to address. 

3.2. Theoretical Framework 

It is commonly accepted in both theory and practice that determining the factors that contribute to 

inflation is crucial to pursuing an anti-inflationary policy that effectively aims to achieve price 

stability. This theoretical literature framework attempts to investigate the theoretical perspectives 

of inflation through the lenses of cost-push inflation under the Keynesian Theory in order meet the 

study's theoretical objectives. The review will employ a conceptual framework to better explore 

how climate change affects agricultural output. 

3.2.1. Keynesian Theory of Inflation 

Since both policymakers and society are directly and indirectly impacted by the results of inflation, 

it is still a crucial macroeconomic issue that they continue to regularly monitor. Additionally, the 

detrimental effects of climate change on agriculture cause crop yields and productivity to fluctuate, 

which in turn causes changes in the availability of food and fuels food inflation (Paudel et al., 

2023). Understanding what inflation is, how it is calculated, and why it matters (the cost, 

challenges. and repercussions) are essential to comprehending the factors that influence inflation.  

Inflation is defined as a long-term increase in the general cost of goods and services within an 

economy (Salim, 2019). When prices increase across the board, each unit of currency may buy 

fewer goods and services. Accordingly, inflation also indicates a decline in the purchasing power 

of money as well as a decline in the actual value of the economy's internal medium of exchange 

and unit of account (Bonab, 2017).  
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In the Monetarist view, increases in money supply are controlled by slowdowns in the velocity of 

circulation of money, meaning that the extra money is likely not spent on goods or services but on 

investments in capital assets, which would stimulate economic growth and therefore increase the 

output rather than price (Ball, 2017). Even though monetarists contend that inflation is strictly a 

monetary process that can only occur when the money supply expands more rapidly than output 

capacity, the Keynesian theory of inflation takes a distinct approach to what defines inflation. 

Madito and Odhiambo (2017), argue that monetarist economists disagree with the non-monetary 

causes of inflation posited by Keynesian theory, such as changes in government fiscal policies, 

cost-push factors, and scarcity of food and fuel. They argue that inflation can only emerge from 

excessive increase in the supply of money. However, Keynesians contend that imbalances in 

aggregate demand and supply are the root causes of inflation. 

The Keynesian theory provides insight into inflation in the complexity real world of government 

policy, supply disruption, and cost of production. However, this theory underestimates the 

importance of monetary determinants and long-run inflation expectations which are central aspects 

of the operation of contemporary central banks (Wei & Xie, 2020). While the Keynesian theory is 

relevant for short-term inflationary shocks, its assertion that cost-push inflation may persist 

without monetary expansion faces significant criticism (Fornaro and Wolf, 2023). In the modern 

global economy, where trade, financial markets, and technology increasingly shape dynamics, it is 

essential to integrate these factors into inflation models to appropriately represent price stability. 

In a broader context, the impact of climate change on agricultural productivity and food inflation 

in Southern Africa can be analyzed through the lens of Keynesian theories of inflation. While 

Keynesian theories of inflation are primarily concerned with macroeconomic factors, they provide 

insights into the possible implications of climate change on the variables in question. According 

to the Keynesian theory, only two types of inflation arise, either based on the demand side factors 

which result in demand-pull inflation or based on the supply side factors, resulting in cost-push 

inflation (Kahn, 2022). Based on the two determinants of inflation, the current study is informed 

by cost-push inflation. 

3.2.2. Cost-push inflation 

Cost-push inflation occurs when the aggregate supply of goods and services which can be 

produced in the economy falls (Shaik et al., 2022). A rise in production costs is frequently the 
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reason for this decline in total supply. Consequently, consumers pay more for the final products as 

a result of the increased production expenses (Charles et al., 2022). 

In contrast to the demand-pull hypothesis, which claims that inflation arises as a direct or indirect 

result of both expansionary monetary and fiscal policies, the cost-push theory proposes that prices 

rise as a result of factor prices that accelerate faster than factor productivity. One of the effects of 

cost-push inflation is that high production costs frequently lead to a decrease in employment rates 

as firms strive to offset higher production costs, especially in a labor-intensive work environment. 

This frequently leads to a decrease in productivity, which then results to a reduction in output. 

Monetarists argue that a tight fiscal policy without a decrease in the rate of monetary expansion 

cannot decrease inflation (Palley, 2015). The cost push theory proposes that inflation occurs as a 

result of a reduction in aggregate supply. However, the cost-push inflation theory upholds that 

wage increases prompt prices of goods and services to rise (hence the term "cost-push inflation"), 

which is frequently perpetuated by trade unions or due to pricing policies imposed by monopolistic 

and oligopolistic firms in the economy. Alternatively, this process can be understood through wage 

and salary increases, in addition to an increase in the cost of raw materials utilized as inputs in 

firms' manufacturing processes. Cost-push inflation is further explained by rising import raw 

material prices (also known as imported inflation) and the decreasing value of the local currency 

(Machlup, 2020).  

The underlying assumption is that wage earners and profit recipients desire incomes that exceed 

the total value of their production when the economy is at full employment. Consequently, at any 

given time, one or both groups will be dissatisfied (Brown & Johnson, 2017). If wage earners are 

dissatisfied, they demand higher wages, which employers may partially concede during 

negotiations, initially impacting profits. Subsequently, employers raise prices to compensate for 

increased costs, although this restores profits, it simultaneously diminishes the real incomes of 

wage earners, thereby laying the groundwork for another iteration of demand for increased wages 

(Blanchard & Johnson, 2013). If the money supply remained constant, this process would lead to 

growing monetary tightness, making it more challenging to finance wage increases and acquisition 

of goods with recently raised prices. It would also hinder overall production and distribution, 

although in some cases, the velocity of circulation can rise significantly, enabling the limited 

supply of money to be more effectively utilized. In practice, the money supply adjusts according 
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to demand, partially because monetary authorities aim to avoid the disruption of capital markets 

that would arise from severe monetary tightness and substantial increases in interest rates.  

Overall, the interplay between wage earners, profit recipients, price adjustments, and the money 

supply demonstrates the complex dynamics and considerations involved in balancing incomes, 

prices, and monetary conditions in an economy (Moore, 2023). This kind of inflation is possible 

under the Imperfectly Competitive Market and is driven by the following causes among many 

(Park & Shin, 2019): 

(I) Increased cost of key inputs 

A surge in the cost of domestic or imported inputs including oil and raw materials raises 

manufacturing costs in a range of industries (Shaik et al., 2022). Faced with rising production 

costs, firms may respond by limiting output and raising pricing for their goods and services 

(Machlup, 2020). This price hike could have a knock-on impact, raising the cost of goods and 

services across the economy. For instance, an increase in oil prices, which is a primary input for 

many sectors of the economy, can result in higher petrol costs (Su et al., 2021). When petrol prices 

rise, it becomes more costly to transport goods. Given that many products must be shipped from 

one location to another, the additional cost of transportation is frequently passed on to consumers. 

As a result, the prices of numerous commodities may rise, even if they are unrelated to petrol (Dua 

and Goel, 2021).  

(II) Supply Shocks 

Supply shocks are also the source of cost-push inflation. A supply shock is an abrupt shift in the 

price of a commodity or service (Ascari et al., 2024). Adverse supply shocks are often events that 

increase the cost of production. A negative supply shock can lead to stagflation when prices rise 

and output falls (Fornaro and Wolf, 2023). The most typical source of supply shocks is oil prices. 

The Organization of Petroleum Exporting Countries (OPEC) drastically raised oil prices twice: 

once in 1973-1974, when prices quadrupled and then redoubled, and again in 1979-1980, when 

prices more than doubled again (Aronson and Cowhey, 2019). Domestic economies cannot remain 

insulated from such external price shocks, as they must accept the increased foreign prices. These 

shocks are worsened when the prices of imported goods used in domestic production are calculated 

in local currency. If the price shock coincides with local currency devaluation or higher tariffs, it 
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further raises the cost of domestic goods due to the increased production expenses (Krugman, 

2017). 

(III) Climate-Driven Inflation 

Climate change, as well as the mitigation efforts that accompany it, have nonlinear and long-term 

consequences on the economy's supply and demand. As climate change accelerates, central banks 

confront two new obstacles to their price stability targets (Boneva et al., 2022). The first is 

climateflation, which refers to the inflationary effects of a warming planet. The second is 

greenflation, which refers to inflationary pressures caused by the implementation of climate 

mitigation policies in order to achieve a low-carbon economy (Oman et al., 2024). Greenflation, 

on the other hand, refers to the inflationary pressure that comes with transitioning to a carbon-

neutral economy. The first occurrence is comparable to an adverse supply shock, whereas the 

second is a combination of both supply and demand disruptions (Guerrieri et al., 2022).  

Thus, due to climateflation and greenflation, central banks must strike a strong balance between 

ensuring stability of prices and promoting a resilient economy. Each of these occurs on different 

timescales and with varying degrees of impact, with fossil fuel fundamentals being the most 

immediate and visible, climate risks being the most disruptive and emerging, and green transition 

inflation being transitory and still largely hypothetical (Sahuc et al., 2023). The following section 

discusses how climateflation exacerbates supply chain disruptions and the long-term repercussions 

on economic viability. 

Impact of climateflation on supply disruption 

Climateflation refers to larger inflationary effects caused by climatic phenomena such as extreme 

weather, natural catastrophes, and supply chain disruptions. As the frequency of natural disasters 

and severe weather occurrences increases, so does their impact on economic activity and pricing 

(Panwar and Sen, 2019). For instance, the extraordinary droughts in many parts of the world have 

contributed to the recent steep increase in food costs, which is putting a strain on a society that is 

already struggling. 

Climate change serves as a negative productivity shock, increasing the marginal cost of production 

and causing inflationary pressures in the economy (Kabundi et al., 2022). Similarly, catastrophic 

weather events that decrease the availability of inputs cause inflation and supply shocks, disrupting 
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the supply chain. Kanike (2023), defines supply chain disruption as an interruption in the flow of 

manufacturing, sales, and distribution of certain commodities or services. Cost-push inflation can 

also occur due to supply shocks in specific industries, such as natural disasters or extreme weather 

(Ciccarelli and Marotta, 2024). Periodically, severe cyclones and hurricanes occur frequently 

around the world, destroying vast amounts of agricultural output and causing significant increases 

in the price of processed food, leading in temporary periods of greater inflation (Kumar et al., 

2022). 

A recent study by Patel et al. (2022), incorporates theories of inflation to examine the relationship 

between climate change, price pass-through mechanisms, and inflation persistence. The authors 

discuss the New Keynesian framework, which highlights the role of price stickiness and cost-push 

factors in shaping inflation dynamics. They argue that climate change-induced supply shocks can 

disrupt price pass-through mechanisms, leading to changes in the degree and duration of price 

adjustments in the economy and influencing inflation persistence. The study emphasizes the 

importance of understanding the underlying mechanisms through which climate change impacts 

price dynamics to design effective inflation targeting policies in the context of a changing climate. 

Fossilflation as a cost-push factor 

Many emerging and industrialized countries are facing worsening inflation at a faster rate than at 

any point in the previous decade (Ahmed et al., 2021). This has been fueled in part by rising energy 

prices, either as a direct component of the consumer price index (CPI) basket or as an underlying 

input cost in the manufacturing and transportation of other goods. The direct inflationary impacts 

of a greater price of carbon energy are referred to as fossilflation, a form of inflation caused by an 

increase in the price of fossil fuels and hence linked directly to an economy's reliance on such fuels 

(Jackson, 2024).  

Carbon pricing and environmental restrictions, for instance, might increase firms' production costs 

as they promote the transition to a net-zero economy. Increased operational costs for facilities that 

remain integrated in a fossil-fuel-based energy system may have an impact on prices, with these 

costs passed on to consumers (Davis et al, 2020). The exposure of many countries to recent energy 

shocks has prompted deeper reflection on the supply insecurities inherent in global energy markets, 

the continued reliance on fossil fuel-based energy, the price volatility it causes, and the role of the 

energy transition in easing these tensions (Davis et al, 2020). Fossilflation is anticipated to be a 
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transient phenomenon that will fade as emissions decline. However, the transition period is 

expected to last far beyond the short term, and so will have a significant impact on central banks' 

monetary policy (Jackson, 2024). Greenflation may result from firms shifting away from carbon 

energy and towards non-carbon energy, often known as greenflation (Simmens, 2023). 

Greenflation 

Another climate-related element that contributes to cost-push inflation is greenflation, which is 

associated with the costs of transitioning to a carbon-neutral economy. As sectors and industries 

embrace greener technologies and comply with stronger environmental rules, production costs 

may rise (Olivsson and Vestin, 2023). Shifting from fossil fuels to renewable energy sources may 

necessitate large upfront investment in new technology and infrastructure (Kabel and Bassim, 

2020). Higher costs of production can be passed on to the consumer in the form of increased prices, 

resulting in cost-push inflation. Furthermore, as demand for green technologies and products 

expands, supply may struggle to keep up, causing costs to increase further (Kabel and Bassim, 

2020). 

3.2.3. Conceptual approach 

Impact of climate change on agricultural output  

Climate change presents enormous challenges to agricultural systems worldwide. This conceptual 

framework analyses the complex effects of climate change on agricultural output, with an emphasis 

on the arable farming and livestock industries. Understanding these effects is critical for creating 

adaptive solutions that assure food security and sustainable farming practices. 

Agricultural production is carried out through identifying crops that are appropriate for the climate 

of a particular region and using adequate farming techniques. Thus, agriculture is a climatic 

sensitive bio-industry with distinct geographical characteristics. Regional characteristics refer to 

ecological features that are determined by the region's climate. Climate change disrupts the 

agriculture ecosystem, altering agricultural climatic variables such as temperature, precipitation, 

and sunlight while also effecting the arable, livestock, and hydrological sectors (Kim, 2012). 

According to Kumari et al. (2020), the effects of climate change on the arable and livestock sectors 

can be seen in biological changes such as variations in flowering and harvesting seasons, quality 
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alterations, and shifts in cultivated areas. Figure 3.1 below illustrates the progression of climate 

change's effects on the agriculture industry.  

Figure 3.1: Flow of climate change impact on the agricultural sector 

 

Source: Kim (2012:9). 

Climate change causes biological changes in the livestock sector, such as fertilization and breeding, 

which in turn alters pasture growth patterns (Henry et al., 2018). Higher temperatures may speed 

crop development cycles, limiting the amount of time available for grain filling and resulting in 

below average yields. For crops like wheat and maize, extreme heat during critical growth stages, 

such as flowering and grain filling, drastically reduces productivity. Additionally, increased 

temperatures reduce not only livestock fertility, but alter breeding cycles, and negatively affect the 

health of newborn animals. Livestock under heat stress result in less milk production, less weight 

gain, and low productivity altogether. Rojas-Downing et al. (2017), attested that water supply for 

irrigation is directly impacted by alterations in precipitation patterns. Changed precipitation 

patterns affect soil moisture, which is crucial for crop development. Excessive rainfall leads to the 

problems of waterlogging, soil erosion, and loss of nutrients, while drought condition degrades the 

soil, hence lowering agricultural productivity. Agricultural productivity may remain low during 

the time and resources needed to recover from these occurrences (Eekhout et al., 2018).  

According to Shrestha (2019), changes in climate disrupts the agricultural ecology, giving rise to 

blights and pests, spurring population movement, and reducing biodiversity. Warmer temperatures 

and changing precipitation patterns bring about advantageous conditions for pests and diseases, 

affecting sustainability and the yield of crops. This necessitates increased pesticide use, which can 
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have further environmental and economic implications. Changes in climate further alter species 

composition and distribution within agricultural ecosystems. On the other hand, biodiversity loss 

compromises ecosystem resilience, reducing the natural services that support productive 

agriculture, such as pollination and pest control. 

Climate change also has an impact on hydrology, including subsurface water level, water 

temperature, flow of rivers, and the quality of water in lakes and marshes, through rainfall, 

evaporation, and moist soil content (Oliazadeh et al., 2022). in particular, climate change increases 

precipitation, which increases outflow, whereas rising temperatures increase evaporation, which 

reduces outflow. When climatic changes, such as higher temperatures occur, the boundary and 

suitable areas for cultivation shift north, and thereby the primary fields for cultivation alter 

resulting in the expansion of arable land in some regions and a reduction in others (Kim, 2012). 

Farmers may need to adapt by changing crop varieties or farming practices to suit new climatic 

conditions. The effects of climate change on agriculture are mixed, with good impacts offering 

opportunities and negative consequences resulting in costs. As a result, it is a mandate to develop 

adaptation techniques that can maximize opportunities while minimizing costs to ensure 

sustainable agriculture development. 

3.3. Empirical literature 

The empirical research on how climate change affects food prices, specifically in developing 

nations, is examined. Several studies have found that climate change has the potential to impair 

agricultural output, resulting in a rise in food prices.  

3.3.1. Climate change as a driver of food and overall inflation 

The risks of climate change influencing key economic variables are divided into physical and 

transitional impacts (Anderson et al., 2020). This section will explore the macroeconomic effects 

of both the physical and transitional impacts associated with climate change by drawing evidence 

from various countries. 

(I) Physical Impacts of climate change 

According to Walsh et al. (2020), the physical effects of climate change are caused by an upward 

trend in both the severity and frequency of acute weather conditions such as flooding, high 
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temperatures, and windstorms, in addition to gradual or chronic climate changes such as rising 

temperatures and sea levels. 

A study by Fajri et al. (2019), evaluated the implications of climate change on food prices in 

Indonesian districts impacted by the El Nino and La Nina phenomenon. According to the study, 

the key factor driving climate change in Indonesia is the El Nino Southern Oscillation (ENSO), 

which is segmented into three phases: El Nino, La Nina, and Normal. The study additionally noted 

that ENSO has an essential role in climate variability and precipitation severity, which can have 

an impact on the agricultural sector, particularly the food crops sub-sector, which is exceptionally 

prone to climate change. The findings revealed that El Nino has a significant impact on the increase 

of soybean and rice prices, in addition to the decline in maize prices. While La Nina greatly impacts 

the rise in rice prices, El Nino has an even bigger impact on food prices than La Nina. Based on 

the findings, the study indicated that rice is the most vulnerable commodity to changing climates 

considering that both the El Nino and La Nina phases might induce a surge in rice prices. These 

findings are consistent with economic theories that emphasize inflation, specifically in alignment 

with the agricultural price transmission theory, thereby strengthening theoretical expectations of 

price changes created by climate changes. Fajri et al. (2019) used local correlation analysis to 

evaluate the relationship of climate, however, the present study expands the analysis by exploring 

a range of additional climate variables using the ARDL approach to provide a more comprehensive 

understanding of both short and long-run relationships between climate variables and food prices 

across the Southern African region. 

Heinen et al. (2019), investigated the implications of severe weather on consumer prices in 

countries that are developing by creating a monthly dataset of prospective hurricane and flood 

destruction indices and relating it to inflation data for 15 Caribbean islands. The study follows 

hurricanes based on a wind speed index. This is considering that stronger winds are very 

destructive to infrastructure, houses, and even crops. The index reflects the localized impact of 

wind speed, which indirectly captures storm surges and heavy rainfall contributing to extensive 

economic damage in the region. Floods are detected based on excessive rainfall data. This aspect 

of the study proxies the extent of destruction from extreme precipitation, which can lead to water 

overflow and erosion, damaging agricultural land and disrupting local economies. The 

econometric model employed in the study reveals that extreme weather occurrences can have a 
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significant impact on prices. To demonstrate potential welfare losses from such pricing impacts, 

the study paired its estimations for Jamaica using event probability and pricing elasticities derived 

from a demand system. The findings revealed that projected monthly losses are minor, however 

uncommon events can cause significant drops in monthly wellbeing due to price rises. While 

physical consequences of climate change have been proven to temporarily increase inflation, 

particularly food prices, these effects have tended to fade in the longer term. The study also 

contended that the consequences of such disasters may be worse in the future should extreme 

weather conditions become more common and severe. 

Beirne et al. (2022), investigated the impact of catastrophic events (droughts, earthquakes, storms, 

floods, heat and volcanic eruptions) on eurozone inflation. Estimating panel and customized 

structural vector autoregression models by integrating estimated disaster impairment with monthly 

Harmonized Index of Consumer Prices data for all eurozone nations from 1996 to 2021. Aside 

from evaluating the influence on total headline inflation, the study looked at effects on its 12 main 

sub-indices and additional sub-categories of food price inflation. The findings indicated that 

natural catastrophes have a considerable positive influence on total headline inflation, with 

divergent results at the sub-index level, resulting in diverse inflation effects among countries. Italy, 

France, Germany, and Spain were shown to have had the most natural disasters of any of the sample 

countries. Most of the disasters were caused by floods and storms, with earthquakes, extreme 

temperature events, wildfires, and droughts occurring less frequently. Therefore, the study 

indicates that natural disasters cause inflationary pressure disruption to supply chains, 

infrastructure damage, and loss of agricultural productivity-especially in the food sector. The study 

therefore denotes that these risks can increase with climate change since it is linked with dire 

weather conditions that are likely to be more frequent or intense, making it quite very difficult to 

maintain price stability by central banks such as the European Central Bank. 

The Central Bank of Seychelles (2022) conducted a study on the challenge of climate change and 

its implications for inflation in the SADC region. Carbon emissions were used as one of the 

variables to measure the intensity of climate change, and it was noted that higher magnitudes of 

CO2 imply increased severity in climate events. These are associated with disruptions in supply 

chains, which in turn may cause inflationary pressures. The results indicate that for every 1% 

increase in carbon emissions, there was a corresponding 0.38% increase in the year-on-year 
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inflation rate, significant at the 10% level. On the other hand, natural disasters-cum-climate change 

have contributed to the spiraling inflation due to breakdowns in the supply chain, particularly food. 

In some cases, the rate of food inflation has increased greatly owing to the disruption in its 

availability. On the other hand, whilst prices of some sub-categories of the CPI may increase during 

the aftermath of a disaster, prices of other sub-categories may fall due to depressed economic 

activity, thus resulting in no overall rise in headline CPI. Thus, this is indicative that the effect of 

disasters on inflation is ambiguous and is dependent on the aftermath of the crisis (Parker, 2018). 

Nevertheless, the result of the estimation indicates inflationary effects of rising carbon emissions 

in the SADC region based on the data sampled between 2015 and 2019. This relationship is 

primarily due to supply-side factors, such as drought-induced crop failures, which increase 

inflationary pressures. 

Cevik and Jalles (2023), employed a local forecasting technique to empirically evaluate whether 

climate shocks, defined as climate-induced natural disasters (storms, droughts, and temperature), 

affect inflation and economic development in a broad panel of nations from 1970 to 2020. 

According to the findings, both inflation and real GDP growth respond substantially and differently 

in terms of direction and magnitude to various types of climate-related disasters. The study 

discovered that while high temperatures lower inflation, droughts and storms raise inflation. In the 

event of a temperature shock, headline inflation falls significantly below its original level in the 

first year and over time. This decline hits a bottom about four years after the shock, when headline 

inflation is 3.5 percentage points lower than it would have been if the temperature shock had not 

occurred. A drought shock, on the other hand, generates a quick increase in headline inflation 

above its previous level, which lasts for some time and amounts to approximately 1.5% greater 

than if the shock did not occur. Storms, on the other hand, have an identifiable impact pattern that 

distinguishes them from other forms of weather disasters. The study found that headline inflation 

rises by about 0.2% in the first year following the storm shock, though it then falls by 1% in the 

long term if the shock did not occur. 

A study by Cunpu et al. (2023), used the mean temperature serves as an alternative indication for 

climatic shocks. The authors employed panel data from 1995 to 2021 for the 26 selected countries: 

America includes 4 countries, Asia includes 8 countries, Oceania includes 1 country, and Europe 

includes 13 countries. They investigated the impact of temperature variations on levels of 
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consumer prices. The results showed that temperature variation and high prices are positively 

related in the selected countries, which is consistent even after taking the analysis through various 

robustness tests. Furthermore, accounting for heterogeneity reveals that the extent of inflation's 

response to variations in temperatures varies by country. In terms of underlying mechanisms, this 

study highlighted the importance of energy demand as an essential channel influencing inflationary 

pressures at the country level, as changes in temperatures affect agricultural output and energy 

demand, which ultimately impacts global price levels when demand exceeds supply.  

(II) Transition impacts of climate change 

As the economy transitions to a low-carbon and eventually net-zero economy, a number of 

transitional effects on the macroeconomy emerge from the process of modifying policies, 

preferences, and technology (Hallegatte et al., 2024). These impacts can be orderly, leading to a 

smooth transition, whereas a disruptive transition may induce amplified effects on the economy 

through the various channels. 

A study by Mairate (2023), aimed at investigating the macroeconomic implications of the green 

transition using scenarios, asserted that the transition to a carbon-neutral economy is currently 

disrupting the supply side of many industries, especially those reliant on fossil fuels. According to 

the same study, as carbon pricing and more stringent environmental regulations are implemented, 

energy costs increase for industries that have not fully transitioned to renewable energy sources. 

These increased costs trickle down to goods and services, causing cost-push inflation. This makes 

the agricultural sector very vulnerable to increases in the costs of fossil fuels, as it is highly 

dependent on these for fertilizers, transportation, and energy (Wang et al., 2024). Higher costs for 

these inputs, aside from the impact of climatic changes on crop yields, result in increased food 

prices and add to food inflation. 

In addition, financial stability is exposed to both physical and transition risks. Many central banks 

worldwide have recognized the need to consider the rising financial risks of climate change 

(Network for Greening Financial System, 2021). These include potential loan losses for banks as 

a result of business disruptions and bankruptcy caused by hurricanes, wildfires, droughts, and other 

extreme occurrences. Transition risks linked with the shift to a carbon-neutral economy include 

unanticipated reductions in the value of assets or firms that rely on fossil fuels (Semieniuk et al., 

2021). Even long-term threats can have an immediate impact when investors revalue assets for a 
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low-carbon future. Financial firms with low carbon emissions may yet be extremely sensitive to 

climate-related credit risk through loans to affected businesses or mortgages on coastal real estate. 

If such exposures were broadly comparable across regions or industries, the associated climate-

related risk could negatively impact the financial system's overall stability (Semieniuk et al., 2021). 

Such structural changes required by the energy transition also create inflationary pressure. The 

transition from carbon-intensive industries towards renewable energy sectors, requires 

considerable reallocation of inputs and financial investments which tends to cause input 

bottlenecks (Zakeri et al. 2022). This includes shortages of pivotal resources in renewable energy 

systems that may result in price increases. It also creates implications for the economy in lower 

economic growth influenced by the reallocation of resources from carbon-emitting sectors to 

cleaner options, thus causing temporary disequilibrium (While and Eadson, 2022). Even renewable 

energy, though it may cut costs over the long term, creates significant risks in inflation within a 

transition period. 

3.3.2. Climate change as a contributing factor to lower agricultural output 

Climate change, through physical and transitional risks, has had negative impacts on agricultural 

output. Physical risks here include increasing temperatures, changed rainfall patterns, and rising 

frequencies of extreme weather conditions, disrupting the optimal climate conditions that were 

once required for crop yield and livestock productivity. This often coincides with increasing scale 

of soil fertility deterioration and pest and disease pressures. Conventional agricultural systems as 

both a significant source of emissions and a potential part of the solution to climate change, may 

face transitional risks. These risks could be subjected to new regulation, market changes or 

changing consumer preferences in the face of climate impacts (e.g., Belmin et al., 2023).  

(I) Physical impacts of climate change on agricultural output 

In the study of Alboghdady and El-Hendawy (2016), the production function model was employed 

using FER analysis on the impacts of climate change and variability upon agricultural production 

in the MENA region. The panel data utilized in the study are pooled from 20 countries across the 

MENA region spanning from 1961 to 2009. The results indicated that with a 1% increase in 

temperature during winter, agricultural production decreased by 1.12%. In addition, it was found 

that with a 1% increase in the variability of temperature during winter and spring, agricultural 

production decreased by 0.09% and 0.14%, respectively. Results further indicated that increased 
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precipitation during the winter and fall seasons, along with changes in rainfall during the winter 

and summer seasons, had a negative impact. The computed parameters for squared temperature 

and precipitation show that the changing climate has a strong quadratic impact on agricultural 

output in the MENA region. 

A study by Agba et al. (2017), studied the impact of both climate change and non-climate change 

variables on crop production in Nigeria. The study adopted an empirical research approach using 

secondary sources of time series annual data from reputable sources for the period 1980 to 2013 

and employed the Error Correction Mechanism for the analysis. Results showed that in the short 

run, only rainfall has a significantly positive relationship with crop production. However, in the 

long run, the study found that CO2 emissions, rainfall, temperature, and carbon emissions will 

significantly influence crop production. Additionally, carbon dioxide and carbon emissions from 

manufacturing and industrial activities negatively impact crop production. Furthermore, non-

climate change characteristics such as economically active population, gross capital formation, 

and irrigation-ready land area all had a considerable beneficial impact on agricultural output. To 

limit the consequences of climate change on crop output, the study proposed that policymakers 

develop policies that assist farmers in adopting climate-resilient farming practices. Furthermore, 

governments and other relevant agencies should develop programmes to encourage people to get 

more involved in agricultural production. 

Another study by Haile et al. (2017), which intended to evaluate the effect of changing climates, 

extreme weather events, and price risk on the global supply of food by analyzing the factors 

influencing global production for maize, wheat, rice, and soybeans between 1961 and 2013. Using 

seasonal production data, changes in prices and volatility statistics at the country level, and future 

climate data from 32 global circulation models, the study forecasted that climate change could 

lower world agricultural production by 9% in the 2030s and 23% in the 2050s. Furthermore, 

climate change could result in 1 to 3% larger yearly fluctuations in global food production during 

the next four decades. The study discovered a strong, positive, and statistically significant supply 

response to changing prices for all four crops. However, output fluctuations in prices, which 

signals risk to farmers, limits the supply of these important global agricultural staple crops, 

particularly wheat and maize. The study discovered that climate change has a considerable 

negative impact on the production of the world's important staple crops. Weather extremes, namely 
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shocks in temperature and precipitation during crop growing months, have a negative impact on 

the production of the aforementioned food crops. Extremes of weather also increase the yearly 

oscillations of food supply and therefore may further increase volatility with its adverse effects on 

production and poor consumers. Mitigating and adapting to climate change in a combination 

approach, a key component for the fulfillment of global production and the quest for food security 

is hereby addressed.  

Sibanda and Ndlela (2019), investigated the link between carbon emissions, agricultural 

production, and industrial output in South Africa. This study employed data from 1960 to 2017 at 

an annual frequency, resulting in 58 yearly observations. The Autoregressive Distributed Lag 

approach was used to estimate the model on a bivariate basis. The results showed that agriculture 

and industrial output have little influence on carbon emissions. In contrast, carbon emissions and 

industrial output both have an impact on agricultural output. The findings imply that climate 

change caused by carbon emissions has resulted in lower agricultural output due to the harmful 

impact that carbon emissions have on plants and the environment, hence jeopardizing food 

security. The study concluded that there is a considerable correlation among industrial and 

agricultural output, implying that a properly functioning industrial sector will result in an increase 

in agriculture output. 

According to Letta et al. (2022), the empirical literature on the impact of weather shocks on 

agricultural prices often focusses on post-harvest price dynamics rather than pre-harvest ones. The 

study uses the intra-annual competitive storage theory to experimentally analyze the role of 

weather shocks in traders' expectations of pre-harvest price swings in India's local marketplaces. 

Using a panel of district-level monthly wholesale food prices from 2004 to 2017, the study uses 

the time gap between a weather anomaly and the associated supply shock to isolate price reactions 

caused by changes in forecasts. According to the study, drought conditions significantly increase 

food expenditures during the growing season, even before harvest failure occurs. These findings 

suggest that markets respond swiftly to expected supply shortages by updating their views and 

responding accordingly, and that the expectation channel accounts for a sizable percentage of 

supply-side food price movements. When compared directly to the effects of the same weather 

anomalies on pricing in the first harvest month, expectations predict more than 80% of the total 

price impact. 
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Another study by Otim et al. (2023), examines the effect relationship and the direction of causality 

between CO2 emission and Agricultural Production Index, with the intervention of renewable 

energy consumption, arable land and governance. The authors cover a time period between 1996 

and 2019. The study has a transversal approach covering 6 countries within the East African 

Community regional block. These include Kenya, Rwanda, Uganda, Burundi, Tanzania, and the 

Democratic Republic of Congo. The study has utilized pooled mean group/autoregressive 

distributed lag and fixed effect approaches and has performed the Dumitrescu and Hurlin Granger 

non-causality test on the causality of the considered variables. The long-run model indicated that 

CO2 emissions, renewable energy consumption, labor force and arable land size all have positive 

effects on the crop production index. Apart from this, consumption of renewable energy, arable 

land size and good governance have a positive relationship with the livestock production index. 

The CO2 emissions both ways are not the Granger cause of crop production index, whereas the 

significant effects of good governance and the size of arable land showed inconclusive results on 

agricultural production.  

(II) Transition impacts of climate change on agricultural output 

A study by Lehtonen et al (2022), which attempted to analyse the transition of agriculture to low 

carbon avenues with regional distributive implications, maintained the following:  

This study, based on agricultural sector modelling, demonstrates how changes in food consumption 

and land use strategies might reduce GHG emissions from Finnish agriculture, while considering 

the effects on regional levels of agricultural production, GHG emissions, land use, and farm 

revenue. The findings suggest that it is difficult to achieve a significant reduction in GHG 

emissions from agriculture by simply changing diet as agricultural emissions are closely linked 

with essential activities inclusive of livestock farming and crop production, which are fundamental 

for food security. Changing food consumption patterns, such as reducing livestock product intake, 

can lower emissions, but it also disproportionately impacts regions reliant on livestock farming. 

Regions such as Finland may face income losses and economic disruption, making the transition 

socially and economically difficult. The most effective way to reduce GHG emissions from 

agriculture is to combine changes in food and land use; yet relatively disadvantaged regions with 

substantial shares of livestock production and peatlands may face significant agricultural and land 

use restructuring.  Furthermore, the sectoral disruptions caused by a disorderly transition to a low-

carbon economy can be significant, posing serious financial risks. The study, therefore, provides 
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more incentive for government officials and financial institutions to promote and prepare for an 

early and orderly transition. 

3.4 Assessment of literature 

A complete social welfare analysis is needed to quantify the extent of total economic losses from 

climate change. This covers everything from direct losses of income and production, the value of 

resources, goods, and services that are no longer available or the reduced quality, damage to 

productive capital and infrastructure, decreases in ecosystem services, impact on morbidity and 

mortality as well as loss of subjective well-being from more intangible advantages such as the 

extinction of species or deterioration of ecosystems (Piontek et al., 2021). Existing literature such 

as that from the study of Kilroy (2015), and that of Sintayehu (2018), is more focused on 

biophysical impacts such as change in crop yields, soil health, and water availability. Less attention 

is given to the socioeconomic factors that arise due to climate change, particularly food and overall 

inflation. 

Therefore, there remains a major gap in understanding the impact of climate change on food prices, 

and economic resilience, including the effectiveness of adaptation strategies and policy 

interventions to stabilize food prices and increases in agricultural productivity. Solely a few studies 

considered both sides of this imbalance, indicating a neglect of the need for more integrated 

research that combines biophysical and socio-economic dimensions, particularly on the 

relationship of climate change, agricultural production, and inflation with food prices (Piontek et 

al., 2021). 

3.5. Chapter Summary 

This section addressed the numerous theoretical and empirical approaches used to unravel and 

diagnose the relationship between climate change, agricultural production, and food inflation. 

Amongst other theories that determine inflation, this section included the Keynesian theory by 

focusing on the cost-push inflation which occurs when overall price increases due to increased 

costs of wages and raw material. This section also used the conceptual approach to describe the 

impact of climate change on the agricultural sector. From a very critical analysis of the available 

empirical literature, it is observable that climate change presents a big challenge since the results 

indicate that the relationship between climate patterns, agricultural productivity, and economic 
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stability is complex and multidimensional. The reviewed studies consistently show that disruption 

due to climate change, manifested in extreme weather events, altering rainfall patterns, or even 

rising temperatures, has its reflections in agricultural production and, further, in food security and 

supply chains, bringing inflationary pressures on foods. 
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CHAPTER 4: RESEARCH METHODOLOGY 

______________________________________________________________________________ 

4.1. Introduction 

This chapter presents the research design to be adopted for the study, which gives a systematic 

approach in analyzing the impact of climate change on agricultural production and food inflation 

in Southern Africa. It starts with the research design, which describes the overall strategy and 

framework that guide the study. The section on data sources and sampling describes the methods 

of data collection and sampling techniques used to ensure reliability. In that respect, the model 

specification and description of variables detail the analytical models with which the variables are 

defined, and their respective roles. Ultimately, the estimation methods section would focus on the 

statistical techniques necessary for data analysis to ensure findings are robust and valid. 

4.2. Research design 

The study employs a correlational research design using secondary data to determine the impact 

of independent variables on dependent variables (Seeram, 2019). The study uses two models and 

in the first model, agricultural production serves as the dependent variable, while independent 

variables encompass labor, livestock, machinery, fertilizer, agricultural land, as well as rainfall and 

temperature. In the second model, food inflation is the dependent variable, with independent 

variables comprising crop production index, food exports, oil prices index, agricultural raw 

material imports, rainfall, and temperature. This study aims to determine the impact of climate 

change on agricultural production and food inflation in Southern Africa.  

4.3. Model 1: Agricultural Production 

4.3.1. Data Sources and sampling 

This study employs a production function method and an inflation model to investigate the effects 

of climate change on agricultural production and food inflation in Southern Africa. The empirical 

analysis is based on panel data from 8 Southern African countries for the time period between 1981 

and 2020, thus equivalent to 320 observations. 

This sample size is selected based on the fact that it will be representative of the long-term trend 

and cyclical variations, capturing the slow effects of climate change while also being recent enough 

to reflect the current climatic conditions. The countries are selected based on their heavy reliance 
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on agriculture, diverse climatic conditions, and most importantly, based on the availability of 

reliable data that can enable the study to make meaningful conclusions applicable to the broader 

region. The countries to be studied are Malawi, Lesotho, Zimbabwe, Botswana, Namibia, 

Mozambique, South Africa, and Zambia. Temperature and precipitation data will be obtained from 

the NASA Prediction Of Worldwide Energy Resources. The study uses country-level climate data 

for mean annual temperature in °C, and average annual rainfall in mm, since these  

are the most commonly used meteorological variables in these studies. 

For economic variables such as agricultural production index, livestock production index, 

economically active population in agriculture, agricultural land, agricultural machinery, and 

fertilizers consumption, data in the model will be obtained from the Food and Agriculture 

Organization of United Nations Statistics Division (FAOSTAT) and World Development Indicators 

(WDI). The NASA Prediction of Worldwide Energy Resources (POWER) is reliable because the 

high-resolution, scientifically developed data by experts are accurate and reliable. On the other 

hand, Food and Agriculture Organization of the United Nations Statistics Division-FAOSTAT and 

World Development Indicators (WDI) are reliable sources because they provide comprehensive, 

standardized, and globally recognized statistics on agriculture. Data from the two mentioned 

sources ensures credibility and reliability of the study due to their wide usage in research and 

policymaking. 

4.3.2. Model Specification and Discussion of Variables 

To examine the impact of climate change on agricultural production in Southern African countries, 

the study specifies a production function where the agricultural production index is a function of 

a number of economic inputs and climate factors: AGRP=f(LAB, LIV, AMAC, TFC, AGRL, 

RAIN, TEMP). AGRP represents the agricultural production index; LAB, LIV, AMAC, TFC, and 

AGRL are agricultural labor, livestock, agricultural machinery, total fertilizer consumption, and 

agricultural land, respectively. The proxy of capital stock is agricultural machinery that represents 

the number of tractors. Climatic factors that may impact agricultural production are represented 

by rainfall (RAIN) and temperature (TEMP). This specification of the production function is 

adapted from a study by Belloumi (2014), in which the contribution of climate change to changes 

in agricultural production in countries from Eastern and Southern Africa was examined. The major 

advantage of using the production function framework is that it explicitly controls for other inputs 
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(Ochieng et al., 2016). The agricultural production model used in the present study comprises the 

subsequent specification form: 

AGRPit = β0* LIVit 
β1* AGRLit 

β2 *LABit 
β3 *AMACit 

β4 * TFCit 
β5 *eɛit 

*eβ6RAINit+β7RAINit²+ β8TEMPit+ β9TEMPit²                              
(4.1) 

According to the FAO (2020), each commodity's production volumes are determined by the 2014-

2016 global commodity price averages and averaged for the year. The unit of production is 

international dollars, not production quantity or local currency. LIV represents the livestock 

production index (2004-2006 = 100). AGRL is for agricultural land (in hectares), and it refers to 

the percentage of land area that is arable, under crop rotation, or under permanent grazing. LAB 

stands for the total number of economically active individuals in agriculture, AMAC for the 

number of wheel and crawler tractors in operation, and TFC for the total amount of agricultural 

fertilizer consumed in kilograms per hectare of arable land. Climate variables include rainfall and 

temperature. Climate variables are rainfall (mm per year) and temperature (°C per year). 
 

Considering that the study takes into account several countries over many years, the analysis 

incorporates a mechanism to capture regional and temporal scale differences. After taking the log 

on both sides of the model given by equation (4.1), the panel data model is given by equation (4.2) 

for any country i at time t: 

lnAGRPit = β0 + β1 lnLIVit + β2 lnAGRLit
 + β3 lnLABit

 + β4 lnAMACit
 + β5 lnTFCit 

+ β6 RAINit + β7 RAINit² + β8 TEMPit + β9 TEMPit² + it        (4.2) 

where lnAGRP, lnLIV, lnAGRL, lnLAB, lnAMAC, and lnTFC are the logarithms for agricultural 

production index, livestock production index, agricultural land, agricultural labor, 

agricultural machinery, and total fertilizer consumption, respectively. To account for the nonlinear 

relationship between agricultural production and climate factors, the model estimates both linear 

and quadratic terms for climate variables. The error term is represented by it. The coefficients to 

be estimated are βs.  
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Table 4.1: Variable Description  

Variable Abbreviation Description 

 

Measurable 

Indicator 

Expected  

sign 

Agriculture 

Production 

Index (2004-

2006 = 100) 

AGRP The FAO agricultural output indices 

show the corresponding percentage of 

aggregate agricultural output for each 

year as compared to the base year 2004-

2006. 

 

Index 

 

Dependent 

Variable 

Livestock 

Production  

Index  

(2004-2006 = 

100) 

LIV The livestock production index includes 

meat and milk from all sources, dairy 

products such as cheese and eggs, wool, 

honey, raw silk, and hides and skins. 

 

 

Index 

 

 

(+) 

Agricultural  

Land 

(hectares) 

AGRL Agricultural land is defined as the area  

of land that is cultivable, under crop 

rotation, or under permanent grazing.   

 

Hectares 

 

(+) 

Labor  

in agriculture 

LAB Agricultural labor refers to the number 

of people who work in the agricultural  

sector or are economically involved in 

agriculture. 

 

% of total 

labor force 

 

 

(+) 

Total 

Fertilizers 

Consumption 

(tons) 

TFC Total fertilizer consumption  

in agriculture in kilograms per hectare of 

arable land. 

 

 

Kg/ha 

 

 

(+) 

Agricultural 

machinery, 

tractors 

AMAC Agricultural machinery refers to the total 

number of wheel and crawler tractors 

(excluding garden tractors) employed in 

agriculture. 

 

Tractors per 

100km2 of 

arable land 

 

(+) 



 65 

Average 

rainfall (mm 

per year)  

 

RAIN 

 

The mean rainfall is the country's long-

term average of yearly rainfall volume 

 

 

mm per year 

 

(+)  

 

Mean annual 

temperature 

TEMP Mean annual temperature  °C per year (-) 

 

4.4. Model 2: Food Inflation 

4.4.1. Data and Methods  

The study includes annual panel data from eight Southern African countries: Malawi, Lesotho, 

Zimbabwe, Botswana, Namibia, Mozambique, South Africa, and Zambia. The study contains 320 

observations from 1981 to 2020. The estimation sample was chosen based on the availability of 

data on the primary variables of interest, as well as the availability of high frequency annual data. 

Food pricing indices are acquired from the relevant country databases, whereas the food consumer 

price index, crop production index, agriculture raw material imports, and food exports are obtained 

from the FAOSTAT database. Rainfall and temperature data are collected from NASA POWER.   

4.4.2. Model specification and Discussion of variables 

Consistent with past studies, such as Nahoussé's (2019), which investigated the drivers of inflation 

in West Africa, this study specifies a food inflation model that includes climate change proxies in 

the form of yearly mean rainfall and yearly average temperatures. Equation (4.3) specifies the 

general equation for estimation.  

πit = αi + βXit + πit−1 + εit                (4.3) 

where πit is the food price index for country i in time t, Xit represents exogenous forces driving 

inflation, πit-1 is the lagged regressand, αi represents country-specific effects, and εit is the error 

term. Equation (4.4) specifies the model to be estimated. 

FCPIit = αi + β1CROPit + β2FEXit + β3ARMIit + β4OILPRIit +β5FPRIit + β6RAINit + 

β7TEMPit + β8FPIit−1 + εit                        (4.4) 

Where the FCPI captures the Food Consumer Price Index, and it is the dependent variable in this 

model for this study. CROP is the crop production index, FEX is the food exports (% of 
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merchandise exports), ARMI is the agricultural raw materials imports (% of merchandise imports), 

OILPR is the oil price index, FPRI is the fertilizer price index and climate refers to the two proxies 

of climate change risk indicators, namely: annual average rainfall amounts (R) and annual mean 

in temperature (T).  

The study employs average rainfall and mean temperature data to highlight the unpredictability in 

food availability that contributes to high food costs. Improved rainfall is expected to lower food 

inflation as supply expands, resulting in greater agricultural productivity. However, significant 

variations in rainfall and temperature are expected to induce inflation. Temperature fluctuations 

have a distinct impact on inflation than average monthly rainfall since high temperatures are 

associated with drought, which causes inflation. Temperature fluctuations cause inadequate rainfall 

thus resulting in drought, lowering hydropower generation capacity both directly and indirectly by 

means of electricity price connections to other consumer basket commodities including food and 

non-food non-fuel products. Price changes in the global oil market affect local fuel costs in all of 

the countries under consideration, which are predominantly fuel importers. A surge in international 

oil prices would thus bring about a rise in prices of domestic fuel, which would then lead to a rise 

in the prices of food resulting from higher transportation costs. 

Table 4.2 shows a definition of the key variables used in the study, along with their definitions, 

measurement indicators, and hypothesized impact on food inflation. The study considers a group 

of agricultural, climatic, and economic variables to analyze their impact on food prices. All of the 

variables are selected based on empirical and theoretical significance, with hypothesized signs that 

determine whether each variable is likely to increase or decrease food inflation. 
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Table 4.2: Variable Discussion 

Variables Abbreviation  Discussion Measurable  

Indicator 

Expected 

Sign 

 

Food 

Consumer 

Price Index 

 

FCPI 

The food price index tracks the 

changes in the prices of a basket of 

food items overtime. Higher food 

prices can directly contribute to food 

inflation as it becomes more expensive 

for consumers to purchase essential 

food items. 

 

Index 

 

Dependent 

Variable 

Crop 

production 

index 

(2014–2016 

= 100) 

 

 

CROP 

Measures the overall productivity of 

agricultural crops. Less crop 

production 

can result in reduced food supply, 

potentially leading to increased food 

prices and higher inflationary pressure.  

 

Index  

 

(-) 

 

Food 

exports (% 

of 

merchandise 

exports) 

 

 

FEX 

If a significant proportion of the 

country’s food production is exported 

to other regions, it can reduce domestic 

food supply and increase domestic 

food prices, thus contributing to food 

inflation.   

% of 

merchandise 

exports 

 

 

(+) 

 

Oil  

Price Index 

 

 

OILPR 

Changes in the worldwide oil market 

affect domestic prices for fuel,  

resulting in higher prices of food  

for countries  hat mostly import fuel.  

 

 

 

 

Index 

 

 

(+) 
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Agricultural 

raw material 

imports (%  

of 

merchandise 

exports) 

 

ARMI 

Higher import costs for agricultural 

materials lead to increased production 

costs which result in increased food 

prices and ultimately inflation. 

 

% of 

merchandise 

exports 

 

 

(+) 

Fertilizer 

price index 

 

FPRI 

Changes in fertilizer prices impact the 

Farmers' input costs, affecting their 

decisions on crop production and 

ultimately influencing food prices. 

 

Index 

 

 

(+) 

Average  

rainfall  

 

RAIN 

 

 

The mean rainfall is the country's long-

term average of yearly rainfall volume 

 

mm per year 

 

(-) 

Mean in  

temperature. 

 

TEMP 

 

Mean annual temperature  

 

°C per year 

 

(+) 

 

4.5. Estimation techniques and procedures 

4.5.1. Descriptive Statistics test 

Calculating descriptive statistics represents a vital first step when conducting research and should 

always occur before making inferential statistical comparisons (Kaur et al., 2018). Descriptive 

statistics are methods used to effectively summarize and describe the main features of a dataset in 

an organized manner by providing an overview of the relationship and patterns between variables 

in a sample (Mishra et al., 2019). That is, it would comprise central tendency measures, like mean, 

median, and mode, describing the average for a set of data; there would be measures of variability 

such as range, variance, and standard deviation that give a description of spread or dispersion of 

the data. There are also descriptive statistics portraying data through graphical means; thus comes 

the histogram, the box-and-whisker plots, and scatter plots to pictorially show the data represented 

(Cooksey and Cooksey, 2020). Therefore, the descriptive statistics to be undertaken in this study 

will help in the identification of outliers and analysis of data, which also informs the selection of 

appropriate statistical methods for further analysis. 
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4.5.2. Correlation Analysis  

To test for possible relationships among the studied variables, the correlation analysis which tests 

the association between two or more quantitative variables is utilised.  This approach is primarily 

predicated on the assumption of a linear relationship among the quantitative variables.  Similar to 

the measures of association for binary variables, correlation analysis quantifies both the intensity 

and direction of the relationship between the variables (Schober et al., 2018). The outcome of a 

correlation analysis is a correlation coefficient that ranges from negative one to positive one.  A 

correlation coefficient of positive one signifies a perfect positive linear relationship between two 

variables, a coefficient of negative one signifies a perfect negative linear relationship, while a 

coefficient of zero indicates the absence of a linear relationship between the two variables under 

examination (Gogtay and Thatte, 2017). 

4.5.3. Panel Unit Root test 

Unit root tests are one of the statistical tests applied to determine whether a time-series variable is 

stationary or possesses a unit root, implying that it is non-stationary (Khraief et al., 2020). The unit 

root tests are important in determining the stochastic properties of the variables under 

investigation. Furthermore, unit root tests assist in examining the presence of a spurious 

relationship which occurs when two non-stationary variables appear to be correlated purely due to 

chance, without any genuine underlying relationship (Herranz, 2017).  

The order of integration of the variables of interest will be determined using three panel unit root 

tests: Levin, Lin, and Chu (LLC) and Im, Pesaran, and Shin (IPS), as well as Fisher Chi-square 

tests. These tests presume cross-sectional dependence between units. The LLC test presupposes 

that the residuals are unbiased and equally dispersed with a mean of zero and a constant variance, 

and that the autoregressive parameter is the same across all panels (Lau et al., 2019). While the 

LLC test allows for differences in intercepts across panels, the IPS test allows for differences in 

both intercepts and slopes, accommodating more heterogeneity among the cross-sectional units. 

Im et al. (2003), developed the IPS panel unit root test, which is less restrictive and more powerful 

than other tests such as (LLC), established by Levin et al. (2002). IPS's proposed test addresses 

Levin and Lin's serial correlation problem by assuming heterogeneity across units in a dynamic 

panel framework (Mburamatare et al., 2022). These tests have a non-stationarity null hypothesis, 

and comparing the results from multiple approaches is an effective way to assess the veracity of 
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the conclusions (Lau et al., 2019). The rejection criteria for both the Levin Lin Chu (LLC) and Im 

Pesaran Shin (IPS) panel unit root tests stipulate that the test statistic must be sufficiently negative, 

leading to the rejection of the null hypothesis of a unit root if the p-value is below 0.05.  

The Fisher-type test has been proposed as a remedy by Maddala and Wu (1999) and Choi (2001), 

for several defects in LLC and IPS frameworks. These authors have proposed the use of non-

parametric Fisher-type test based on the combination of p-values of unit root test statistics, for 

example, the ADF test, computed for each cross-sectional unit. While the LLC test restricts the 

alternative to maintaining the same parameter ρ in both the null and under-alternative conditions, 

for the Fisher test it becomes more general; thereby allowing flexibility. The null is presented as 

all panels have unit root meaning that a panel is nonstationary where the alternative hypothesis to 

test is that at least a single panel is stationary. Similarly to the LLC and IPS test, the Fisher Chi-

square test rejects the null hypothesis when the aggregated p-value is less than 0.05, indicating that 

at least one panel is stationary (Maddala & Wu, 1999; Choi, 2001). 

4.5.4. Lag Length Selection 

Selecting the most suitable lag length is a critical step before running the panel cointegration test. 

The process is quite crucial since the incorrect lag length will result in model misspecification, 

which will ultimately make the results invalid and unreliable (Han et al., 2017). To ensure the 

selection of an appropriate lag length, standard information criteria is employed, namely, the 

Akaike Information Criterion (AIC) and Schwarz Criterion (SC). The lag length selection is based 

on values for which either Akaike Information Criterion (AIC) or Schwarz Criterion (SC) are 

minimized. The best criterion that best fits the model is the one with the lowest figure.  

4.5.5. Panel Cointegration Test 

After determining whether or not the variables have a unit root, a panel cointegration test is 

performed. This is to determine whether there is a long-term relationship between the variables. 

Panel cointegration tests are divided into three types: Pedroni residual cointegration tests, Kao 

residual cointegration tests, and the Johansen fisher panel cointegration test (Kalymbetova et al., 

2021). The Pedroni cointegration test is the most commonly used in panel data regression analysis 

as it accounts for cross-sectional dependence, particularly when countries have similar outlooks 

(economic, social, political, etc.) while allowing for significant heterogeneity (Dankumo, 2021). 

However, for robustness, both Kao and Pedroni cointegration panel tests are employed in this study 
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to determine whether there is a long-term correlation between independent and dependent 

variables. These tests involve a null hypothesis of no cointegration. Rejecting the null hypothesis 

implies that the variables are cointegrated across all panels.  

According to Dincer and Yuksel (2023), the Pedroni cointegration test permits variation in the 

dynamics of the cointegrating vectors across multiple cross-sectional units, allowing for greater 

flexibility than the Kao test. Pedroni (1995), offered seven distinct statistics for evaluating panel 

data co-integration. The first four are based on pooling, known as the within dimension, while the 

last three are based on the between dimension. Both types of testing are based on the null 

hypothesis of no cointegration. To reject the null hypothesis that there is no co-integration, the 

calculated test statistics must be less than the tabulated critical value. 

Similar to the Pedroni cointegration, the Kao cointegration test acknowledges the heterogeneity 

between cointegrating vectors both in the short-run and long-run (Heriqbaldi & Mufidah, 2023). 

As much as the Kao cointegration test uses the same basic approach as the Pedroni test (the 

residual-based approach), the test also considers cross-section specific intercepts and 

homogeneous coefficients during the first-stage regressors (Cetin & Ecevit, 2015). The null 

hypothesis for Kao cointegration test is that there exists no cointegration between the cross-

sectional variables while the alternative hypothesis assumes the presence of a long-run relationship 

between variables. If the p-value falls below 0.05, the null hypothesis is rejected. 

4.5.6. Pooled Mean Group (PMG)/Panel Autoregressive Distributed Lag (ARDL) 

If no cointegration is discovered after performing the panel unit root tests and cointegration tests, 

the panel ARDL model is employed. To estimate long-term associations using the autoregressive 

distributed lag model, a non-stationary series is required. A series is deemed non-stationary if its 

mean, variance, and covariance change with time (Brooks, 2019). The ARDL framework restricts 

variables to being either integrated of order I(0) or I(1). 

The panel ARDL model is used in this study to investigate the relationship between climate change, 

agricultural production, and food inflation in southern Africa. Pooled Mean Group (PMG) 

estimation, often known as the panel ARDL model, offers the advantage of identifying dynamic 

long and short run correlations (Mensah et al., 2019). This estimate permits the short-run 

coefficients, including intercepts, the rate of adjustment to long-run equilibrium values, and error 
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variances, to vary by nation, yet the long-run slope coefficients are consistent across countries. 

This is especially relevant when there are grounds to believe that the long-run equilibrium 

relationship between the variables is consistent across countries, or at least a subset of them 

(Mensah et al., 2019). 

This approach is appropriate since it is more efficient and compatible with the presence of long-

term relationships. According to this framework concept, the long-run equilibrium relationship 

between variables is consistent across countries (Pesaran et al,1999). The PMG estimator is based 

on the assumptions below. First, the error terms are not serially correlated. Second, there is a long-

term association between the dependent and independent variables, and the long-term 

characteristics are consistent across nations (Lee et al, 2015). Failure to meet these parameters will 

result in inconsistent PMG estimation. Compared to other existing estimators, the pooled mean 

group (PMG)-ARDL econometric technique fits into this research paradigm since the study 

assumes a short- and long-term relationship between the variables under consideration. This 

econometric estimation technique also gives consistent coefficient estimates in the presence of 

potential endogeneity and serial correlation challenges given that it covers both lagged dependent 

and independent variables (Pesaran et al, 1999). 

4.5.7. Panel Data Analytic Models  

The study uses two panel data analytic models to generate its results. These models contain both 

fixed-effects and random-effects models. The primary contrast between fixed and random effects 

is whether the unobserved individual effect contains parts that are correlated with the model's 

regressors, rather than whether these effects are stochastic or not (Hill et al., 2020). The Hausman 

test determines the best fitting model for data analysis. 

Fixed Effects Model  

When examining the impact of variables that change over time, the fixed effects model is applied 

(Kelejian & Piras, 2017). Every entity (country, organization, or individual) has unique traits 

known as time invariant variables, which may alter the quantitative relationship between 

the regressed and regressors (Hill et al., 2020). The basic premise is that certain qualities, such as 

culture or gender, remain constant across time. To compensate for unobservable variables that can 

bias parameter estimates, a study by Hsiao (2022), suggests treating them as fixed parameters 
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during model estimation. Given that each element will have unique properties, it is predicted that 

the error terms and constants will be uncorrelated. If these conditions are satisfied, the fixed effects 

model can be used in model estimate to account for unobserved heterogeneity (Bell et al., 2019). 

In this case, should the error terms be associated, the fixed effects model will not be applicable. 

The following equation describes the fixed effects model, which controls for both entities and time: 

Yit = αi + βXit + uit                            (1)  

Where:  

Yit is the regressing, and αi (i=1…. n) is the intercept for the ith entity/unknown intercept for each 

entity. 

β is a k x 1 vector of parameters to estimate/coefficient for the regressors, while Xit is a 1 x k vector 

of explanatory variables/independent variable.  

uit is the remaining disturbance, which is the error term minus the effect of the time invariant 

variables (Marandu, 2018).  

Random Effects Model  

The random effects model assumes that change between entities is random and unrelated to the 

model's regressors (Bell et al., 2019). Furthermore, the model must incorporate all feasible 

variables, including the invariant temporal fixed features; otherwise, the model will be skewed by 

missing data. In essence, if variations across the entities have a significant impact on the model 

output values for the regressed, use the random effects model (Wooldridge, 2019). As a result, the 

study can incorporate time-invariant variables into the model; however, one significant drawback 

is that data for such variables may not be available. However, the random effects model has the 

advantage of providing results that are applicable outside of the sample (Dettori et al., 2022). The 

random effects model has an additional advantage over the fixed effects model in that it has fewer 

parameters and avoids losing degrees of freedom since the error component is considered random 

(Bell and Jones, 2015).  
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The model below represents a random effects panel data regression model: 

Yit = α + βXit + Uit + εit                             (2) 

Where: 

Torres-Marandu (2018), defines εit as the within-entity error for the ith independent variable at 

time t, and Uit as the between-entity error for the same variable at time t.  

Hausman Test 

When analyzing panel data with a time-varying covariate, a preliminary Hausman test is usually 

performed to identify whether subsequent inference should be made using the random effects 

model or the fixed effects model. The Hausman test is based on the null hypothesis that the 

random-effects model is the best fit, with the alternative hypothesis that the fixed-effects model is 

better (Baltagi, 2024). Fundamentally, the assessments strive to evaluate whether there is a 

relationship between the unique errors and the model's regressors. The null hypothesis states that 

there is no relationship between the two; however, if the p-value is below 0.05, the null hypothesis 

must be rejected. If the Hausman test rejects the null hypothesis that there is no association between 

random effects and time-varying covariates, the fixed effects model is applied for further inference; 

otherwise, the random effects model is preferred (Mainzer, 2018). This promptly model selection 

technique is frequently used in econometrics and has been integrated into major computer 

programs such as SAS, Stata, and EViews (Baltagi, 2024). The Hausman test is employed in this 

study to find the best-fitting model.  

4.6. Diagnostic tests 

Since the study uses panel ARDL, the diagnostic tests that are employed are the normality test and 

the cross-section dependence test to further validate the findings and guarantee that they are 

statistically significant. Results from the model can be used for analysis if it produces results that 

are satisfactory and do not contain any biases. 

4.6.1. Normality Test 

The Jarque-Bera normality test, which is based on OLS residuals, will be used in this study.   The 

Jarque-Bera normality test assesses whether sample data residuals are regularly distributed 

(Nosakhare and Bright, 2017). This test is necessary as unreliable test results will occur if the 
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residuals lack normality. The Jarque-Bera (JB) test primarily estimates the skewness and kurtosis 

measures of the OLS residuals, with the null hypothesis that the residuals have a normal 

distribution (Adenomon and Ojo, 2020). The null hypothesis is accepted when the residuals are 

regularly distributed. The probability must be greater than 0.05 to accept the null hypothesis 

(Khatun, 2021). If the JB statistic differs sufficiently from zero, the hypothesis that the residuals 

have a normal distribution can be rejected. Alternatively, if the p-value is large enough (i.e., the JB 

statistic is near zero), the null hypothesis of residual normality cannot be rejected (Khatun, 2021). 

4.6.2. Cross-section Dependence Test 

A cross-sectional dependence diagnostic test is used in economic and statistical analysis to identify 

cross-sectional dependence (or correlation) in panel data models (Pesaran, 2021). This dependence 

arises when observations from multiple cross-sectional units, such as countries, firms, or 

individuals, are not independent of one another, which is frequently caused by common shocks or 

interactions among the units. Avoiding cross-sectional dependence might result in biassed and 

inconsistent parameter estimations, inaccurate statistical inferences, and reduced model efficiency 

(Xie and Pesaran, 2022).  

The Breusch-Pagan LM test, which is used for large panels by calculating the correlation between 

residuals of each pair of cross-sectional units, and Pesaran's Cross Dependence (CD) test, which 

is appropriate for both small and large panels and looks for average pairwise correlations of the 

residuals, are two common cross-sectional dependence tests, according to Akgun et al. (2021). 

Pesaran's test computes the correlation coefficient to identify cross-sectional dependence, whereas 

Friedman's test is a non-parametric technique that ranks data across cross-sections to evaluate 

independence (Baltagi et al., 2016). The alternative hypothesis contends that cross-sectional 

dependence exists, whereas the null hypothesis maintains that there is none. The presence of cross-

sectional dependency is indicated by the rejection of the null hypothesis if the test statistic differs 

significantly from zero (Pesaran, 2021). The following discussion of these tests argues for the 

importance of their application in this study: 

Pesaran CD Test  

According to Baltagi et al. (2016), the Pesaran CD test for cross-sectional dependency is used 

under the null hypothesis of cross-section independence and can be applied even in cases when 
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the dataset's sample size is very small. Additionally, as each cross-sectional unit parameter is 

calculated using that unit's time series observation alone, the Pesaran CD test is unaffected by the 

presence of individual specific effects (potentially correlated with the regressors) (Juodis and 

Reese, 2022). However, the CD test is useful for a high number of cross-sectional units (N) 

observed across (T) time periods, in contrast to the conventional Breusch Pagan LM test (Khalid 

and Shafiullah, 2021). Since the time periods (T) exceed the number of cross-sectional units (N), 

this test is therefore inappropriate for the purpose of this study.  

Breusch-Pagan LM test 

The Breusch and Pagan (1980) cross-sectional dependence test, according to Pala (2020), is a 

technique that examines the null hypothesis of dependence among panel members and is applicable 

to a variety of panel data with a long time period (T) and few cross-sections (N). Arshad, Roba, 

and Botelho (2020), also point out that panels with N<T, that is, panels whose cross-sectional 

dimensions are smaller than their time dimensions perform better when using the Breusch-Pagan 

Langrage Multiplier (Yalçın and Ünlükaplan, 2024). The study's cross-sectional dimensions 

amount to eight, but its time dimensions amount to forty-two, indicating that T>N. Consequently, 

the Breusch-Pagan LM test is suitable for the present study. 

4.7. Chapter Summary 

This chapter presented the research methodology employed to investigate the impact of climate 

change on agricultural production and food inflation in Southern Africa. It began by outlining the 

research design, detailed data sources and sampling methods, followed by the model specification 

and description of variables. Lastly, estimation methods were discussed in the ways in which 

statistical techniques are considered to ensure the findings of the study are robust and valid. 

Climate change has been a critical issue across the world with its impacts extending from the 

environmental perspective into different economic aspects. Overall, this is a very good 

methodology from which the results of the study can be derived. 
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CHAPTER 5: EMPIRICAL ANALYSIS AND RESULTS 

______________________________________________________________________________ 

5.1. Introduction 

In this chapter, a series of tests have been employed to investigate the impact of climate change on 

agricultural production and food inflation in Southern Africa. The first section of this chapter 

analyzes the agricultural production model, while the last section focuses on the food inflation 

model. For both models, trends or descriptive statistics of the data are presented. These are 

followed by panel unit root test results to detect and assess the stability of the variables using the 

Levin, Lin, and Chu (LLC), Im, Pesaran, and Shin (IPS), and Augmented Dickey Fuller tests. The 

long-run estimation equation is then conducted based on the panel cointegration test, followed by 

empirical results from the estimation model using the Pooled Mean Group estimator of the panel 

ARDL method. Finally, the diagnostic test results are highlighted to assess whether there are 

omissions in the residuals that could lead to a biassed or ineffective model.  

Model 1: Agricultural Production 

5.2. Descriptive Statistics Test 

Table 5.1: Individual Sample: Descriptive Statistics of Variables from 1981-2020 

 Observations Mean Std. Dev. Min Max 

AGRP 320 80.55 38.88 19.07 178.33 

LIV 320 75.86 34.97 13.97 183.69 

LNAGRL 320 14.41 1.26 12.11 16.44 

LAB 320 36.92 29.32 0.00 85.06 

TFC 320 25.99 24.06 0.00 99.88 

AMAC 320 10820.62 34588.60 0.00 175557.0 

RAIN  320 63.10 61.29 0.88 276.67 

TEMP 320 32.16 4.19 20.45 39.81 

Source: Author’s computation using EViews  

The descriptive statistics demonstrate that the variables in Table 5.1 display high variation.  

Agricultural production (AGRP) has a mean of 80.55, a standard deviation of 38.88 with minimum 

and maximum ranging from 19.07 to 178.33, highlighting significant variability in output levels 
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for the region. Livestock (LIV) displays comparable variability around its mean, indicating an 

irregular distribution of livestock. While agricultural land (LNAGRL) has a limited range of 12.11 

to 16.44 with a minimal standard deviation, signifying more equitable agricultural land access.  

Agricultural labour has a considerable range of 0 to 85.06, while TFC demonstrates extensive 

variation of 0 to 99.88, reflecting disparities in farming practices and availability to resources. The 

abnormally increased maximum value of agricultural machinery (AMAC), paired with its 

substantial standard deviation, indicates considerable disparity in mechanisation levels.  Rainfall 

exhibits significant variability throughout the region, evidenced by its extensive range and 

standard deviation, whereas temperature remains comparatively stable, with minimal 

fluctuation around the mean. The summary statistics for regressors clearly demonstrate greater 

dispersion between the mean and standard deviation. 

5.3. Correlation Analysis  

Table 5.2: Correlation Analysis Results 

Variable AGRP LIV AGRL LAB TFC AMAC RAIN TEMP 

AGRP 1.0000 0.4960 -0.0322 0.1494 0.2826 -0.0481 -0.4698 -0.2190 

LIV 0.4960 1.0000 -0.3756 0.0346 -0.0971 -0.2015 -0.4734 -0.0941 

LNAGRL -0.0322 -0.3756 1.0000 0.2532 0.5300 0.4215 0.1013 0.3657 

LAB 0.1494 0.0346 0.2532 1.0000 -0.1092 -0.2686 0.2072 0.1102 

TFC 0.2826 -0.0971 0.5300 -0.1092 1.0000 0.4746 -0.1524 0.0325 

AMAC -0.0481 -0.2015 0.4215 -0.2686 0.4746 1.0000 -0.1722 0.0346 

RAIN -0.4698 -0.4734 0.1013 0.2072 -0.1524 -0.1722 1.0000 -0.0572 

TEMP -0.2190 -0.0941 0.3657 0.1102 0.0325 0.0346 -0.0572 1.0000 

Source: Author’s computation using EViews  

Through correlation analysis, it can be determined whether agricultural output and its potential 

determinants are significantly correlated. Livestock (LIV) and agricultural production (AGRP) 

have the strongest relationship with a correlation of about 0.496, indicating that livestock 

contributes to the significantly and positively to agriculture production. A moderate positive 

relationship of 0.283 exists with total fertiliser consumption (TFC) which means that there is a 

tendency for more fertiliser use to correspond with higher agricultural output. Although the 

relationship between LAB and AGRP is positive, there is low correlation. The relationship between 
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agricultural productivity and the two climatic variables is however negative, indicating that 

Southern African agricultural productivity is negatively impacted by climatic factors. Rather 

surprisingly, very low, though negative, correlations exist between AGRP and agricultural land in 

its natural lag period (LNAL) and agricultural machinery use (AMAC), both correlation 

coefficients of -0.048 and -0.032, respectively. This entails that both LNAL and AMAC have a 

slight contribution towards increasing agricultural production. 

5.4. Unit Root Test 

To assess the stationarity properties of model variables, the unit-root test results are presented in 

Table 5.3. Before determining whether agricultural output and climate variables are cointegrated, 

the study examined into the order of integration for each series. Three separate unit root tests were 

used to evaluate the integration order of the series: (i) Levin, Lin and Chu (LLC); (ii) Im-Pesaran-

Shin (IPS) and (iii) Augmented Dickey-Fuller (ADF) test. The probabilities of the three-unit root 

tests are significant at 1% level of significance for all the variables in question, thus indicating 

stationarity of the variables. Based on the depicted unit root results, the null hypothesis which 

states that there is unit root among the variables is rejected.  

Table 5.3: Panel Unit-Root Test Results  

H0: all variables have unit root  

(non-stationary) 

Variables  LLC  

P-value 

IPS 

P-value 

ADF 

P-value 

Order of 

Integration 

Acceptance 

Region 

P < 0.05 

AGRP 1st Difference: 

Intercept 

P = 0.0000*** P =0.0000*** P = 0.0000*** I(1) Reject H0 

LIV 1st Difference: 

Intercept 

P = 0.0000*** P =0.0000*** P = 0.0000*** I(1) Reject H0 

LNAGRL 1st Difference: 

Intercept 

P = 0.0000*** P =0.0000*** P = 0.0000*** I(1) Reject H0 

LAB 1st Difference: 

Intercept 

P = 0.0000*** P =0.0000*** P = 0.0000*** I(1) Reject H0 

TFC 1st Difference: 

Intercept 

P = 0.0000*** P =0.0000*** P = 0.0000*** I(1) Reject H0 

AMAC 1st Difference: 

Intercept 

P = 0.0000*** P =0.0000*** P = 0.0000*** I(1) Reject H0 

RAIN Level:  

Intercept 

P = 0.0000*** P =0.0000*** P = 0.0000*** I(0) Reject H0 

TEMP Level: None P = 0.0000*** P =0.0000*** P = 0.0000*** I(0) Reject H0 

  NB: (***) Denotes significance at 1% level of significance 

Source: Author’s computation using EViews  
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As indicated in Table 5.3, the study employed the unit root test at the level and first difference 

forms, with an order of integration that combines I(0) and I(1). In this case, the findings show that 

rainfall and temperature are stationary at the level, whereas agricultural production and associated 

regressors are stationary at the first difference. Due to the existence of mixed levels of integration  

among the variables, the study proceeds to apply the Panel Pooled Mean Group ARDL  approach. 

However, before that, a panel cointegration test is employed. 

5.5. Panel PMG/ARDL Results 

5.5.1. Optimal Lag Selection 

Generally, the lag length selected is based on values for which either Akaike Information Criterion 

(AIC) or Schwarz Criterion (SC) are minimized, indicated by the asterisks in Table 5.4. From the 

table, the best criterion that best fits the model is the Akaike Information Criterion with the lowest 

figure of 41.82 in contrast to that of the Schwarz Criterion which is 43.293. It is therefore 

concluded that the lag length selection is made based on the AIC value because the lower the AIC 

value, the better the model. According to the results below as shown by the asterisk sign of AIC, 

the optimal lag length to use for the model is 3. 

Table 5.4: Optimal Lag Length Results 

Lag LogL LR FPE  AIC SC HQ 

0 -6809.4 NA  5.36e+15 53.245 53.329 53.279 

1 -5425.1 2693.0 1.43e+11 42.711 43.293* 42.945 

2 -5329.1 182.2 8.94e+10 42.243 43.323 42.677 

3 -5239.0 166.7 5.87e+10* 41.821* 43.399 42.455* 

Source: Author’s computation using EViews  

5.6. Panel Cointegration Test 

After determining the order of integration of the different variables, ARDL is estimated based on 

the cointegration to analyze the long-term correlation between the variables. 
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5.6.1. Pedroni test 

Table 5.5: Pedroni Residual Co-integration Test Results  

H0: No cointegration 

Panel cointegration statistics(within-dimension) 

 Statistic Probabilities 

Panel v-statistic 1.780535 0.0375** 

Panel rho-statistic -2.516770 0.0059*** 

Panel PP-statistic -6.862833 0.0000*** 

Panel ADF-Statistic -7.031124 0.0000*** 

Group mean cointegration statistics (between-dimension)  

Group rho-statistic  -0.990628 0.1609 

Group PP-statistic  -8.069380 0.0000*** 

Group ADF-statistic  -7.049184 0.0000*** 

NB: (***) and (**) indicate rejection of the null hypothesis of no co-integration at 1% and 5% 

significance level. 

Source: Author’s computation using EViews  

The Pedroni Cointegration test was conducted with eight cross-sections over a sample period of 

1981 to 2020, totaling 320 observations. The null hypothesis of no cointegration was tested under 

both the within-dimension and between-dimension of the Pedroni test. For the within-dimension 

statistics, all the four statistics in the panel co-integration statistics are found to be significant at 

both 1 and 5% level of significance, thus, strongly supporting the rejection of the null hypothesis 

of no cointegration. 

Within the interdimensional analysis, the Group rho-Statistic would have a probability of 0.16, 

which is not sufficient to reject the null hypothesis. On the other hand, both the Group PP-Statistic 

and Group ADF-Statistic come out highly significant with a probability of 0.00, which gives strong 

evidence in support of cointegration among the variables. Taking these results as a whole, in six 

out of the seven Pedroni statistic tests, there is sufficient evidence to reject the null hypothesis of 

no cointegration, which implies that the variables under study share a long-run equilibrium 

relationship. 
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5.5.2. Kao Test 

Table 5.6: Kao Cointegration Test Results 

H0: No cointegration 

 

ADF 

t-Statistics Prob. 

-2.188623 0.0143** 

(**) indicates rejection of the null hypothesis of no co-integration at 5% significance level. 

Source: Author’s computation using EViews  

In line with the Pedroni test, the Kao cointegration test results also demonstrate a rejection of the 

null hypothesis of no cointegration at the 5% significance level, as indicated by the ADF t-statistic 

of -2.188623 and the corresponding p-value of 0.0143.  This implies that the variables selected for 

the study have a long-term, statistically significant relationship. 

5.6.2. Long run panel ARDL empirical results 

The panel Autoregressive Distributed Lag (ARDL) is employed to analyze the long term as well 

as the short-term effects of a host of variables, including climate variables on agricultural output 

in Southern Africa for the period from 1981 to 2020. In the model, agricultural production (AGRP) 

is used as the dependent variable, presumably representing the first difference of agricultural 

output, and the independent variables are livestock (LIV), labor (LAB), rainfall (RAIN), 

temperature (TEMP), and total agricultural fertilizer (TFC). Agricultural land with its natural log 

(LNAGRL) and agricultural machinery (AMAC) variables are excluded from the Panel ARDL 

model due to their contribution to a positive and statistically insignificant error correction term, 

which undermines the model's capacity to capture short-run equilibrium relationships effectively. 

Table 5.7: Long-run panel ARDL estimates 

Long Run: Dependent Variable: D(AGRP) 

Variable  Coefficient Std. Error t-statistics Prob* 

LIV 0.3392 0.0869 3.9024 0.0001*** 

LAB 0.2348 0.0661 3.5543 0.0005*** 

TFC 1.3659 0.1390 9.8238 0.0000*** 

RAIN -0.1110 0.2744 -4.0494 0.0001*** 

TEMP -16.6312 5.7640 -4.4185 0.0000*** 

NB: (***) Denotes significance at 1% level of significance 

Source: Author’s computation using EViews  
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In the long run, total fertilizer consumption, with a large and statistically significant coefficient, 

emerges as a critical factor affecting agricultural productivity and thus highlighting the importance 

of input-intensive approaches to increase crop yields under environmental and soil fertility 

stresses. Labor represents the region's dependence on labor-intensive agricultural practices, while 

temperature is a strong negative element, underlining the crucial importance of climate adjustment 

measures to safeguard productivity; the variable-specific findings are presented in detail below: 

Livestock Production (Index) 

A 1 unit increase in the livestock production index (LIV) leads to 0.34 units increase in the 

agricultural production index (AGRP), indicating that livestock production plays a complementary 

role in supporting agricultural systems in Southern Africa. Livestock production benefits 

agriculture by contributing manure, which enriches soil fertility and structure, and by providing 

draft power, especially on mixed farms where crop-livestock integration is common. In many parts 

of Southern Africa, smallholder agricultural practices rely on livestock as an additional source of 

income, which allows the farmer to invest in inputs for agriculture, thereby increasing crop 

production. For example, studies by Dhehibi et al. (2023) emphasize the very relevant synergy 

obtained between mixed crop-livestock systems. Resources such as manure coming from animals 

increase crop production and bring about issues of sustainability in developing economies where 

chemical fertilizers are not easy to access. 

The positive interrelationship between livestock and crop production in this regard highlights the 

importance of policy interventions that promote integrated farming practices. In the regions where 

farmers strike a balance between livestock and crop production, improving the health and 

productivity of livestock can, therefore, increase crop production, thus helping to alleviate the food 

insecurity exacerbated by climate change. However, this relationship requires careful management 

since excessive livestock can stress the limited resources, as noted by World Bank highlighting the 

urgency of fair agriculture policies (Thornton and Herrero, 2010). Similarly, related current studies 

also caution against overdependence on livestock in resource-constrained ecosystems due to 

competition between livestock and its needs regarding the available water and feed. This can 

further result in the degradation of resources used to grow crops hence weakening general 

agricultural production as evidenced by the research done by Mabhaudhi et al. (2023). 
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Agricultural Labor (% of total labor force) 

The coefficient of labor is positive and statistically significant at the 1% level, as expected. As a 

result, increasing the labor force in agriculture by 1% raises agricultural output by 0.23 units; this, 

therefore, explains the roles of manual labor in regions where there is no wide application of 

mechanized devices. Many studies are consistent in the emphasizing that labor-intensive 

techniques in agriculture are fundamental in regions such as Southern Africa, where technological 

resources may be inaccessible. A recent study by Murray et al. (2016), found that manual labor, 

particularly for smallholder farmers, is heavily involved in planting and harvesting, directly 

affecting crop yields and enhancing food security at a household level. 

Results are in agreement with those identified by Amare et al. (2017), in a study that assessed the 

impact of agricultural productivity on improved welfare of farm households, using nationally 

representative panel data from the Living Standards Measurement Study-Integrated Surveys on 

Agriculture (LSMS-ISA) in Nigeria. The results showed a positive association between 

agricultural productivity and labor and farm inputs. This would suggest that agricultural 

productivity increases are related to a larger input of labor into agricultural production, measured 

in person-days, together with fertilizer and herbicide use. This may further imply that the 

introduction of inputs and the use of farming technologies contribute positively to increased 

agricultural productivity. The study also found that climatic risks and biophysical factors also 

contribute largely to agricultural productivity. 

Total Fertilizer Consumption (kilograms per hectare of arable land (kg/ha) 

Total Fertilizer Consumption has the expected sign and is statistically significant at the 1% level. 

This means that a 1 kg/ha increase in the use of fertilizer is associated with an increase of 1.37 

units in agricultural production in the long run. The positive and statistically significant 

relationship indicates the importance of fertilizers in improving soil fertility, which remains crucial 

for crop yields in the Southern African region. Most regions face challenges such as soil 

degradation, nutrient depletion, and reduction in natural soil fertility, which reduce agricultural 

output (Gomiero, 2016). Thus, fertilizers provide essential nutrients that renovate the soil and 

enhance its fertility, hence allowing for better yields of crops. In the face of the soil degradation 

malaises faced in Southern Africa, a judiciously tailored expansion in fertilizer use is apt to bring 

in decisive improvements in both maintenance and improvement of agricultural productivity. For 
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a sector that occupies the prime status in the economies of most countries, it implies that the 

positive contribution that fertilizers can make to agricultural production underlines their 

importance for food security. 

Fertilizer-driven agricultural productivity growth can be expected to enhance local food 

availability, reduce reliance on imports, and therefore contribute to price stability. However, in 

addition to these benefits, the need to use fertilizers more sustainably must be recognized. This 

approach will contribute to avoiding over-application, which can cause environmental problems 

like soil acidification, water pollution, and greenhouse gas emissions (Shanmugavel et al., 2023). 

Long-term productivity in agriculture in Southern Africa calls for efficient and environmentally 

compatible fertilizer use, given the prevalence of small-scale farming. 

The findings further support those of a study by (Huang and Jiang, 2019), which analyzed the 

efficiency in the use of fertilizers in Chinese arable agricultural production from 2011 to 2015. The 

average annual index of overuse of fertilizer varies between 0.008 and 3.139, with an average 

value of 0.685, signifying that the fertilizers have contributed positively and significantly to the 

output of the Chinese arable agricultural sector. Similarly, other scholars such as Amare et al. 

(2017), also found evidence from their study that fertilizer use, and the application of herbicides 

have highly significant positive effects on agricultural productivity. This evidence tends to imply 

that the use of other farm management practices can also promote significant improvements in 

agricultural productivity. 

Rainfall (mm per year) 

Rainfall is statistically significant at 1%, but the estimated coefficient is negative against the 

expected direction. This implies that each additional mm per year makes agricultural output lower 

by 0.11 units. Probably its negative coefficient could mean that whereas its optimum or average 

level is favorable, too much is deterring to crops due to erosion, waterlogging, and even making 

them more vulnerable to certain crop diseases. Rain-fed farming is mainly practiced in Southern 

Africa, where farming relies on seasonal rainfall. With the changing weather, the rainfall pattern 

becomes erratic, and most places are prone to either drought or heavy rains; thus, this increases 

the risk of crop failures (Godde et al., 2021). 
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This finding points out the urgent need for better systems of water management across Southern 

Africa. Investment in irrigation infrastructure and drainage systems will help farmers to manage 

water resources so as not to destroy crops with heavy floods after receiving scanty rain. Programs 

for developing climate-resilient crops that could stand erratic rainfall might mitigate some of the 

negative impacts of such findings. Policies promoting water conservation and the use of such 

techniques as contour farming and terracing would further enable farmers to maintain production 

in spite of erratic rainfall (Matchaya et al., 2019). 

These findings agree with those obtained from the study designed and undertaken by Amare et al. 

(2018), to explore the effect of rainfall shocks on agricultural productivity and hence on rural 

household consumption. It then revealed that a negative rainfall disruption reduces agricultural 

production by about 38%. According to the present study, the plausible reason may be that rainfall 

being a source of risk to crop production enhanced the adoption of farm technology risk and, as 

such, reduced productivity in a rainfed, liquidity-constrained, and imperfect market environment. 

The findings presented herein are in consistency with earlier research, such as Borgomeo et al. 

(2018), that shows how the variability in precipitation triggers farmers to make decisions on the 

adoption of external input factors, which increase productivity but raise the risk of crop failure, 

hence affecting agricultural productivity. 

Temperature (C per year) 

As expected, the temperature variable carries a negative sign and is significant at 1% in the long-

run estimation of the model. In essence, this means that for every increase in mean annual 

temperature by 1°C, the agricultural output is reduced by approximately 16.63 units. From this 

very negative coefficient in the long run, the increase in temperature has significantly negatively 

affected agriculture in Southern Africa. Warmer temperatures increase plant respiration rates that 

make crops metabolize their food more rapidly, thus reducing growth and yields, especially in the 

case of the more temperature-sensitive staple crops like maize and wheat. On the other hand, 

increasing temperatures raise evapotranspiration, which reduces available soil moisture (Moore et 

al., 2021). High temperatures also favor infestation and diseases that thrive under high 

temperatures, thus further aggravating the pressure that such pests exert on agricultural crops and 

leading to even greater losses in yields. The yield losses that accrue from this also means increased 
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food prices, preventing households from accessing adequate foodstuffs and increasing their 

vulnerability to hunger and malnutrition in the process accordingly (Mutengwa et al., 2023). 

Given that agriculture contributes much to the GDP in most Southern African countries, such 

declines in productivity also weaken the economy because they reduce export volumes, shrink 

incomes for farming households, and increase food import needs, therefore straining national 

budgets (Jayne et al., 2021). Adaptation measures required on the ground with immediate effect, 

henceforth, to prevail over these challenges, involve drought-resistant types, better irrigation, and 

ways of soil conservation to enhance crops' resilience against temperature fluctuation so as to 

ensure a future that is sustainable for agriculture in Southern Africa. 

The obtained results are consistent with those found in the study of Mbingui (2022), which sought 

to analyze the impact of climate change on agricultural production in the Republic of Congo using 

the ARDL methodology. In this study, agricultural yield was modeled as the dependent variable, 

while the independent variables were GDP, temperature, and rainfall. The results from the study 

indicate that, in the short run, there is a negative and statistically significant effect of temperature 

and gross domestic product on agricultural yield and a positive and statistically significant 

relationship between rainfall and agricultural yield. Thus, ceteris paribus, a 1C increase in 

temperature, GDP, and rainfall all lead to a significant reduction of 4.70 and 0.30 (at 1% level of 

significance), respectively, and to a substantial rise of 0.02 at the 1% level of significance in 

agricultural yields. 

5.6.3. Short run panel ARDL empirical results 

Table 5.8: Short run results of panel ARDL 

Short Run: Dependent Variable: D(AGRP) 

Variables  Coefficient Std. Error t-statistic Prob 

CointEq(-1) -0.2602 0.1321 -1.9700 0.0505* 

D(AGRP(-1)) -0.2707 0.1076 -2.5161 0.0128** 

D(AGRP(-2)) -0.2002 0.0719 -2.7821 0.0060*** 

D(LAB(-1)) -0.8518 0.3194 -2.6668 0.0084*** 

D(TFC(-2)) 0.2797 0.1450 1.9283 0.0556* 

C 144.6408 69.9305 2.0684 0.0402** 

NB: (***), (**) and (*) indicate rejection of the null hypothesis of no co-integration at 1%, 

5% and 10% significance level. 

Source: Author’s computation using EViews  
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Some of the variables that were in the long-run model, inclusive of livestock, rainfall, and 

temperature, are not significant in the short-run and therefore have been eliminated from the above 

table. The error correction term, CointEq(-1) falls within the benchmark range since it is negative 

and between -1 and 0. This suggests that about 26percent of any disequilibrium in the previous 

period is corrected in the current period. This adjustment speed is statistically significant at 10% 

level, indicating a slow meaningful pace toward re-establishing equilibrium after short-run shocks. 

The short-run current production is driven by the agricultural production of the previous periods. 

With the coefficients of D(AGRP(-1)) and D(AGRP(-2)) being -0.27 and -0.20, respectively, it is 

evident that increases in production of the previous 2 years reduces current output. This pattern is 

highly significant at 5% and 1%, respectively, suggesting that agricultural production may 

experience natural cycles or adjustments over time. The lagged labor input, LAB, also enters 

negatively and significantly at the 1% level of significance, suggesting that the input of labor in 

the previous periods may lower the current period's production, probably due to diminishing 

marginal returns or adjustment in the use of labor. The coefficient of the second lag TFC is positive 

and statistically significant at 10% level of significance; this means that the shock of fertilizer 

consumption is gradual because its impact is apparently present after 2 years. The constant term is 

significant and explains the minimum level of output in agriculture when all variables are held 

constant. 

5.7. Hausman Test 

The null hypothesis of the Hausman test is that Random Effect Model (REM) is the appropriate 

estimator meaning that the error terms are not correlated with regressors, however, the alternative 

hypothesis states that Fixed Effect Model (FEM) is the appropriate estimator. If the null hypothesis 

is rejected, it can be concluded that the REM is not the appropriate estimator because random 

effects are probably correlated with the dependent variable.  

Table 5.7 displays the regression results of random and fixed effect panel analyses for the four 

versions of the model outlined in equation 4.1 in the research methodology chapter. The initial 

version of the model includes precipitation and temperature as climate variables. In the second 

version, the study includes rainfall, its quadratic term, and temperature as climate variables. The 

third version replaces the quadratic term of rainfall with the quadratic term of temperature. The 

final version considers temperature, rainfall, and their quadratic terms. The Hausman test indeed 
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surprisingly suggests REM for the first version, as a result of its simpler specification, with only 

precipitation and temperature, which may not be sufficient to capture the individual-specific 

effects across countries. Therefore, the random effects model appears to be appropriate, as it 

assumes that the individual effects are uncorrelated with the regressors. However, in the second, 

third, and fourth specifications of the model, where squared climatic terms are added to account 

for nonlinearities, the Hausman test prefers the FEM. These quadratic climate variables are likely 

to add to the correlation of individual effects and the regressors, thereby indicating that the 

estimation method should be FEM, to capture unobserved heterogeneity and time-invariant factors 

impacting the nexus between climate and agricultural production across selected countries. 

Table 5.9: Hausman test results 

Models Model 1 Model 2 Model 3 Model 4 

Variables Coeff Prob Coeff Prob Coeff Prob Coeff Prob 

LIV 0.350 0.0000*** 0.348 0.0000*** 0.349 0.0000*** 0.349 0.0000*** 

LAB 0.205 0.0000*** 0.208 0.0000*** 0.206 0.0000*** 0.206 0.0000*** 

TFC 0.686 0.0000*** 0.700 0.0000*** 0.699 0.0000*** 0.699 0.0000*** 

RAIN -0.114 0.0003*** -0.118 0.4613 -0.118 0.0036*** -0.115 0.4748 

TEMP -3.276 0.0009*** -3.930 0.0049*** -8.500 0.2846 -8.489 0.2871 

RAIN2 - - -2.92e-06 0.9954 - - -1.04e-

05 

0.9837 

TEMP2 - - - - 0.071 0.5609 0.071 0.5613 

C 141.129 0.0000*** 162.1334 0.0009*** 233.632 0.0702* 233.107 0.0769* 

Obs 320 - 320 - 320 - 320 - 

R-squared 0.499 - 0.683 - 0.683 - 0.683 - 

F-stat 62.618 0.0000*** 50.769 0.0000*** 50.851 0.0000*** 47.065 0.0000*** 

Chi-

square 

3.754 0.5853 156.082 0.0000*** 114.423 0.0000*** 103.85 0.0000*** 

NB: (***) and (*) indicate rejection of the null hypothesis of no co-integration at 1% and 10% significance 

level. 

Source: Author’s computation using EViews  

Given that the model includes a quadratic component for each climate variable to describe the non-

linear relationship with agricultural productivity, the sign of a linear and quadratic term is always 

contrary. The regression findings indicate that the rainfall coefficients are unexpectedly negative 

in all four models and statistically significant in models 1 and 3 at the 1% level. Temperature has 

the predicted negative sign in all four model versions, although it is only significant in models 1 
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and 2. As predicted, the coefficients of the quadratic rainfall term are negative but insignificant in 

models 2 and 4. The squared term of temperature bears the expected positive sign in models 3 and 

4 but insignificant in the two models. The insignificance of the squared terms for both precipitation 

and temperature suggests that the quadratic effects might not strongly influence agricultural 

production in this dataset and that their impact is not robust enough to reach statistical significance. 

Additionally, while rainfall’s linear coefficient is significant in some models, the negative sign 

may indicate that excessive rainfall adversely impacts agricultural output, yet the nonlinear 

(squared) effect is not strong enough to show a significant additional impact. These results are in 

alignment with those obtained from a study by Belloumi (2014), which aimed at examining 

investigating the impact of climate change on agricultural production in Eastern and Southern 

Africa.  

5.8. Diagnostic Tests 

The diagnostic tests namely, normality and cross section dependence test are employed to verify 

the variable evaluation of the outcomes obtained by the model. Diagnostic tests aid in identifying 

errors within the estimated model's residuals, consequently preventing a biassed and inefficient 

model. The normality test employs the Jarque-Bera test to determine whether the residuals have a 

normal distribution, and the Cross Section Dependence test to determine whether the residual 

variance is constant (Oganesyan, 2017). 

5.8.1. Normality Test 

Figure 5.1. Normality Test 

 

Source: EViews Computation 
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The histogram of the normality test suggests that there is no normal distribution among the 

residuals. The Jarque-Bera statistic of 7.47 and 0.02 p-values mean that the residuals are not 

normally distributed at a statistically significant value as the p-value is below the benchmark 

acceptance of 5% level of significance. These findings suggest that the climate variables of 

temperature, rainfall, and other agricultural production factors have nonlinear or asymmetric 

effects on the residuals. According to Frain (2007), massive samples do not necessarily indicate a 

"stable" distribution. Therefore, the null hypothesis of normally distributed residuals can be 

rejected in large samples. This addresses the problem that some regressions are not stable across 

time, despite the normality test being sensitive at large sample sizes (Kundu et al., 2011). This can 

lead to the null hypothesis test for normality being rejected more often than expected (Chen & 

Kuan, 2003). 

5.8.2. Cross Section Independence Test 

Table 5.10: Cross Section dependence results 

H0: No cross section dependence 

Test Statistics Degrees of freedom Probability 

Breusch-Pagan LM 199.8589                                       

28 

0.4588 

Pesaran Scaled LM 22.96561 0.9887 

Pesaran CD 10.68899 0.4740 

Source: Author’s computation using EViews  

The CSD test consists of three types of statistical tests: the Breusch-Pagan LM (Lagrange 

Multiplier) Test, the Pesaran Scaled LM Test, and the Pesaran CD (Cross-Dependence) Test. Since 

the p-value is above the 5% level of significance, the null hypothesis of no cross-sectional 

dependence cannot be rejected for all three tests. The absence of cross-section dependence in this 

study indicates the independence of agricultural productivity measures through different countries. 

The agricultural outputs of every country are determined individually and separately by the 

respective climate conditions and agricultural inputs. This independence is therefore helpful in 

making the model structure simple and thus allows for examining specific impacts of climate 

change on agriculture, without having to consider the correlated effects between the selected 

countries. This finding increases the validity of the outcomes concerning the specific impact that 

climate and agricultural inputs might have in each of these countries within the region. 
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Model 2: Food Inflation 

5.9. Descriptive statistics 

Table 5.11: Individual Sample: Descriptive Statistics of Variables from 1981-2020 

 Observations Mean Std. Dev. Min Max 

FCPI 320 69.747 585.139 -15.080 7375.300 

CROP 320 80.553 31.881 19.070 178.330 

FEX 320 19.807 27.730 0.000 96.023 

ARMI 320 0.851 0.8881 0.000 4.153 

FCON 320 25.991 24.055 0.000 99.877 

RAIN  320 63.101 61.292 0.878 276.674 

TEMP 320 32.158 4.190 20.449 39.819 

Source: Author’s computation using EViews  

Descriptive statistics highlight the magnitude of variation in the variables. FCPI has the highest 

coefficient of variation, indicating high variability in food prices, characterized by a standard 

deviation of 585.1 and a wide range, from -15.1 to 7375.3, which suggests extreme variability. 

RAIN with a mean of 63.1 and standard deviation of 61.3 shows extensive variation in rainfall, 

further evidenced by its range of 0.9 to 276.7, indicating enormous fluctuations in the precipitation 

levels. CROP with a mean of 80.6 and standard deviation of 31.9 has moderate variation in crop 

yield, with a range of 19.1 to 178.3, indicating fluctuations, however, on a narrower scale compared 

to rainfall. TEMP, with a mean of 32.2 and low standard deviation of 4.2, indicates stable 

temperature conditions over the period, as corroborated by its narrow range of 20.4 to 39.8, 

suggesting low variation. FEX and ARMI show high variation, with standard deviations of 27.7 

and 0.9, respectively. FEX's range of 0 to 96.0 and ARMI's range of 0 to 4.2 further suggest 

changing agricultural export values and raw material imports. While rainfall and food prices 

exhibit the greatest variability, agricultural production and temperature experience more limited 

variation across the period under consideration. 
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5.10. Correlation Analysis  

Table 5.12: Correlation Analysis Results 

Variable FCPI CROP FEX ARMI FCON RAIN TEMP 

FCPI 1.0000 0.0749 0.0019 0.1325 0.0937 -0.0901 0.0185 

CROP 0.0749 1.0000 -0.0972 0.2533 -0.0649 -0.4697 -0.2190 

FEX 0.0019 -0.0972 1.0000 0.3732 0.0169 0.5504 0.0720 

ARMI 0.1325 0.2533 0.3732 1.0000 0.1558 -0.0113 -0.0902 

FCON 0.0937 -0.0649 0.0169 0.1558 1.0000 -0.1022 0.0284- 

RAIN  -0.0901 -0.4697 0.5504 -0.0113 -0.1022 1.0000 0.0573 

TEMP 0.0185 -0.2190 0.0720 -0.0902 0.0284 -0.0573 1.0000 

Source: Author’s computation using EViews  

The results from the correlation analysis illustrate that food inflation, indicated by the Food 

Consumer Price Index (FCPI), has weak linear relationships with the regressors. The crop 

production index (CROP) shows a minor positive correlation of 0.0749 with food inflation 

suggesting that increased crop yield does not necessarily result in reduced food prices, considering 

post-harvest inefficiencies that outweigh the advantages of higher production. There is an 

extremely weak positive relationship between food exports (FEX) and food inflation. ARMI 

(agricultural raw material imports) and food inflation exhibit a weak positive correlation of 0.1325, 

which suggests that more imports may increase food prices as they directly affect production costs. 

Fertiliser consumption (FCON) exhibits a weak positive correlation of 0.0937 with food inflation, 

potentially indicating the cost-push effect of input costs on food prices.  Rainfall exhibits a negative 

correlation of -0.0901 with food inflation, consistent with the theoretical expectation which asserts 

that favorable rainfall enhances agricultural output and alleviates food price pressures. 

Temperature exhibits a weak positive correlation of 0.0185, indicating a minor linear impact on 

food inflation. These correlations are relatively low, suggesting that individual variables have 

minimal direct impact, however, their cumulative effects may be more accurately captured through 

advanced econometric models. 
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5.11. Unit Root Test 

Table 5.13 illustrates the unit-root test results when assessing the stationarity of model variables. 

Before determining whether agricultural output and climate variables are cointegrated, the study 

evaluated the order of integration for each series. Three different unit root tests were employed to 

assess the integration order of the series: (i) Levin, Lin and Chu (LLC); (ii) Im-Pesaran-Shin (IPS) 

and (iii) Augmented Dickey-Fuller (ADF) test. The probabilities of the three-unit root tests are 

significant for all the variables in question, thus indicating stationarity of the variables. Based on 

the depicted unit root results, the null hypothesis which states that there is unit root among the 

variables is rejected.  

Table 5.13: Panel Unit-Root Test Results  

H0: all variables have unit root  

(non-stationary) 

Variables  LLC  

P-value 

IPS 

P-value 

ADF 

P-value 

Order of 

Integration 

Acceptance 

Region 

P <0.05 

FCPI Level:  

Intercept 

P = 0.0000*** P = 0.0000*** P = 0.0000*** I(0) Reject H0 

CROP 1st 

Difference: 

Intercept 

P = 0.0000*** P = 0.0000*** P = 0.0000*** I(1) Reject H0 

FEX Level:  

Intercept 

P = 0.0000*** P = 0.0000*** P = 0.0000*** I(0) Reject H0 

ARMI 1st 

Difference: 

Intercept 

P = 0.0000*** P = 0.0000*** P = 0.0000*** I(1) Reject H0 

FCON Level:  

Intercept 

P = 0.0000*** P = 0.0000*** P = 0.0000*** I(0) Reject H0 

RAIN Level:  

Intercept 

P = 0.0000*** P = 0.0000*** P = 0.0000*** I(0) Reject H0 

TEMP Level: None P = 0.0000*** P = 0.0000*** P = 0.0000*** I(0) Reject H0 

  NB: (***) Denotes significance at 1% level of significance 

Source: Author’s computation using EViews  

The study used the unit root test at the level and first difference forms, as illustrated, with an order 

of integration that combines I(0) and I(1). Due to the existence of mixed levels of integration  

among the variables, the study proceeds to apply the Panel PMG/ARDL approach. However, prior 
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running the ARDL model, panel cointegration is performed to check whether the model variables 

are cointegrated in the long run. 

5.12. Panel PMG/ARDL Results 

5.12.1. Optimal Lag Selection 

Generally, the lag length selected is based on values for which either Akaike Information Criterion 

(AIC) or Schwarz Criterion (SC) are minimized, indicated by the asterisks in Table 5.14. From the 

table, the best criterion that best fits the model is the Akaike Information Criterion with the lowest 

figure of 51.82 in contrast to that of the Schwarz Criterion which is 53.78. It is therefore concluded 

that the lag length selection is made based on the AIC value because the lower the AIC value, the 

better the model. According to the results below as shown by the asterisk sign of AIC, the optimal 

lag length is 3 and the best criterion to adopt for the model is AIC. 

Table 5.14. Optimal Lag Length Results 

Lag LogL LR FPE  AIC SC HQ 

0 -7961.898 NA  2.57e+18 62.257 62.353 62.296 

1 -6729.808 2387.174 2.49e+14 53.014 53.789* 53.326 

2 -6610.450 224.727 1.44e+14 52.464 53.918 53.049 

3 -6479.207 239.929 7.58e+13* 51.821* 53.954 52.679* 

Source: Author’s computation using EViews  

5.13. Panel Cointegration Test 

After determining the order of integration of each variable, ARDL is estimated through 

cointegration to examine the long-run relationship between the variables of interest.  
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5.13.1. Pedroni test 

Table 5.15. Pedroni Residual Co-integration Test Results  

H0: No cointegration 

Panel cointegration statistics(within-dimension) 

 Statistic Probabilities 

Panel v-statistic -4.287462 1.0000 

Panel rho-statistic -1.300491 0.0967* 

Panel PP-statistic -6.637621 0.0000*** 

Panel ADF-Statistic -6.715991 0.0000*** 

Group mean cointegration statistics (between-dimension)  

Group rho-statistic  1.170329 0.8791 

Group PP-statistic  -7.504847 0.0000*** 

Group ADF-statistic  -5.505580 0.0000*** 

NB: (***) and (*) indicate rejection of the null hypothesis of no co-integration at 1% and 10% 

significance level. 

Source: Author’s computation using EViews  

The null hypothesis of no cointegration was tested under both the within-dimension and between-

dimension of the Pedroni test. The panel cointegration results suggest mixed presence of 

cointegration across the different test statistics and dimensions. 

For the within-dimension statistics, only three statistics in the panel co-integration statistics are 

found to be significant at both 1 and 10% level of significance, thus, strongly supporting the 

rejection of the null hypothesis of no cointegration. In the between-dimension framework, the 

Group rho-Statistic is not significant with a probability of 0.87, hence weak evidence against the 

null hypothesis is suggested. On the contrary, the Group PP-Statistic and Group ADF-Statistic are 

highly significant at the 1% level of significance, indicating strong evidence for variable 

cointegration. The combined findings thus indicate that for five of the seven Pedroni statistics, 

there is adequate evidence to reject the null hypothesis of no cointegration, implying the presence 

of a long-run equilibrium relationship between these variables. 
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5.12.2. Kao test 

Table 5.16: Kao Cointegration Test Results 

H0: No cointegration 

 

ADF 

t-Statistics Prob. 

-3.542043 0.0002* 

(***) indicates rejection of the null hypothesis of no co-integration at 1% significance level. 

Source: Author’s computation using EViews  

The Kao cointegration test yields an ADF t-statistic of -3.542043 with a p-value of 0.0002, which 

is significant at the 1% level. This leads to the rejection of the null hypothesis of no cointegration, 

providing strong evidence of a long-run equilibrium relationship among the variables. The result 

suggests that the variables in the panel are cointegrated and move together over time, despite any 

short-run deviations. 

5.13.2 Long run panel ARDL empirical results 

The panel Autoregressive Distributed Lag (ARDL) model is applied to investigate the long- and 

short-run effects of various factors, including climate variables, on food inflation in Southern 

Africa over the period 1981 to 2020. Due to unavailability of data at regional scale, the oil price 

index variable has been omitted, while the fertilizer price index variable is replaced by fertilizer 

consumption.  The dependent variable in the model is food consumption price index (FCPI) and 

the independent variables include crop production index (CROP), food exports (FEX), agricultural 

raw material imports (ARMI), fertilizer consumption (FCON), rainfall (RAIN) and temperature 

(TEMP). 

Table 5.17: Long-run panel ARDL estimates 

Long Run: Dependent Variable: D(AGRP) 

Variable  Coefficient Std. Error t-statistics Prob* 

CROP 0.0209 0.0130 1.6012 0.1127 

FEX 0.1272 0.0417 3.0532 0.0030*** 

ARMI -3.6974 0.4193 -8.8180 0.0000*** 

FCON 0.6121 0.0720 8.5062 0.0000*** 

RAIN -0.0198 0.0151 -1.3085 0.1940 

TEMP 0.3015 0.0673 4.4819 0.0000*** 

NB: (***) Denotes significance at 1% level of significance 

Source: Author’s computation using EViews  
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Crop Production (Index) 

The coefficient for CROP has a positive value, contrary to the expected negative sign, and it is not 

statistically significant. This positive value of the coefficient implies that increased crop 

production does not lead to a decrease in food prices, as initially assumed. Instead, factors such as 

poor distribution or concentration on exporting instead of being concerned about domestic supply 

might be increasing the price of food, regardless of the improved production. 

Food Exports (% of merchandise exports) 

FEX has a positive coefficient, 0.12, which is statistically significant at the 1% level of significance 

as expected, meaning that a 1% increase in food exports leads to a 0.12% increase in domestic 

food consumption prices. These findings suggest that an increase in agricultural production by the 

region for export may decrease the domestic supply of food, hence exerting upward pressure on 

food prices. In the Southern African context, this observation represents a key trade-off, while 

exports bring economic benefits, they can limit domestic food availability in the selected countries, 

especially where surpluses in production are being used to supply exports rather than being sold 

in local markets. This stresses the need for policies that ensure domestic food security while 

expanding exports to be in place. 

These findings are consistent with those obtained in the study by Qayyum and Sultana (2018), 

which seeks to examine the factors influencing food price inflation in Pakistan from 1970 to 2017. 

To evaluate food inflation, the study examined the following independent determinants: GDP, food 

exports, food imports, taxes, and money supply. The estimation findings showed that there is a 

positive and significant link between food prices and export imports. Keeping all other variables 

fixed, a one-percent increase in export imports raises food prices by 10% and 20%. When food 

exports grow, supply within the country falls, increasing demand for food in the country and, as a 

result, food inflation rises.  

Agricultural Raw Material Imports (% merchandise exports) 

The results show a negative and significant coefficient value of -3.6974, meaning an increase in 

the import of agricultural raw materials is associated with a 3.70% reduction in prices of food 

consumption. This means that increased imported agricultural inputs most likely increase 

agricultural productivity, which subsequently leads to lower production costs and hence reduced 
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prices of foods. This outcome is in sharp contrast to the expected positive impact, where increased 

import costs would translate into higher production costs and, consequently, higher food prices. 

The findings instead suggest that access to these raw materials, whether imported or not, may 

temper domestic supply constraints and improve yield quality, thus helping to reduce prices of 

food. In Southern Africa, the supply of these raw materials at lower prices could help to stabilize 

market prices, so improving the importation of agricultural produce may help to improve food 

affordability. 

These results are in line with those of the study by Erdogan et al. (2024), which analyzed the 

relationship between climate change and food prices in Nigeria using different nonlinear and 

quantile-based methods with data covering the period 2008 to 2020. The results obtained 

empirically indicated that there is a negative and significant relationship between ARMI and food 

inflation. The study recommended that, given the declining impact of agricultural raw material 

imports, which are critical for the production of food and affect food prices in Nigeria, combined 

with the increasing impact of food exportation on food prices, it would be more sensible to 

encourage agricultural material imports while restricting food product exports. Reducing tariffs on 

agricultural product imports could thus assist to lower food prices in Nigeria by increasing supply. 

Furthermore, an increase in food export duties may stimulate the Nigerian food industry to produce 

more food for the domestic market. 

Fertilizer Consumption (kilograms per hectare of arable land (kg/ha)) 

FCON has a positive coefficient and is statistically significant at the 1% level of significance as 

expected due to the hypothesized positive relationship. The result shows that for every 1 kg/ha 

increase in fertilizer application, food consumption prices would go up by 0.61%. This indicates 

that while increased use of fertilizers promotes agricultural production, the associated cost pulls 

up the food price level. This result flags an important concern for Southern Africa, where the high 

fertilizer prices are mostly borne by import costs. The effect on food prices shows that bringing in 

subsidies or seeking for alternative inputs that could decrease reliance on expensive fertilizers may 

lower their ability to drive up food prices. 

The findings obtained are in close agreement with the findings of a study by Zhang et al. (2014), 

which initiated an inquiry into the relationship between food pricing and inflationary trends in 

China. The empirical results suggested that the relationship between consumer price inflation and 
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food prices has not weakened; besides, food price inflation, specifically in cereals due to increased 

fertilizer costs, remains a key driver of overall consumer price inflation. In addition, international 

food prices also play an essential role in driving the inflation process in China. 

Rainfall (mm per year) 

The majority of the sample countries rely on agriculture that depends on rainfall to meet their food 

and cash crop production needs. Thus, variations in the quantity and frequency of precipitation 

throughout the season, combined with an increase in weather changes, reduce agricultural quantity, 

particularly food commodities, resulting in high food prices and overall inflation. Precipitation in 

millimeters yields a coefficient of -0.01 with the expected negative sign. This negative coefficient 

implies that adequate rainfall reduces production costs by improving agricultural yield without the 

adoption of costly irrigation practices. However, its insignificance at standard levels implies that 

precipitation alone might not have a long-run significant effect on food prices unless accompanied 

by other complementary support systems including water infrastructure and drought resilience 

approaches. 

These results corroborate with findings from Odongo et al. (2022), except that the coefficient of 

rainfall in the aforementioned study was both negative and significant as expected. The study 

concluded that, based on its findings, the importance of precipitation levels in lowering prices 

highlighted a need to prioritize investment in policies that contribute to regular water supplies, 

such as irrigation and food self-sufficiency programs. Some of these measures have been 

implemented in some of the study's sample countries, however they continue to be far away from 

achieving independence from agriculture, as was the case in Israel, where irrigation proved 

effective. Even if this policy is advised, it may be necessary to assess the impact of irrigation on 

food yield against national expenditures, and possibly to include the expertise of different countries 

with successful irrigation projects. At the macro level, the study highlights the need for additional 

research to build successful climate change policies and best practices in other nations that can be 

adapted for Africa. 
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Temperature (C per year) 

The positive coefficient of 0.30 implies that, holding other factors constant, a rise of 1°C leads to 

an increase of approximately 30.15% food inflation, and this effect is statistically significant, as 

indicated by the p-value of 0.00.  

This means that temperature plays a role in influencing food inflation in the long run. A positive 

relationship indicates that high temperatures may contribute to the rise in food prices through 

various mechanisms, such as reduced agricultural production and increased energy costs related to 

food production. Temperature has become the prima facia agent as a basic input to determine crop 

yields; hence, rising temperatures can potentially hurt the growth process of many staple crops 

either by causing heat stress or by lessening the water supply through altered precipitation patterns. 

This decline in the production of agriculture may lead to reduced supply of food, hence rising food 

prices. For example, main staple crops such as wheat, maize, and rice are quite sensitive to extreme 

temperatures; therefore, even a slight rise in average temperatures may cause a reduction in yields, 

which finally rises food prices. 

5.13.3. Short run panel ARDL empirical results 

Table 5.18: Short run results of panel ARDL 

Short Run: Dependent Variable: D(AGRP) 

Variables  Coefficient Std. Error t-statistic Prob 

CointEq(-1) -0.453458 0.215064 -2.108484 0.0378** 

D(FCPI(-3)) 0.302569 0.177608 1.703576 0.0919* 

D(CROP(-1)) -0.482499 0.269738 -1.788771 0.0770* 

D(TEMP(-2)) -8.054747 4.129310 -1.950628 0.0542* 

NB: (**) and (*) Denote significance at 5% and 10% level of significance 

Source: Author’s computation using EViews  

The ECT coefficient of -0.453 implies a fair speed of adjustment back towards the long-run 

equilibrium after some short-run shock. Its value is statistically significant at 5%, meaning that 

roughly 45% of every deviation from equilibrium is being corrected each year. Short-run panel 

ARDL results show that with a 3-year increase in food inflation, the current food inflation increases 

by 0.30%. A lagged crop production increase is associated with falling food prices, reflecting the 
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downward price impact of the output increase in the previous year. Lagged temperature increases 

tend to negatively affect food prices; this may indicate that in the year following hot conditions, 

prices stabilize or go down. 

5.14. Hausman test results 

Table 5.19: Hausman test results – Random Effects Model 

H0: REM is appropriate 

Variables Coeff Prob 

CROP -0.202 0.8849 

FEX -5.465 0.0331** 

ARMI 131.546 0.0043*** 

FCON 2.234 0.3154 

RAIN 0.824 0.5120 

TEMP 45.006 0.2151 

C -1477.464 0.2994 

Obs 320 - 

R-squared 0.097033 - 

F-stat 2.529445 0.0025*** 

Chi-square 3.472834 0.6275 

NB: (***) and (**) indicate rejection of the null hypothesis of no co-integration at 1% 

and 5% significance level. 

Source: Author’s computation using EViews  

The Hausman test results support the null hypothesis of the REM being appropriate in this data. 

The signs of significance of FEX and ARMI at 5% and 1%, respectively, suggest that these 

variables have statistically significant impacts under REM, but other variables are not statistically 

significant in explaining the variation in the food price. With an R-squared of 0.097, the model 

explains approximately 9.7% of the variance in food prices.  

5.15. Diagnostic Tests 

The diagnostic tests namely, normality and cross section dependence test are employed to verify 

the variable evaluation of the outcomes obtained by the model.  
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5.15.1. Normality Test 

Figure 5.2. Normality Test 

 

Source: EViews Computation 

Results from the normality test of the food inflation model show that residuals are not normally 

distributed; the Jarque-Bera test statistic is high, at 276327.1, while its probability is 0.00, thus 

leading to a rejection of the null hypothesis because the p-value obtained was below the acceptance 

region of 0.05. The histogram confirms this non-normality, with residuals concentrated around the 

lower end and few extreme positive outliers. Overall, these results imply that the model’s residuals 

are not normally distributed, which may affect the reliability of standard inferential statistics in the 

model. However, according to Frain (2007), large sample sizes are not necessarily normally 

distributed, which in this case often results in an inability to fail to reject the null hypothesis of 

normality. Meaning that, with great samples, the distribution does not stay constant, and over time, 

regression results might not be the same. According to Kundu et al. (2011), tests of normality are 

sensitive when samples are large, which may lead to the rejection of the null hypothesis more 

frequently than it deserves. Chen and Kuan (2003) added that normality tests on large samples 

may overestimate the deviation from normality and question the robustness of some statistical 

models in such situations. 
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5.15.2. Cross Section Dependence  

Table 5.20: Cross Section Dependence results 

H0: No cross section dependence 

Test Statistics Degrees of freedom Probability 

Breusch-Pagan LM 151.5026                                       

28 

0.0000*** 

Pesaran Scaled LM 16.50373 0.0000*** 

Pesaran CD 9.410627 0.0000*** 

NB: (***) Denotes significance at 1% level of significance 

Source: Author’s computation using EViews  

The cross-section dependence test results for the food inflation model indicates significant 

evidence of cross-sectional dependence across the countries in the panel data. All three tests, the 

Breusch-Pagan LM, Pesaran Scaled LM and Pesaran CD have extremely low p-values, leading to 

the rejection of the null hypothesis of no cross-sectional dependence at the 1% significance level. 

These selected countries all have similar climate conditions, while agricultural production and the 

price of food in each varies according to shared variables such as droughts and variable rain 

conditions. Furthermore, the selected countries are economically interconnected as they exchange 

agricultural commodities and food produce. Regional policies, including those determined by trade 

agreements within the region and common socio-economic issues such as fluctuating currency, 

inflationary pressures, and reliance on the same staple crops, further help in dismissing the null 

hypothesis. Such dynamics explain the situation whereby food inflation in one country is highly 

likely to have strong effects on another country in the region. 

5.16. Chapter summary 

This chapter sought to employ a series of tests to investigate the impact of climate change on 

agricultural production and food inflation in Southern Africa over the period 1981 to 2020. The 

chapter began by analyzing the agricultural production model, followed by a focus on the food 

inflation model. Descriptive statistics and data trends for both models were then presented, 

followed by the panel unit root tests: LLC by Levin, Lin and Chu, IPS by Im, Pesaran and Shin, 

and Augmented Dickey Fuller tests to determine the stability of the variables. The Panel 

cointegration test established the equation for long-run estimation. Empirical results within the 



 105 

Panel ARDL framework using the Pooled Mean Group estimator are then estimated. Diagnostic 

test results were also provided with regard to residual issues that could affect model accuracy. 

Results indicate that climate change, as measured by average rainfall and temperature, 

significantly affects agricultural production and food inflation. While rainfall has a negative and 

insignificant effect in model 2, temperature has a negative and significant effect on the agricultural 

output model and a positive significant effect on food inflation as expected. In the agricultural 

production model, temperature impact implies that, for Southern Africa, the rise in temperature 

has a significant negative effect on agricultural productivity. 
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 CHAPTER 6: SUMMARY, RECOMMENDATIONS AND CONCLUSION 

______________________________________________________________________________ 

6.1. Introduction 

This study investigated the relationship between climate change, agricultural production and food 

inflation in Southern Africa using panel data from 1981 and 2020. This chapter therefore 

commences with the summary of the study. This is followed by recommendations for both models 

analyzed in the study. Furthermore, conclusion is based on the findings of the study and lastly 

opportunities for further research are presented.  

6.2. Summary of the findings 

The results demonstrate how climate variables significantly affect agricultural productivity in 

Southern Africa, according to the agricultural production model. Of particular concern are rising 

temperatures, which cause a significant drop in agricultural productivity. This emphasizes the 

pressing need for adaptation strategies, including better irrigation and drought-resistant crop 

variations, to mitigate the negative consequences of rising temperatures, which increase pest 

pressures, decrease soil moisture, and hasten evapotranspiration. Rainfall also has a negative 

correlation with production, high levels of rainfall cause crop diseases, waterlogging, and soil 

erosion, highlighting the need for climate-resilient farming methods and water management 

systems.  

The findings from the food inflation model indicate that climate variables have a substantial impact 

on food inflation in Southern Africa. Particularly, increasing temperatures have a major impact on 

food inflation as the findings point out the negative consequences of heat stress on crop yields, 

resulting in lower agricultural productivity and higher production costs, all of which contribute to 

a tighter food supply and higher prices. The negative coefficient of rainfall implies that adequate 

rainfall can reduce food prices by enhancing crop growth and lowering dependency on costly 

irrigation. However, the lack of significance implies that rainfall by itself is inadequate to stabilize 

food prices in the absence of further investment in water supply systems and drought-resistant 

measures. These findings, therefore, emphasize the crucial need for comprehensive climate 

mitigation strategies to reduce the price increases on the region's food systems caused by higher 

temperatures and irregular rainfall patterns. 
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6.3. Policy Recommendations  

6.3.1. Model 1: Agricultural Production Model 

The agricultural sector faces a challenging task in adapting to changing weather conditions while 

lowering greenhouse gas (GHG) emissions, conserving biodiversity, and maintaining food 

security. According to Bezner et al. (2022), a wide range of initiatives have been established to 

assist agriculture in adapting to climate change, however, greater emphasis may have to be placed 

on implementation, monitoring, and evaluation. In order to address the challenges brought about 

by worldwide climate change, agricultural sector must apply an extensive array of strategies. These 

strategies can be divided into short-term (I), mid-term (II), and long-term strategies (III) and (IV), 

as illustrated below. Consequently, the study recommends the following:  

(I) Targeted interventions to strengthen climate change adaptation 

Agricultural support programs in Southern Africa should be more tailored to meet the requirements 

of farmers in an equitable manner. Current policies frequently result in inadequate transfers of 

revenue and fail to empower farmers to change their farming practices effectively. Support 

strategies should therefore include various adaptation methods, such as increasing sustainable 

productivity, increasing farm household incomes, and transitioning to non-agricultural livelihoods 

when appropriate. For instance, Malawi’s Farm Input Subsidy Programme (FISP), which aims to 

strengthen food security by subsidizing fertilizers and seeds, has experienced inefficiencies and 

unforeseen consequences (Walls et al., 2023). The program's emphasis on maize production 

limited the diversification of crops, whereas larger farmers disproportionately benefited from 

asymmetrical access compared to smaller and more vulnerable farmers. 

When farming becomes unsustainable, policies such as these must change to incorporate more 

comprehensive tactics that enable farmers to switch to alternate livelihoods, diversify their sources 

of income, or embrace climate-resilient techniques. The ability of farmers to adapt can be improved 

by investments in research, extension services, entrepreneurship, human capital, and climate-

resilient technologies. Payments linked to ecosystem services, such as the preservation of 

biodiversity and the management of invasive species, can have dual benefits, but their efficacy has 

to be carefully evaluated to ensure effectiveness. Furthermore, planned adaptation projects that 

lower risks and improve long-term resilience should be given priority when budgetary resources 

are limited.  
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(II) Feasible solutions for sustainable fertilizer production 

Environmental contamination and large GHG emissions are frequently linked with the 

manufacture and use of traditional fertilizers. Sustainable fertilizer production systems, on the 

other hand, efficiently lower carbon footprints through material selection and production process 

optimization. The findings of the present study demonstrate a significant relationship between total 

fertilizer consumption and agricultural production. However, the model conveys that extensive 

dependence on fertilizers may reach a point of diminishing returns, indicating that a more balanced, 

sustainable approach to fertilizer consumption is mandatory. A transition toward organic and bio-

based fertilizers can help improve soil fertility, mitigate long-term degradation of the environment, 

and enhance agricultural yield or production. According to Avsar (2024), using bio-fertilizers and 

organic fertilizers entails recycling organic matter and agricultural waste, increasing soil fertility, 

decreasing greenhouse gas emissions and fossil fuel consumption, and improving resource 

efficiency and material recyclability. Additionally, microbial fertilizers and sophisticated synthetic 

biology processes greatly improve the efficiency of nutrient utilization, lower fertilizer runoff and 

water contamination, and improve soil, all of which increase crop yields.  

Furthermore, smart fertilization technologies and environmentally friendly chemical processes are 

part of sustainable fertilizer production. Green chemical methods minimize the environmental 

impact of chemical synthesis and manufacture by reducing dependency on fossil fuels for chemical 

and fuel production (Ganesh et al., 2021). Through reliable fertilization and release control, 

intelligent fertilization systems reduce excess fertilizer usage while optimizing fertilizer efficiency 

and minimizing impact on the environment (Ahsan et al., 2024). By decreasing dependence on 

chemical fertilizers and GHG emissions, these creative solutions not only boost the quantity and 

quality of crops and strengthen the resilience of agricultural systems, however, they also promote 

sustainability of agriculture and climate change adaptation. All things considered, sustainable 

fertilizer production technologies are essential to maintaining security of food, safeguarding the 

environment, and advancing agricultural sustainability.  

(III) Smart agriculture water reuse and recycling 

Alternative solutions of recycling and reusing water are important and comprehensive in reducing 

the negative effects of climate change on agricultural output. These techniques efficiently lower 

the agricultural water demand by streamlining water resource management, therefore mitigating 
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climate change-related water scarcity challenges. For example, the adoption of technologies such 

as trickle irrigation and rainwater-harvesting systems in farmland irrigation systems may 

substantially improve water use efficiency, reduce waste, and guarantee that crops receive 

sufficient water even during droughts (Freng et al., 2024). By turning household and commercial 

wastewater into irrigation water, wastewater regeneration and treatment technologies can lessen 

the need for freshwater resources and the pollution that wastewater discharge causes to the 

environment. Furthermore, the study’s findings revealed that rainfall, although statistically 

significant, adversely affects agricultural productivity, thus, indicating that excessive or irregular 

rainfall, which is prevalent in Southern Africa, can result in diminished productivity due to soil 

erosion, waterlogging, and increased susceptibility of crops to disease.  This requires water 

management strategies that not only respond to water scarcity but also mitigate the detrimental 

impacts of excessive rainfall. 

By recycling and reducing pollution, water reuse techniques improve the stability and health of 

agricultural ecosystems in addition to preserving soil moisture, increasing soil fertility, and 

supplying nutrients for crops to support growth (Leonel and Tonetti, 2021). In general, water reuse 

and recycling programs are essential for combating climate change, protecting the environment, 

and guaranteeing food security in addition to improving the sustainability and efficiency of 

agricultural output. Thus, promoting and implementing these water resource management 

technologies are practical ways to address the issues of climate change and achieve sustainable 

agricultural development. 

(IV) Establishing Sustainable Closed-Loop Systems 

The development of sustainable closed-loop systems seeks to minimize waste production and 

pollution in the environment while achieving effective resource recycling. Closed-loop systems 

can minimize greenhouse gas emissions, lessen dependency on fossil fuels and chemical fertilizers, 

and turn agricultural waste into useful resources by combining waste management, energy 

production, and agricultural output. Although the study did not directly assess closed-loop systems, 

it suggests that minimizing inefficiencies in agricultural production (AGRP) is essential for 

achieving sustainable outcomes. By optimizing resource use and reducing waste, closed-loop 

systems could significantly reduce production costs, increase efficiency, and enhance the long-

term resilience of agricultural systems, indirectly stabilizing food prices. Furthermore, irrigation 
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water can be efficiently collected and recycled in closed-loop systems, giving crops sufficient 

protection from weather fluctuations. Food safety is improved, and the environmental impact of 

chemicals is decreased as plants are grown in controlled settings without the need for pesticides, 

fertilizers, or herbicides (Sharma et al., 2024).  

Worldwide research on closed-loop ecosystems shows that this comprehensive management 

strategy improves agricultural production resilience and resource efficiency while simultaneously 

offering crucial data and technology support for prospective space exploration (Nelson, 2021). 

Conclusively, the development of sustainable closed-loop systems presents innovative strategies 

to combat climate change and advance agricultural sustainability, with important ecological and 

financial considerations. 

6.3.2. Model 2: Food Inflation Model 

According to the results obtained from this study, severe weather occurrences have an impact on 

inflation through agricultural productivity. As demonstrated by increasing temperatures and 

unpredictable weather patterns that have a direct impact on agricultural productivity and food 

costs, climate change is a major contributor to food inflation in Southern Africa. Therefore, the 

study recommends the following: 

(I) Enhancing climate-resilient agricultural practices 

Policymakers should urgently address these challenges by strengthening adaptive capacity to 

climate hazards in alignment with Sustainable Development Goals (SDGs).  

This necessitates prioritizing investments in climate-resilient agricultural technologies and 

practices, including diversification of crops, enhanced systems for irrigation, and climate-smart 

agriculture. Governments should also fund research and development to encourage innovations 

such as hydroponic and vertical farming, which allow farmers to produce more effectively in 

climate-vulnerable regions. The study determined that temperature increase significantly impacts 

food prices, with prices increasing by about 30.15% with each 1°C increase, indicating the need 

for adaptive measures to mitigate the heat stress on crops and stabilize food inflation. As 

recommended by Seppelt et al. (2022), modifying cropping patterns and aligning planting seasons 

with local climatic conditions might improve resource efficiency while lowering food production 

losses, providing an uninterrupted supply of food and minimizing inflationary pressures.  
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(II) Addressing structural barriers in agricultural inputs and trade 

To combat food inflation, the selected Southern African countries have to tackle the structural 

factors that affect agricultural input availability and trade dynamics. According to the results of 

this study, lowering tariffs on agricultural raw material imports (ARMI) is key to increasing access 

to critical inputs such as fertilizers and seeds, which are essential for increasing productivity. The 

findings of the study further reveal that availability of agricultural raw materials could reduce food 

prices considerably, and therefore it is mandatory to improve supply chains for such inputs. 

Simultaneously, limiting food exports by means of export levies and temporary limitations during 

domestic shortages can help prioritize local markets and stabilize food prices. The positive export 

coefficient shows that high food exports could trigger rising food prices in the local market, and 

therefore policymakers need to regulate exports in periods of scarcity of food to prevent 

inflationary surges.  As further recommended in the study by Abraham (2018), improving regional 

trade integration through SADC-supported initiatives will improve food security by encouraging 

equitable trade and minimizing supply disruptions across member states.  

(III) Promoting energy diversification for agricultural sustainability 

Another crucial tactic for the region is energy diversification, since reliance on fossil fuels not only 

contributes to climate change but also links food inflation to fluctuating oil prices worldwide. Food 

inflation can be indirectly lowered by transitioning to renewable energy sources, such as solar, 

wind, and hydroelectric power, which can minimize operating costs in transportation and 

agriculture. Governments should, therefore, encourage the use of green technologies by providing 

tax incentives and subsidies for renewable energy projects in the agricultural sector, as 

suggested by McIntyre and Ashram (2017). In addition to promoting long-term environmental 

sustainability, investments in extending Southern Africa's renewable energy infrastructure would 

help decouple food inflation from fluctuations in the price of fossil fuels.  

(IV) Adapting monetary policies to food price volatility 

The study recommends that monetary policymakers consider the short- and long-term effects of 

supply shocks caused by major weather events on food prices and the overall price level. Given 

that central banks' primary responsibilities are price and production stability, even short-term 

effects of extreme weather events could have catastrophic consequences for poor households in 
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Southern Africa, as well as long-term ramifications for macroeconomic policy in general. Findings 

of this study suggest that climate factors, specifically, rainfall and temperature, account for food 

inflation. While rainfall had a forecasted negative coefficient, its statistical insignificance suggests 

the contribution of rainfall is conditional based on additional factors such as water infrastructure. 

Monetary policy should subsequently incorporate climate risk assessments into forecasting 

inflation dynamics. The findings further suggest that food price volatility, which is driven by trade 

and climate, presents a structural challenge to inflation targeting frameworks for central banks in 

the region.  

Therefore, in order to effectively forecast and reduce increases in food prices, inflation targeting 

should be supplemented with increased monitoring of agricultural and trade conditions. For 

instance, the study indicates that trade variables such as agricultural raw material imports (ARMI) 

and food exports (FEX) directly influence food prices, emphasizing the need for central banks to 

monitor these variables alongside traditional inflation indicators. In order to anchor inflation, a 

study by Kunawotor et al. (2022), further recommends that a buffer of food items should 

be regularly maintained to serve as a reprieve during weather-related disasters. It is important to 

note that this study does not in any way imply that monetary policy should be the remedy to climate 

change, but instead suggests that monetary policy authorities should take climate change into 

account in their decision-making process. 

 6.4. Conclusion 

The purpose of this study was to determine the influence of climate change on agricultural 

production and food inflation in the selected Southern African countries. The study applied various 

theoretical and empirical objectives outlined at the onset of this study. Theoretical objectives 

included a provision of literature review on inflation theories, climate-related factors that give rise 

to inflation and a conceptual approach that aims to narrate then impact of climate change on 

agricultural production. On the other hand, empirical literature was cited as a source of information 

from previous studies on how the findings varied with respect to how climate change impacts 

agricultural output and food inflation.  

The results showed that temperature and rainfall patterns, indicators of climatic change, had 

massive impacts on agricultural productivity and the costs of food. It could therefore be contended 

that the agricultural sector in Southern Africa is particularly at risk from climate change because 
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of the unique geology and farming systems of this region. To mitigate these challenges, this study 

recommends climate-resilient farming practices, input tariff reductions, enhancement of regional 

trade integration, and support for renewable energies to answer these challenges, so that 

productivity improves while food prices remain stable. Flexible monetary policies and increased 

social protection measures will thus be very instrumental in safeguarding livelihoods and food 

security for the people, fostering a strong agricultural economy against both structural and climatic 

challenges. 

6.5. Future Directions 

This study adopted the production function approach since the available input data for Southern 

African countries is aggregated and hence detailed analysis at commodity level is restricted. This, 

however, can be improved upon in future research using more detailed datasets or devising 

methods to disaggregate input data for major crops such as rice, maize, millet, and wheat. Besides, 

the inconsistent time-series data on temperature and precipitation limited alternative models. 

Future research could integrate satellite-derived climate data or embed regional climate models in 

this framework to bring down the analysis to higher resolutions. The inclusion of other modelling 

approaches, such as crop-climate interaction models, could further expand the scope and offer 

more holistic insights into climate change and agricultural productivity. Having this limitation 

overcome by data, future research would further polish the methodologies and bring out more 

exact and tailor-made recommendations for policy and practice. 

 

 

 

 

 

 



 114 

REFERENCES 

Abraham, E.M., 2018. Understanding climate change adaptation in Africa: key considerations. 

Management of Environmental Quality: An International Journal, 29(1), pp.165-179. 

Adams, P. and Paice, E., 2017. The silent crisis of food price inflation in Africa. African Research 

Institute, Understanding Africa Today. 

Adenomon, M.O. and Ojo, R.O., 2020. Autoregressive distributed lag modeling of the effects of 

some macroeconomic variables on economic growth in Nigeria. Folia Oeconomica 

Stetinensia, 20(2), pp.1-19. 

Agba, D.Z., Adewara, S.O., Adama, I.J., Adzer, K.T. and Atoyebi, G.O., 2017. Analysis of the 

effects of climate change on crop output in Nigeria. American Journal of Climate Change, pp.554-

571. 

Agba, D.Z., Adewara, S.O., Adama, I.J., Adzer, K.T. and Atoyebi, G.O., 2017. Analysis of the 

effects of climate change on crop output in Nigeria. American Journal of Climate Change, pp.554-

571. 

Ahsan, T., Tian, P.C., Gao, J., Wang, C., Liu, C. and Huang, Y.Q., 2024. Effects of microbial agent 

and microbial fertilizer input on soil microbial community structure and diversity in a peanut 

continuous cropping system. Journal of Advanced Research, 64, pp.1-13. 

Akgun, O., Pirotte, A. and Urga, G., 2021. Heterogeneity and cross-sectional dependence in 

panels: Heterogeneous vs. homogeneous estimators. Revue d'économie politique, 131(1), pp.19-

55. 

Akgun, O., Pirotte, A. and Urga, G., 2021. Heterogeneity and cross-sectional dependence in 

panels: Heterogeneous vs. homogeneous estimators. Revue d'économie politique, 131(1), pp.19-

55. 

Alboghdady, M. and El-Hendawy, S.E., 2016. Economic impacts of climate change and variability 

on agricultural production in the Middle East and North Africa region. International Journal of 

Climate Change Strategies and Management, 8(3), pp.463-472. 

 



 115 

Alfani, F., Arslan, A., McCarthy, N., Cavatassi, R. and Sitko, N.J., 2019. Climate-change 

vulnerability in rural Zambia: the impact of an El Niño-induced shock on income and productivity. 

Amare, M., Cissé, J.D., Jensen, N.D. and Shiferaw, B., 2017. The impact of agricultural 

productivity on welfare growth of farm households in Nigeria: A panel data analysis. FAO. Rome. 

Amosi, N. and Anyah, R.O., 2024. Trends of precipitation and temperature extremes over Malawi 

and Mozambique during the recent decades from models and observations. Theoretical and 

Applied Climatology, 155(2), pp.783-804. 

Anderson, R., Bayer, P.E. and Edwards, D., 2020. Climate change and the need for agricultural 

adaptation. Current opinion in plant biology, 56, pp.197-202. 

Armand, A., Gomes, J.F. and Taveras, I.K., 2019. Managing agricultural risk in 

Mozambique. International Growth Centre, London. 

Ascari, G., Bonam, D. and Smadu, A., 2024. Global supply chain pressures, inflation, and 

implications for monetary policy. Journal of International Money and Finance, 142, p.103029. 

Avşar, C., 2024. Sustainable transition in the fertilizer industry: alternative routes to low-carbon 

fertilizer production. International Journal of Environmental Science and Technology, 21(11), 

pp.7837-7848. 

Ayanlade, A., Oluwaranti, A., Ayanlade, O.S., Borderon, M., Sterly, H., Sakdapolrak, P., Jegede, 

M.O., Weldemariam, L.F. and Ayinde, A.F., 2022. Extreme climate events in sub-Saharan Africa: 

A call for improving agricultural technology transfer to enhance adaptive capacity. Climate 

Services, 27, p.100311. 

Baez, J.E., Caruso, G. and Niu, C., 2020. Extreme weather and poverty risk: evidence from 

multiple shocks in Mozambique. Economics of Disasters and Climate Change, 4, pp.103-127. 

Baltagi, B.H., 2024. Hausman’s Specification Test for Panel Data: Practical Tips. In Essays in 

Honor of Subal Kumbhakar (pp. 13-24). Emerald Publishing Limited. 

Baltagi, B.H., Kao, C. and Peng, B., 2016. Testing cross-sectional correlation in large panel data 

models with serial correlation. Econometrics, 4(4), p.44. 



 116 

Baltagi, B.H., Kao, C. and Peng, B., 2016. Testing cross-sectional correlation in large panel data 

models with serial correlation. Econometrics, 4(4), p.44. 

Bangake, C. and Eggoh, J.C., 2011. The Feldstein–Horioka puzzle in African countries: A panel 

cointegration analysis. Economic Modelling, 28(3), pp.939-947. 

Baudoin, M.A., Vogel, C., Nortje, K. and Naik, M., 2017. Living with drought in South Africa: 

lessons learnt from the recent El Niño drought period. International journal of disaster risk 

reduction, 23, pp.128-137. 

Beckmann, J., Czudaj, R.L. and Arora, V., 2020. The relationship between oil prices and exchange 

rates: Revisiting theory and evidence. Energy Economics, 88, p.104772. 

Belford, C. et al., 2023. An economic assessment of the impact of climate change on the Gambia’s 

agriculture sector: a CGE approach. International Journal of Climate Change Strategies and 

Management, 53(3), pp. 322-352. 

Bell, A. and Jones, K., 2015. Explaining fixed effects: Random effects modeling of time-series 

cross-sectional and panel data. Political Science Research and Methods, 3(1), pp.133-153. 

Bell, A., Fairbrother, M. and Jones, K., 2019. Fixed and random effects models: making an 

informed choice. Quality & quantity, 53, pp.1051-1074. 

Belloumi, M., 2014. Investigating the impact of climate change on agricultural production in 

eastern and southern African countries (Vol. 3). Intl Food Policy Res Inst. 

Belmin, R., Paulin, M. and Malézieux, E., 2023. Adapting agriculture to climate change: which 

pathways behind policy initiatives?. Agronomy for Sustainable Development, 43(5), p.59. 

Bezner Kerr, R., Naess, L.O., Allen‐O’Neil, B., Totin, E., Nyantakyi‐Frimpong, H., Risvoll, C., 

Rivera Ferre, M.G., López‐i‐Gelats, F. and Eriksen, S., 2022. Interplays between changing 

biophysical and social dynamics under climate change: Implications for limits to sustainable 

adaptation in food systems. Global Change Biology, 28(11), pp.3580-3604. 

Bhattacharyya, P., Pathak, H., Pal, S., Bhattacharyya, P., Pathak, H. and Pal, S., 2020. Impact of 

climate change on agriculture: Evidence and predictions. Climate Smart Agriculture: Concepts, 

Challenges, and Opportunities, pp.17-32. 



 117 

Blanc, E. and Schlenker, W., 2017. The use of panel models in assessments of climate impacts on 

agriculture. Review of Environmental Economics and Policy 11(2), pp. 258-279. 

Bolton et al, 2020. The impact of global warming on inflation: averages, seasonality and extremes. 

European Central Bank: Eurosystem, 17(6), pp. 44-45. 

Bonab, A.F., 2017. A review of inflation and economic growth. Journal of Management and 

Accounting Studies, 5(02), pp.1-4. 

Boneva, L., Ferrucci, G. and Mongelli, F.P., 2022. Climate change and central banks: what role for 

monetary policy?. Climate Policy, 22(6), pp.770-787. 

Boonwichai, S., Shrestha, S., Babel, M.S., Weesakul, S. and Datta, A., 2018. Climate change 

impacts on irrigation water requirement, crop water productivity and rice yield in the Songkhram 

River Basin, Thailand. Journal of Cleaner Production, 198, pp.1157-1164. 

Borgomeo, E., Vadheim, B., Woldeyes, F.B., Alamirew, T., Tamru, S., Charles, K.J., Kebede, S. 

and Walker, O., 2018. The distributional and multi-sectoral impacts of rainfall shocks: Evidence 

from computable general equilibrium modelling for the Awash Basin, Ethiopia. Ecological 

Economics, 146, pp.621-632. 

Borowski, P.F., 2022. Water and hydropower—Challenges for the economy and enterprises in 

times of climate change in Africa and Europe. Water, 14(22), p.3631. 

Botai, C.M., Botai, J.O., De Wit, J.P., Ncongwane, K.P. and Adeola, A.M., 2017. Drought 

characteristics over the western cape province, South Africa. Water, 9(11), p.876. 

Botai, C.M., Botai, J.O., Dlamini, L.C., Zwane, N.S. and Phaduli, E., 2016. Characteristics of 

droughts in South Africa: A case study of free state and Northwest provinces. Water, 8(10), p.439. 

Braun, Y.A., 2020. Environmental change, risk and vulnerability: poverty, food insecurity and 

HIV/AIDS amid infrastructural development and climate change in Southern Africa. Cambridge 

Journal of Regions, Economy and Society, 13(2), pp.267-291. 

Brooks, C., 2019. Introductory econometrics for finance. Cambridge university press. 

Brown, G. & Johnson, L., 2017. Climate change versus Inflation. Financial Stability The New 

High-Inflation Enviornment, 16(3), pp. 16-33. 



 118 

Bwalya, M. and Deka, B., 2016. Analysis of the second National Agricultural Policy 2016–

2020. Policy Monitoring and Research Centre. 

Calderon, C., Kabundi, A., Eliste, P., Goyal, A., Kubota, M., Korman, V. and Forget, V.D., 

2022. Africa's Pulse, No. 26, October 2022 (No. 26). World Bank Publications. 

Central Bank of Seychelles, 2022. Climate change and its implications for inflation in 16 SADC 

countries: A study covering the period between 2015 and 2019. Unpublished report. 

Chai, R., Ye, X., Ma, C., Wang, Q., Tu, R., Zhang, L. and Gao, H., 2019. Greenhouse gas emissions 

from synthetic nitrogen manufacture and fertilization for main upland crops in China. Carbon 

balance and management, 14, pp.1-10. 

Charles, O.C., Gilbert, O.C. and Emerenini, F., 2022. The determinants of inflation in 

Nigeria. Development, 5(3), pp.54-72. 

Chemura, A., Nangombe, S.S., Gleixner, S., Chinyoka, S. and Gornott, C., 2022. Changes in 

climate extremes and their effect on maize (Zea mays L.) suitability over Southern 

Africa. Frontiers in Climate, 4, p.890210. 

Chen, Y.T. and Kuan, C.M., 2003. A generalized Jarque-Bera test of conditional normality. In IEAS 

working paper no. 03-A003. 

Chipili, J.M., 2022. Inflation dynamics in Zambia. 

Chirambo, D., 2020. The emerging threats and opportunities for implementing nationally 

determined contributions (NDCs) and sustainable development goal 7: policy insights from sub-

Saharan Africa and Malawi. Central European Review of Economics and Management 

(CEREM), 4(3), pp.23-52. 

Choi, I., 2001. Unit root tests for panel data. Journal of international money and Finance, 20(2), 

pp.249-272. 

Christian, M., Obi, A. and Agbugba, I.K., 2019. Adoption of irrigation technology to combat 

household food insecurity in the resource-constrained farming systems of the Eastern Cape 

Province, South Africa. South African Journal of Agricultural Extension, 47(2), pp.94-104. 



 119 

Ciccarelli et al, 2023. Impact of Average Temperature Shocks on Inflation. Journal of International 

Economics, 22(7), pp. 1-52. 

Ciccarelli, M. and Marotta, F., 2024. Demand or supply? An empirical exploration of the effects 

of climate change on the macroeconomy. Energy Economics, 129, p.107163. 

Cooksey, R.W. and Cooksey, R.W., 2020. Descriptive statistics for summarising data. Illustrating 

statistical procedures: Finding meaning in quantitative data, pp.61-139. 

Cunpu, L., Zhang, X. and He, J., 2023. Impact of Climate Change on Inflation in 26 Selected 

Countries. Sustainability, 15(17), p.13108. 

Dai, A., 2021. Hydroclimatic trends during 1950–2018 over global land. Climate 

Dynamics, 56(11), pp.4027-4049. 

Dankumo, A.M., Ishak, S., Bani, Y. and Hamza, H.Z., 2021. Governance, public expenditure, trade 

and poverty reduction in sub-saharan african countries. Jurnal Ekonomi dan Studi 

Pembangunan, 13(1), pp.16-35. 

Davis, M., Moronkeji, A., Ahiduzzaman, M. and Kumar, A., 2020. Assessment of renewable 

energy transition pathways for a fossil fuel-dependent electricity-producing jurisdiction. Energy 

for Sustainable Development, 59, pp.243-261. 

Descheemaeker, K., Zijlstra, M., Masikati, P., Crespo, O. and Tui, S.H.K., 2018. Effects of climate 

change and adaptation on the livestock component of mixed farming systems: A modelling study 

from semi-arid Zimbabwe. Agricultural Systems, 159, pp.282-295. 

Dhehibi, B., Fouzai, A., Frija, A., Adhim, M.A., M'hamed, H.C., Ouerghemmi, H. and Rekik, M., 

2023. Assessing complementary synergies for integrated crop–livestock systems under 

conservation agriculture in Tunisian dryland farming systems. Frontiers in Sustainable Food 

Systems, 6, p.1022213. 

Dinar, A., Hassan, R., Mendelsohn, R. and Benhin, J., 2012. Climate change and agriculture in 

Africa: impact assessment and adaptation strategies. Routledge. 



 120 

Dinçer, H. and Yüksel, S., 2023. Analysis Results for the Effectiveness of Monetary Policies With 

Cointegration and Causality Analyses. In Research Anthology on Macroeconomics and the 

Achievement of Global Stability (pp. 925-958). IGI Global. 

Du Plessis, A., 2017. Freshwater challenges of South Africa and its Upper Vaal River (pp. 129-

151). Berlin, Germany: Springer. 

Dua, P. and Goel, D., 2021. Determinants of inflation in India. The Journal of developing 

areas, 55(2). 

Dube, K. and Nhamo, G., 2023. Evaluating climate Change's impact on hydroelectricity in the 

Zambezi River basin. Heliyon, 9(12). 

Dube, N., 2023. Forty years of climate risk research in Zimbabwe–1980–2021. Development 

Southern Africa, 40(6), pp.1308-1342. 

Eekhout, J.P., Hunink, J.E., Terink, W. and de Vente, J., 2018. Why increased extreme precipitation 

under climate change negatively affects water security. Hydrology and Earth System 

Sciences, 22(11), pp.5935-5946. 

Eekhout, J.P., Hunink, J.E., Terink, W. and de Vente, J., 2018. Why increased extreme precipitation 

under climate change negatively affects water security. Hydrology and Earth System 

Sciences, 22(11), pp.5935-5946. 

Engelbrecht, F.A., Steinkopf, J., Padavatan, J. and Midgley, G.F., 2024. Projections of future 

climate change in southern africa and the potential for regional tipping points. In Sustainability of 

Southern African Ecosystems under Global Change: Science for Management and Policy 

Interventions (pp. 169-190). Cham: Springer International Publishing. 

England, M.I., Dougill, A.J., Stringer, L.C., Vincent, K.E., Pardoe, J., Kalaba, F.K., Mkwambisi, 

D.D., Namaganda, E. and Afionis, S., 2018. Climate change adaptation and cross-sectoral policy 

coherence in southern Africa. Regional Environmental Change, 18, pp.2059-2071. 

Erdogan, S., Kartal, M.T. and Pata, U.K., 2024. Does climate change cause an upsurge in food 

prices?. Foods, 13(1), p.154. 



 121 

Fajri, H.C., Siregar, H. and Sahara, S., 2019. Impact of climate change on food price in the affected 

provinces of el nino and la nina phenomenon: Case of Indonesia. International Journal of Food 

and Agricultural Economics (IJFAEC), 7(4), pp.329-339. 

Feng, N., Huang, Y., Tian, J., Wang, Y., Ma, Y. and Zhang, W., 2024. Effects of a rainwater 

harvesting system on the soil water, heat and growth of apricot in rain-fed orchards on the Loess 

Plateau. Scientific Reports, 14(1), p.9269. 

Fischer, G., Frohberg, K., Parry, M.L. and Rosenzweig, C., 1994. Climate change and world food 

supply, demand and trade: Who benefits, who loses?. Global Environmental Change, 4(1), pp.7-

23. 

Fornaro, L. and Wolf, M., 2023. The scars of supply shocks: Implications for monetary 

policy. Journal of Monetary Economics, 140, pp.S18-S36. 

Frain, J.C., 2007. Small sample power of tests of normality when the alternative is an α-stable 

distribution. Trinity Economics Papers, 207. 

Funyina, T.K., Chanda, C.S. and Chipili, J.M., 2024. Bank of Zambia Working Paper Series 

Macroeconomic Effects of Global Shocks: Policy Lessons for the SADC Region. 

Ganesh, K.N., Zhang, D., Miller, S.J., Rossen, K., Chirik, P.J., Kozlowski, M.C., Zimmerman, 

J.B., Brooks, B.W., Savage, P.E. and Allen, D.T., Green chemistry: A framework for a sustainable 

future., 2021, 25. DOI: https://doi. org/10.1021/acs. oprd. 1c00216, pp.1455-1459. 

Genberg, M., 2022. The Impact of Inflation on Developing Countries. Inflation, Income 

Distribution and X-Efficiency Theory, 16(05), pp. 15-22. 

Godde, C.M., Mason-D’Croz, D., Mayberry, D.E., Thornton, P.K. and Herrero, M., 2021. Impacts 

of climate change on the livestock food supply chain; a review of the evidence. Global food 

security, 28, p.100488. 

Gogtay, N.J. and Thatte, U.M., 2017. Principles of correlation analysis. Journal of the Association 

of Physicians of India, 65(3), pp.78-81. 

Gomiero, T., 2016. Soil degradation, land scarcity and food security: Reviewing a complex 

challenge. Sustainability, 8(3), p.281. 



 122 

Green, J.K., Seneviratne, S.I., Berg, A.M., Findell, K.L., Hagemann, S., Lawrence, D.M. and 

Gentine, P., 2019. Large influence of soil moisture on long-term terrestrial carbon 

uptake. Nature, 565(7740), pp.476-479. 

Guerrieri, V., Lorenzoni, G., Straub, L. and Werning, I., 2022. Macroeconomic implications of 

COVID-19: Can negative supply shocks cause demand shortages?. American Economic 

Review, 112(5), pp.1437-1474. 

Hachigonta, S., Nelson, G.C., Thomas, T.S. and Sibanda, L.M., According to the Fourth 

Assessment Report of the Intergovernmental Panel on Climate Change (IPCC)(Le Treut et al., 

2007, 96), climate is defined. 

Hallegatte, S., McIsaac, F., Dudu, H., Jooste, C., Knudsen, C. and Beck, H., 2024. Macroeconomic 

implications of a transition to net zero emissions. Peterson Institute for International Economics 

Working Paper, (24-6). 

Han, C., Phillips, P.C. and Sul, D., 2017. Lag length selection in panel autoregression. Econometric 

Reviews, 36(1-3), pp.225-240. 

Hedenus, F., Wirsenius, S. and Johansson, D.J., 2014. The importance of reduced meat and dairy 

consumption for meeting stringent climate change targets. Climatic change, 124(1), pp.79-91. 

Henry, B.K., Eckard, R.J. and Beauchemin, K.A., 2018. Adaptation of ruminant livestock 

production systems to climate changes. Animal, 12(s2), pp.s445-s456. 

Herranz, E., 2017. Unit root tests. Wiley Interdisciplinary Reviews: Computational Statistics, 9(3), 

p.e1396. 

Herrero, M. and Thornton, P.K., 2010. Mixed crop livestock systems in the developing world: 

present and future. Advances in animal biosciences, 1(2), pp.481-482. 

Hill, T.D., Davis, A.P., Roos, J.M. and French, M.T., 2020. Limitations of fixed-effects models for 

panel data. Sociological Perspectives, 63(3), pp.357-369. 

Hörtenhuber, S.J., Seiringer, M., Theurl, M.C., Größbacher, V., Piringer, G., Kral, I. and Zollitsch, 

W.J., 2022. Implementing an appropriate metric for the assessment of greenhouse gas emissions 

from livestock production: A national case study. animal, 16(10), p.100638. 



 123 

Huang, W. and Jiang, L., 2019. Efficiency performance of fertilizer use in arable agricultural 

production in China. China Agricultural Economic Review, 11(1), pp.52-69. 

Humphrey , T. M., 1975. A Monetarist Model of the Inflationery Process. Federal Reserve Bank 

of Richmond, 13(2), pp. 1-13. 

Hunter, R., Crespo, O., Coldrey, K., Cronin, K. and New, M., 2020. Research highlights–Climate 

change and future crop suitability in Zimbabwe. University of Cape Town, South Africa, 

undertaken in support of adaptation for smallholder agriculture programme’(ASAP) phase 2. 

Hussain, S., Shaukat, M., Ashraf, M., Zhu, C., Jin, Q. and Zhang, J., 2019. Salinity stress in arid 

and semi-arid climates: Effects and management in field crops. Climate change and 

agriculture, 13, pp.201-226. 

Iliyasu, J., Mamman, S.O. and Ahmed, U.A., 2023. Impact of climate change on output and 

inflation in Africa’s largest economies. Climate and Development, 15(10), pp.864-875. 

Im, K.S., Pesaran, M.H. and Shin, Y., 2003. Testing for unit roots in heterogeneous panels. Journal 

of econometrics, 115(1), pp.53-74. 

Imran, M. and Ozcatalbas, O., 2021. Optimization of energy consumption and its effect on the 

energy use efficiency and greenhouse gas emissions of wheat production in Turkey. Discover 

Sustainability, 2(1), p.28. 

Jackson, J., 2024. The Climate-Changing Context of Inflation: Fossilflation, Climateflation, and 

the Environmental Politics of Green Central Banks. Global Environmental Politics, pp.1-9. 

Jayne, T.S., Fox, L., Fuglie, K. and Adelaja, A., 2021. Agricultural productivity growth, resilience, 

and economic transformation in sub-Saharan Africa. Association of Public and Land-grant 

Universities (APLU). 

Johnston, P. et al. Climate Change Impacts in South Africa: What Climate Change Means for a 

Country and its People. (2024) 

Juliet, L., Barbara, N. and Linda, N., 2016. Economic significance of agriculture for poverty 

reduction: The case of Zambia. Archives of Current Research International, 5(2), pp.1-9. 



 124 

Juodis, A. and Reese, S., 2022. The incidental parameters problem in testing for remaining cross-

section correlation. Journal of Business & Economic Statistics, 40(3), pp.1191-1203. 

Kabel, T.S. and Bassim, M., 2020. Reasons for shifting and barriers to renewable energy: A 

literature review. International Journal of Energy Economics and Policy, 10(2), pp.89-94. 

Kalymbetova, A., Zhetibayev, Z., Kambar, R., Ranov, Z. and Izatullayeva, B., 2021. The effect of 

oil prices on industrial production in oil-importing countries: panel cointegration 

test. International Journal of Energy Economics and Policy, 11(1), pp.186-192. 

Kamuhuza, A. and Jianya, G., 2022. Statistical Analysis of Factors Influencing Economic Growth 

in Zambia. International Journal for Research in Applied Science & Engineering Technology 

(IJRASET), 10, p.7. 

Karunaratne, A.S., Walker, S. and Ruane, A.C., 2015. Modelling Bambara groundnut yield in 

Southern Africa: Towards a climate-resilient future. Climate Research, 65, pp.193-203. 

Kaspar, F., Friedrich, K. and Imbery, F., 2023. Observed temperature trends in Germany: Current 

status and communication tools. Meteorologische Zeitschrift, 32(4). 

Kaur, P., Stoltzfus, J. and Yellapu, V., 2018. Descriptive statistics. International Journal of 

Academic Medicine, 4(1), pp.60-63. 

Kelejian, H. and Piras, G., 2017. Spatial econometrics. Academic Press. 

Khalid, U. and Shafiullah, M., 2021. Financial development and governance: A panel data analysis 

incorporating cross-sectional dependence. Economic Systems, 45(2), p.100855. 

Khatun, N., 2021. Applications of normality test in statistical analysis. Open journal of 

statistics, 11(01), p.113. 

Khavhagali, V., Reckien, D., Biesbroek, R., Mantlana, B. and Pfeffer, K., 2024. Understanding the 

climate change adaptation policy landscape in South Africa. Climate Policy, 24(4), pp.458-472. 

Khraief, N., Shahbaz, M., Heshmati, A. and Azam, M., 2020. Are unemployment rates in OECD 

countries stationary? Evidence from univariate and panel unit root tests. The North American 

Journal of Economics and Finance, 51, p.100838. 



 125 

Kilroy, G., 2015. A review of the biophysical impacts of climate change in three hotspot regions 

in Africa and Asia. Regional Environmental Change, 15, pp.771-782. 

Kim, C.G., 2012. The impact of climate change on the agricultural sector: implications of the agro‐

industry for low carbon, green growth strategy and roadmap for the East Asian Region. 

Kruitwagen, L., Haile, K. & Rossouw, S., 2020. The impact of climate change on inflation: 

Evidence from South Africa.. Journal of African Economies, 29(5), pp. 505-530. 

Kumar, L., Chhogyel, N., Gopalakrishnan, T., Hasan, M.K., Jayasinghe, S.L., Kariyawasam, C.S., 

Kogo, B.K. and Ratnayake, S., 2022. Climate change and future of agri-food production. In Future 

foods (pp. 49-79). Academic Press. 

Kumari, S., George, S.G., Meshram, M.R., Esther, D. and Kumar, P., 2020. A Review on climate 

change and its impact on agriculture in India. Current Journal of Applied Science and 

Technology, 39(44), pp.58-74. 

Kunawotor, M.E., Bokpin, G.A., Asuming, P.O. and Amoateng, K.A., 2022. The impacts of 

extreme weather events on inflation and the implications for monetary policy in Africa. Progress 

in Development Studies, 22(2), pp.130-148. 

Kunawotor, M., Bokpin, G. A., Asuming, P. O. & Amoateng, K. A., 2021. The Impacts of Extreme 

Weather Events on Inflation and the Implications for Monetary Policy in Africa. Progress in 

Development Studies, 22(2), pp. 130-148. 

Kundu, M.G., Mishra, S. and Khare, D., 2011. Specificity and sensitivity of normality tests. 

In Proceedings of VI International Symposium on Optimisation and Statistics. Anamaya Publisher. 

Kwame, A.R., Danny, S.M. and Memory, R., 2022. The threats of climate change on water and 

food security in South Africa. American Journal of Environment and Climate, 1(2), pp.73-91. 

Lane, A. and Jarvis, A., 2007. Changes in climate will modify the geography of crop suitability: 

agricultural biodiversity can help with adaptation. SAT eJournal, 4(1), pp. 1-12. 

Lau, L.S., Ng, C.F., Cheah, S.P. and Choong, C.K., 2019. Panel data analysis (stationarity, 

cointegration, and causality). In Environmental Kuznets Curve (EKC) (pp. 101-113). Academic 

Press. 



 126 

Lee, Y.M. and Wang, K.M., 2015. Dynamic heterogeneous panel analysis of the correlation 

between stock prices and exchange rates. Economic research-Ekonomska istraživanja, 28(1), 

pp.749-772. 

Lehtonen, H., Huan-Niemi, E. and Niemi, J., 2022. The transition of agriculture to low carbon 

pathways with regional distributive impacts. Environmental Innovation and Societal 

Transitions, 44, pp.1-13. 

Leonel, L.P. and Tonetti, A.L., 2021. Wastewater reuse for crop irrigation: Crop yield, soil and 

human health implications based on giardiasis epidemiology. Science of the Total 

Environment, 775, p.145833. 

Leshoro, T.L., 2016. The Dynamics of Inflation in South Africa: Implications for Policy. South 

African Journal of Economics. (Doctoral dissertation) 

Lesk, C., Coffel, E., Winter, J., Ray, D., Zscheischler, J., Seneviratne, S.I. and Horton, R., 2021. 

Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop 

yields. Nature food, 2(9), pp.683-691. 

Levin, A., Lin, C.F. and Chu, C.S.J., 2002. Unit root tests in panel data: asymptotic and finite-

sample properties. Journal of econometrics, 108(1), pp.1-24. 

Liu, X. and Zhou, J., 2021. Assessment of the continuous extreme drought events in Namibia 

during the last decade. Water, 13(20), p.2942. 

Lunduka, R.W., Mateva, K.I., Magorokosho, C. and Manjeru, P., 2019. Impact of adoption of 

drought-tolerant maize varieties on total maize production in southeastern Zimbabwe. Climate and 

development, 11(1), pp.35-46. 

Mabhaudhi, T., Chibarabada, T.P. and Sikka, A., 2023. Status of integrated crop-livestock research 

in the mixed farming systems of the Global South: a scoping study. Frontiers in Sustainable Food 

Systems, 7, p.1241675. 

Mabhaudhi, T., Nhamo, L. and Mpandeli, S., 2021. Enhancing crop water productivity under 

increasing water scarcity in South Africa. In Climate Change Science (pp. 1-18). Elsevier. 



 127 

Mabhaudhi, T., Nhamo, L., Mpandeli, S., Nhemachena, C., Senzanje, A., Sobratee, N., Chivenge, 

P.P., Slotow, R., Naidoo, D., Liphadzi, S. and Modi, A.T., 2019. The water–energy–food nexus as 

a tool to transform rural livelihoods and well-being in Southern Africa. International journal of 

environmental research and public health, 16(16), p.2970. 

Machlup, F., 2020. Another view of cost-push and demand-pull inflation. In Economic Semantics 

(pp. 241-268). Routledge. 

Maddala, G.S. and Wu, S., 1999. A comparative study of unit root tests with panel data and a new 

simple test. Oxford Bulletin of Economics and statistics, 61(S1), pp.631-652. 

Madito, O.P., and Odhiambo, M.N., 2018. The main determinants of Inflation in South Africa: an 

Empirical Investigation. Organizations and Markets in Emerging Economies, 9(2), pp.52-78. 

Maguire, S., 1992. United Nations Framework Convention on Climate Change. Documents in 

International Environmental Law, 21(6), pp. 5-9. 

Mainzer, R., 2018. The effect of a preliminary Hausman test on confidence intervals. Bulletin of 

the Australian Mathematical Society, 98(3), pp.518-519. 

Marandu, S.H., 2018. The Impact of FDI on Economic Growth in Southern African Countries. 

Martin, W., Mamun, A. and Minot, N., 2024. Food trade policy and food price volatility. Intl Food 

Policy Res Inst. 

Masipa, T., 2017. The impact of climate change on food security in South Africa: Current realities 

and challenges ahead. Jàmbá: Journal of Disaster Risk Studies, 9(1), pp.1-7. 

Matandare, M.A., 2017. An analysis of the role of the agriculture sector: Case of 

Zimbabwe. International Journal of Scientific Research in Science and Technology, 3(8), pp.1255-

1263. 

Matchaya, G., Nhamo, L., Nhlengethwa, S. and Nhemachena, C., 2019. An overview of water 

markets in southern Africa: an option for water management in times of scarcity. Water, 11(5), 

p.1006. 



 128 

Matikinca, P., Nyamakura, B. and Shackleton, S., 2024. Climate change adaptation and disaster 

risk reduction in South Africa's local municipal plans. South African Journal of Science, 120(7-8), 

pp.1-9. 

Mavume, A.F., Banze, B.E., Macie, O.A. and Queface, A.J., 2021. Analysis of climate change 

projections for Mozambique under the representative concentration pathways. Atmosphere, 12(5), 

p.588. 

Mbajiorgu, D.G. and Odeku, K.O., 2023. Fighting food insecurity, hunger, and poverty: the content 

and context of the socio-economic right of access to sufficient food in South Africa. Obiter, 43(3), 

pp.467-488. 

Mbingui, C., 2022. Climate Change and Agricultural Yield in the Republic of Congo: An Analysis 

Using the ARDL Approach. Theoretical Economics Letters, 12(6), pp.1903-1920. 

Mburamatare, D., Gboney, W.K., Hakizimana, J.D.D. and Mutemberezi, F., 2022. Effects of 

industrialization, technology and labor efficiency on electricity consumption: Panel data 

experience of Rwanda, Tanzania and Kenya. International Journal of Energy Economics and 

Policy, 12(2), pp.349-359. 

McIntyre, M.A. and El Ashram, A., 2017. Energy diversification: macro-related 

challenges. Unleashing growth and strengthening resilience in the Caribbean. International 

Monetary Fund, Washington, DC, pp.289-314. 

McPhillips, L.E., Chang, H., Chester, M.V., Depietri, Y., Friedman, E., Grimm, N.B., Kominoski, 

J.S., McPhearson, T., Méndez‐Lázaro, P., Rosi, E.J. and Shafiei Shiva, J., 2018. Defining extreme 

events: A cross‐disciplinary review. Earth's Future, 6(3), pp.441-455. 

Mendelsohn, R., 2000. Efficient adaptation to climate change. Climatic change, 45(3), pp.583-

600. 

Mensah, I.A., Sun, M., Gao, C., Omari-Sasu, A.Y., Zhu, D., Ampimah, B.C. and Quarcoo, A., 

2019. Analysis on the nexus of economic growth, fossil fuel energy consumption, CO2 emissions 

and oil price in Africa based on a PMG panel ARDL approach. Journal of Cleaner 

Production, 228, pp.161-174. 



 129 

Mishra, P., Pandey, C.M., Singh, U., Gupta, A., Sahu, C. and Keshri, A., 2019. Descriptive statistics 

and normality tests for statistical data. Annals of cardiac anaesthesia, 22(1), pp.67-72. 

Mkodzongi, G. and Lawrence, P., 2019. The fast-track land reform and agrarian change in 

Zimbabwe. Review of African Political Economy, 46(159), pp.1-13. 

Modi, R., 2019. The role of agriculture for food security and poverty reduction in sub-Saharan 

Africa. The Palgrave handbook of contemporary international political economy, pp.391-410. 

Mogomotsi, P.K., Sekelemani, A. and Mogomotsi, G.E., 2020. Climate change adaptation 

strategies of small-scale farmers in Ngamiland East, Botswana. Climatic Change, 159(3), pp.441-

460. 

Moore, B.J., 2023. Monetary factors. In A Guide to Post-Keynesian Economics (pp. 120-138). 

Routledge. 

Moore, C.E., Meacham-Hensold, K., Lemonnier, P., Slattery, R.A., Benjamin, C., Bernacchi, C.J., 

Lawson, T. and Cavanagh, A.P., 2021. The effect of increasing temperature on crop photosynthesis: 

from enzymes to ecosystems. Journal of experimental botany, 72(8), pp.2822-2844. 

Moyo, S., 2016. Family farming in sub-Saharan Africa: its contribution to agriculture, food 

security and rural development (No. 150). Working paper. 

Mpala, T.A. and Simatele, M.D., 2024. Climate-smart agricultural practices among rural farmers 

in Masvingo district of Zimbabwe: perspectives on the mitigation strategies to drought and water 

scarcity for improved crop production. Frontiers in Sustainable Food Systems, 7, p.1298908. 

Mpandeli, S., Naidoo, D., Mabhaudhi, T., Nhemachena, C., Nhamo, L., Liphadzi, S., Hlahla, S. 

and Modi, A.T., 2018. Climate change adaptation through the water-energy-food nexus in southern 

Africa. International journal of environmental research and public health, 15(10), p.2306. 

Mugiyo, H., Magadzire, T., Choruma, D.J., Chimonyo, V.G.P., Manzou, R., Jiri, O. and 

Mabhaudhi, T., 2023. El Niño’s effects on Southern African agriculture in 2023/24 and anticipatory 

action strategies to reduce the impacts in Zimbabwe. Atmosphere, 14(11), p.1692. 



 130 

Mulungu, K., Tembo, G., Bett, H. and Ngoma, H., 2021. Climate change and crop yields in 

Zambia: historical effects and future projections. Environment, Development and 

Sustainability, 23, pp.11859-11880. 

Mupambwa, H.A., Hausiku, M.K., Namwoonde, A.S., Liswaniso, G.M., Haulofu, M. and 

Mafwila, S.K., 2021. Climate change implications and mitigation in a hyperarid country: A case 

of Namibia. In African Handbook of Climate Change Adaptation (pp. 2247-2268). Cham: Springer 

International Publishing. 

Muroyiwa, B. and Mushunje, A., 2017. Price discovery in the South African white and yellow 

maize futures market. International Journal, 73(8). 

Murray, U., Gebremedhin, Z., Brychkova, G. and Spillane, C., 2016. Smallholder farmers and 

climate smart agriculture: Technology and labor-productivity constraints amongst women 

smallholders in Malawi. Gender, Technology and Development, 20(2), pp.117-148. 

Mustafa, Z., Vitali, G., Huffaker, R. and Canavari, M., 2024. A systematic review on price volatility 

in agriculture. Journal of Economic Surveys, 38(1), pp.268-294. 

Mutengwa, C.S., Mnkeni, P. and Kondwakwenda, A., 2023. Climate-smart agriculture and food 

security in Southern Africa: a review of the vulnerability of smallholder agriculture and food 

security to climate change. Sustainability, 15(4), p.2882. 

Nahoussé, D., 2019. The determinants of inflation in West Africa. International Journal of 

Economics and Financial Research, 5(55), pp.100-105. 

Naik, M. and Abiodun, B.J., 2020. Projected changes in drought characteristics over the Western 

Cape, South Africa. Meteorological Applications, 27(1), p.e1802. 

Naik, M. and Abiodun, B.J., 2024. Modelling the potential of land use change to mitigate the 

impacts of climate change on future drought in the Western Cape, South Africa. Theoretical and 

Applied Climatology, pp.1-22. 

Naylor, R.L. and Higgins, M.M., 2018. The rise in global biodiesel production: Implications for 

food security. Global food security, 16, pp.75-84. 



 131 

Ncube, T.M., 2019. Determinants of economic growth-the case of Zimbabwe. MCom. Thesis. 

University of Cape Town.  

Nelson, M., 2021. Biosphere 2’s Lessons about Living on Earth and in Space. Space: Science & 

Technology. 

Ngalawa, H. and Komba, C., 2020. Inflation, output and monetary policy in South Africa. African 

Economic Research Consortium. 

Ngoma, H., Finn, A. and Kabisa, M., 2024. Climate shocks, vulnerability, resilience and 

livelihoods in rural Zambia. Climate and Development, 16(6), pp.490-501. 

Ngoma, H., Lupiya, P., Kabisa, M. and Hartley, F., 2021. Impacts of climate change on agriculture 

and household welfare in Zambia: an economy-wide analysis. Climatic Change, 167(3), p.55. 

Nguyen, K.H. and Kakinaka, M., 2019. Renewable energy consumption, carbon emissions, and 

development stages: Some evidence from panel cointegration analysis. Renewable energy, 132, 

pp.1049-1057. 

Nhamo, L., Mabhaudhi, T. and Modi, A.T., 2019. Preparedness or repeated short-term relief aid? 

Building drought resilience through early warning in southern Africa. Water Sa, 45(1), pp.75-85. 

Nhemachena, C. & Hassan, R., 2007. Microeconomic impact of climate change on the South 

African agricultural sector: A Ricardian approach. Global and Planetary Change. 54(4), pp. 238-

253. 

Nhemachena, C., Nhamo, L., Matchaya, G., Nhemachena, C.R., Muchara, B., Karuaihe, S.T. and 

Mpandeli, S., 2020. Climate change impacts on water and agriculture sectors in Southern Africa: 

Threats and opportunities for sustainable development. Water, 12(10), p.2673. 

Nicholson, S.E., Funk, C. and Fink, A.H., 2018. Rainfall over the African continent from the 19th 

through the 21st century. Global and planetary change, 165, pp.114-127. 

Nkosi, M., Mathivha, F.I. and Odiyo, J.O., 2021. Impact of land management on water resources, 

a South African context. Sustainability, 13(2), p.701. 



 132 

Nosakhare, U.H. and Bright, A.F., 2017. Evaluation of techniques for univariate normality test 

using Monte Carlo simulation. American Journal of Theoretical and Applied Statistics, 6(5-1), 

pp.51-61. 

Nyagwambo, N.L., Chonguiça, E., Cox, D. and Monggae, F., 2008. Local Governments and 

IWRM in the SADC Region. Institute of Water and Sanitation Development (IWSD): Harare, 

Zimbabwe, p.58. 

Ochieng, J., Kirimi, L. and Mathenge, M., 2016. Effects of climate variability and change on 

agricultural production: The case of small-scale farmers in Kenya. NJAS-Wageningen journal of 

life sciences, 77, pp.71-78. 

Odongo, M.T., Misati, R.N., Kamau, A.W. and Kisingu, K.N., 2022. Climate change and inflation 

in Eastern and Southern Africa. Sustainability, 14(22), p.14764. 

Oganesyan, M., 2017. Carbon emissions, energy consumption and economic growth in the BRICS. 

Okou, C., Spray, J.A. and Unsal, M.F.D., 2022. Staple food prices in sub-Saharan Africa: An 

empirical assessment. International Monetary Fund. 

Olabanji, M.F., Ndarana, T. and Davis, N., 2020. Impact of climate change on crop production and 

potential adaptive measures in the olifants catchment, South Africa. Climate, 9(1), p.6. 

Oluwatayo, I.B. and Braide, T.M., 2022. Socioeconomic Determinants of Households’ 

Vulnerability to Drought in Western Cape, South Africa. Sustainability, 14(13), p.7582. 

Oman, W., Salin, M. and Svartzman, R., 2024. Three tales of central banking and financial 

supervision for the ecological transition. Wiley Interdisciplinary Reviews: Climate Change, 15(3), 

p.e876. 

Panagos, P., Borrelli, P., Matthews, F., Liakos, L., Bezak, N., Diodato, N. and Ballabio, C., 2022. 

Global rainfall erosivity projections for 2050 and 2070. Journal of Hydrology, 610, p.127865. 

Panwar, V. and Sen, S., 2019. Economic impact of natural disasters: An empirical re-

examination. Margin: The Journal of Applied Economic Research, 13(1), pp.109-139. 

Patel et al, 2022. Climate change, price pass-through mechanisms, and inflation persistence. Post 

Keynesian Journal of Economics, 18(4), pp. 1-66. 



 133 

Paudel, D., Neupane, R.C., Sigdel, S., Poudel, P. and Khanal, A.R., 2023. COVID-19 pandemic, 

climate change, and conflicts on agriculture: A trio of challenges to global food 

security. Sustainability, 15(10), p.8280. 

Pawlak, K. and Kołodziejczak, M., 2020. The role of agriculture in ensuring food security in 

developing countries: Considerations in the context of the problem of sustainable food 

production. Sustainability, 12(13), p.5488. 

Pedroni, P., 1995. Panel cointegration. Asymptotic and Finite Sample Properties of Pooled Time 

Series Tests with an Application to the PPP Hypothesis, Indiana University. 

Pesaran, M.H., 2021. General diagnostic tests for cross-sectional dependence in panels. Empirical 

economics, 60(1), pp.13-50. 

Pesaran, M.H., Shin, Y. and Smith, R.P., 1999. Pooled mean group estimation of dynamic 

heterogeneous panels. Journal of the American statistical Association, 94(446), pp.621-634. 

Phiri, J., Malec, K., Majune, S.K., Appiah-Kubi, S.N.K., Gebeltová, Z., Maitah, M., Maitah, K. 

and Abdullahi, K.T., 2020. Agriculture as a determinant of Zambian economic 

sustainability. Sustainability, 12(11), p.4559. 

Piontek, F., Drouet, L., Emmerling, J., Kompas, T., Méjean, A., Otto, C., Rising, J., Soergel, B., 

Taconet, N. and Tavoni, M., 2021. Integrated perspective on translating biophysical to economic 

impacts of climate change. Nature Climate Change, 11(7), pp.563-572. 

Pryor, J.W., Zhang, Q. and Arias, M.E., 2022. Integrating climate change, hydrology, and water 

footprint to measure water scarcity in Lesotho, Africa. Journal of Water Resources Planning and 

Management, 148(1), p.05021025. 

Qayyum, A. and Sultana, B., 2018. Factors of food inflation: Evidence from time series of 

Pakistan. Journal of Banking and Finance Management, 1(2), pp.23-30. 

Rezaei, E.E., Webber, H., Asseng, S., Boote, K., Durand, J.L., Ewert, F., Martre, P. and MacCarthy, 

D.S., 2023. Climate change impacts on crop yields. Nature Reviews Earth & Environment, 4(12), 

pp.831-846. 



 134 

Rojas-Downing, M.M., Nejadhashemi, A.P., Harrigan, T. and Woznicki, S.A., 2017. Climate 

change and livestock: Impacts, adaptation, and mitigation. Climate risk management, 16, pp.145-

163. 

Runganga, R. and Mhaka, S., 2021. Impact of agricultural production on economic growth in 

Zimbabwe. 

Sahoo, G., Wani, A., Rout, S., Sharma, A. and Prusty, A.K., 2021. Impact and contribution of forest 

in mitigating global climate change. Des. Eng, 4, pp.667-682. 

Saikkonen, P. & Lütkepohl, H., 2002. Testing for the cointegrating rank of a VAR process with a 

time trend. Journal of Econometrics, 108(2), pp. 359-386. 

Salim, A., 2019. Inflation: Types, causes and effects. Impact Journals, 7(1), pp.343-350. 

Satgar, V. and Cherry, J., 2021. Climate and food inequality: The south African food sovereignty 

campaign response. In Challenging Inequality in South Africa (pp. 53-73). Routledge. 

Schober, P., Boer, C. and Schwarte, L.A., 2018. Correlation coefficients: appropriate use and 

interpretation. Anesthesia & analgesia, 126(5), pp.1763-1768. 

Schwarzer, J. S., 2018. Retrospectives: Cost-Push and Demand-Pull Inflation: Milton Friedman 

and the "Cruel Dilema". The Journal of Economic Perspectives, 32(1), pp. 195-210. 

Schwieger, D.A.M., 2023. Overcoming Namibia’s worst drought in the last 40 years: Ethnographic 

insights from Okakarara constituency. Journal of Namibian Studies: History Politics Culture, 33, 

pp.31-56. 

Seeram, E., 2019. An overview of correlational research. Radiologic technology, 91(2), pp.176-

179. 

Seetal, A., Mathye, M. and Godfrey, L., 2021. Decoupling South Africa’s development from water 

demand through a circular economy. The circular economy as development opportunity, p.61. 

Sekaran, U., Lai, L., Ussiri, D.A., Kumar, S. and Clay, S., 2021. Role of integrated crop-livestock 

systems in improving agriculture production and addressing food security–A review. Journal of 

Agriculture and Food Research, 5, p.100190. 



 135 

Sekelemani, A., Mogomotsi, P.K., Stone, L.S., Mogomotsi, G.E. and Lekhane, O., 2020. Farmers’ 

perceptions of climate change and their adaptation strategies: The case of Ngamiland East, 

Botswana. Transactions of the Royal Society of South Africa, 75(2), pp.213-221.  

Semieniuk, G., Campiglio, E., Mercure, J.F., Volz, U. and Edwards, N.R., 2021. Low‐carbon 

transition risks for finance. Wiley Interdisciplinary Reviews: Climate Change, 12(1), p.e678. 

Seppelt, R., Klotz, S., Peiter, E. and Volk, M., 2022. Agriculture and food security under a changing 

climate: An underestimated challenge. Iscience, 25(12). 

Shaikh, P.A., Muhammad, F. and Khan, S.K., 2022. The dynamic theories of inflation. Pakistan 

Journal of International Affairs, 5(2). 

Shanmugavel, D., Rusyn, I., Solorza-Feria, O. and Kamaraj, S.K., 2023. Sustainable SMART 

fertilizers in agriculture systems: A review on fundamentals to in-field applications. Science of The 

Total Environment, 904, p.166729. 

Sharma, A., Hazarika, M., Heisnam, P., Pandey, H., Devadas, V.S. and Wangsu, M., 2024. 

Controlled Environment Ecosystem: A plant growth system to combat climate change through 

soilless culture. Crop Design, 3(1), p.100044. 

Shikangalah, R.N., 2020. The 2019 drought in Namibia: An overview. Journal of Namibian 

Studies: History Politics Culture, 27, pp.37-58. 

Shikwambana, L., Xongo, K., Mashalane, M. and Mhangara, P., 2023. Climatic and Vegetation 

Response Patterns over South Africa during the 2010/2011 and 2015/2016 Strong ENSO 

Phases. Atmosphere, 14(2), p.416. 

Shrestha, S., 2019. Effects of climate change in agricultural insect pest. Acta Scientific 

Agriculture, 3(12), pp.74-80. 

Simasiku, C. and Sheefeni, J.P., 2017. Agricultural exports and economic growth in 

Namibia. European Journal of Basic and Applied Sciences Vol, 4(1), pp.41-50. 

Sintayehu, D.W., 2018. Impact of climate change on biodiversity and associated key ecosystem 

services in Africa: a systematic review. Ecosystem health and sustainability, 4(9), pp.225-239. 



 136 

Stern, D.I. and Kaufmann, R.K., 2014. Anthropogenic and natural causes of climate 

change. Climatic change, 122, pp.257-269. 

Stevens, T. and Madani, K., 2016. Future climate impacts on maize farming and food security in 

Malawi. Scientific reports, 6(1), p.36241. 

Steyn, M., Meissner, R., Nortje, K., Funke, N. and Petersen, C., 2019. Water security and South 

Africa. Understanding water security at local government level in South Africa, pp.1-44. 

Su, C.W., Huang, S.W., Qin, M. and Umar, M., 2021. Does crude oil price stimulate economic 

policy uncertainty in BRICS?. Pacific-Basin Finance Journal, 66, p.101519. 

Tembo, B., Sihubwa, S., Masilokwa, I. and Nyambe-Mubanga, M., 2020. Economic implications 

of climate change in Zambia (Vol. 137). SATIED Working Paper. 

Tesfaye, K., Gbegbelegbe, S., Cairns, J.E., Shiferaw, B., Prasanna, B.M., Sonder, K., Boote, K., 

Makumbi, D. and Robertson, R., 2015. Maize systems under climate change in sub-Saharan Africa: 

Potential impacts on production and food security. International Journal of Climate Change 

Strategies and Management, 7(3), pp.247-271. 

Theron, S.N., Archer, E., Midgley, S.J.E. and Walker, S., 2021. Agricultural perspectives on the 

2015-2018 Western Cape drought, South Africa: Characteristics and spatial variability in the core 

wheat growing regions. Agricultural and Forest Meteorology, 304, p.108405. 

Thomas, T.S., Robertson, R.D., Strzepek, K. and Arndt, C., 2022. Extreme events and production 

shocks for key crops in southern africa under climate change. Frontiers in Climate, 4, p.787582. 

Thornton, P.K. and Herrero, M., 2015. Adapting to climate change in the mixed crop and livestock 

farming systems in sub-Saharan Africa. Nature Climate Change, 5(9), pp.830-836. 

Thornton, P.K. and Herrero, M.T., 2010. The inter-linkages between rapid growth in livestock 

production, climate change, and the impacts on water resources, land use, and deforestation. 

Tol, R.S., 2018. The economic impacts of climate change. Review of environmental economics and 

policy. 



 137 

Tong, D., Zhang, Q., Zheng, Y., Caldeira, K., Shearer, C., Hong, C., Qin, Y. and Davis, S.J., 2019. 

Committed emissions from existing energy infrastructure jeopardize 1.5 C climate 

target. Nature, 572(7769), pp.373-377. 

Totonchi , J., 2011. Macroeconomic Theories of Inflation. International Conference on Economics 

and Finance Research, 4(1), pp. 5-26. 

Twine, R., 2021. Emissions from animal agriculture—16.5% is the new minimum 

figure. Sustainability, 13(11), p.6276. 

Urich, P., Li, Y. and Masike, S., 2021. Climate Change, Biodiversity, and Tipping Points in 

Botswana. In African Handbook of Climate Change Adaptation (pp. 1193-1226). Cham: Springer 

International Publishing. 

Verschuur, J., Li, S., Wolski, P. and Otto, F.E., 2021. Climate change as a driver of food insecurity 

in the 2007 Lesotho-South Africa drought. Scientific reports, 11(1), p.3852. 

von Grebmer, K., Bernstein, J., Mukerji, R., Patterson, F., Wiemers, M., Chéilleachair, R.N., Foley, 

C., Gitter, S., Ekstrom, K. and Fritschel, H., 2019. 2019 Global Hunger Index: the challenge of 

hunger and climate change. 

Walls, H., Johnston, D., Matita, M., Kamwanja, T., Smith, R. and Nanama, S., 2023. The politics 

of agricultural policy and nutrition: a case study of Malawi’s Farm Input Subsidy Programme 

(FISP). PLOS Global Public Health, 3(10), p.e0002410. 

Walsh, J.E., Ballinger, T.J., Euskirchen, E.S., Hanna, E., Mård, J., Overland, J.E., Tangen, H. and 

Vihma, T., 2020. Extreme weather and climate events in northern areas: A review. Earth-Science 

Reviews, 209, p.103324. 

Wang, C., Li, S., Wu, M., Jansson, P.E., Zhang, W., He, H., Xing, X., Yang, D., Huang, S., Kang, 

D. and He, Y., 2022. Modelling water and energy fluxes with an explicit representation of irrigation 

under mulch in a maize field. Agricultural and Forest Meteorology, 32(6), p.109145. 

Wang, J. and Azam, W., 2024. Natural resource scarcity, fossil fuel energy consumption, and total 

greenhouse gas emissions in top emitting countries. Geoscience Frontiers, 15(2), p.101757. 



 138 

Wei, S.J. and Xie, Y., 2020. Monetary policy in an era of global supply chains. Journal of 

International Economics, 124, p.103299. 

Wendt, J., 2023. An Oasis in Crisis: Lesotho Highlands Water Project Turned Drought. 

Wheeler, T. and Von Braun, J., 2013. Climate change impacts on global food 

security. Science, 341(6145), pp.508-513. 

While, A. and Eadson, W., 2022. Zero carbon as economic restructuring: spatial divisions of labour 

and just transition. New Political Economy, 27(3), pp.385-402. 

Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., Garnett, T., 

Tilman, D., DeClerck, F., Wood, A. and Jonell, M., 2019. Food in the Anthropocene: the EAT–

Lancet Commission on healthy diets from sustainable food systems. The lancet, 393(10170), 

pp.447-492. 

Wooldridge, J.M., 2019. Correlated random effects models with unbalanced panels. Journal of 

Econometrics, 211(1), pp.137-150. 

World Bank Group. 2021. The World Bank in Botswana – Overview. URL: 

http://www.worldbank.org/en/country/botswana/overview 

Wu, H. and Etienne, F., 2021. Effect of climate change on food production (animal products). 

In The Impacts of Climate Change (pp. 233-253). Elsevier. 

Xie, Y. and Pesaran, M.H., 2022. A Bias-Corrected Cd Test for Error Cross-Sectional Dependence 

in Panel Data Models with Latent Factors. Available at SSRN 4198155. 

Yalçın, E. and Ünlükaplan, İ., 2024. The Impact of Fiscal Rules on Public Debt and Public Deficits 

Based on the Budget Institutions Approach. International Journal of Public Finance, 9(1), pp.57-

82. 

Yerlikaya, B.A., Ömezli, S. and Aydoğan, N., 2020. Climate change forecasting and modeling for 

the year of 2050. Environment, climate, plant and vegetation growth, pp.109-122. 

Yu, H., Cui, Y., Li, S., Kang, S., Yao, Z. and Wei, Z., 2023. Estimation of the deep drainage for 

irrigated cropland based on satellite observations and deep neural networks. Remote Sensing of 

Environment, 29(8), p.113819. 



 139 

Yusifzada, T., 2023. Evaluating the global impact of climate change on agricultural inflation: an 

innovative climate condition index approach. Environment, Development and Sustainability, pp.1-

28. 

Zakeri, B., Paulavets, K., Barreto-Gomez, L., Echeverri, L.G., Pachauri, S., Boza-Kiss, B., Zimm, 

C., Rogelj, J., Creutzig, F., Ürge-Vorsatz, D. and Victor, D.G., 2022. Pandemic, war, and global 

energy transitions. Energies, 1 

Zaveri, E., Russ, J. and Damania, R., 2020. Rainfall anomalies are a significant driver of cropland 

expansion. Proceedings of the National Academy of Sciences, 117(19), pp.10225-10233. 

Zenda, M. and Rudolph, M., 2024. A Systematic Review of Agroecology Strategies for Adapting 

to Climate Change Impacts on Smallholder Crop Farmers’ Livelihoods in South 

Africa. Climate, 12(3), p.33. 

Zhang, C., Meng, C. and Getz, L., 2014. Food prices and inflation dynamics in China. China 

Agricultural Economic Review, 6(3), pp.395-412. 

Ziga, M. and Karriem, A., 2022. NCD prevention through an equitable food system in South 

Africa: opportunities and challenges. ESR Review: Economic and Social Rights in South 

Africa, 23(4), pp.7-12. 

 

 

 

 

 

 

 

 

 

 



 140 

APPENDIX 

Model 1: Agricultural Production 

Appendix 1: Descriptive Statistics 

 

Appendix 2: Unit Root Test 

AGRP: 1st Difference 

 

 

 

AGRP LIV LNAGRL LAB TFC AMAC RAIN TEMP

 Mean  80.55353  75.85794  14.40618  36.92003  25.99124  10820.62  63.10138  32.15822

 Median  82.04000  87.04000  14.83976  30.80857  20.25891  0.000000  47.89917  32.85000

 Maximum  178.3300  183.6900  16.44105  85.06357  99.87735  175557.0  276.6742  39.81917

 Minimum  19.07000  13.97000  12.11176  0.000000  0.000000  0.000000  0.878333  20.44917

 Std. Dev.  31.88167  34.97479  1.259591  29.32446  24.05584  34588.60  61.29251  4.190739

 Skewness  0.011120 -0.119093 -0.202321  0.095373  0.798552  3.633117  1.785385 -1.378189

 Kurtosis  2.322160  2.303285  1.872605  1.481961  2.779997  15.18967  5.784460  4.411737

 Jarque-Bera  6.132827  7.228597  19.13006  31.21103  34.65526  2685.148  273.3815  127.8750

 Probability  0.046588  0.026936  0.000070  0.000000  0.000000  0.000000  0.000000  0.000000

 Sum  25777.13  24274.54  4609.979  11814.41  8317.197  3462598.  20192.44  10290.63

 Sum Sq. Dev.  324244.7  390212.3  506.1153  274315.7  184600.1  3.82E+11  1198410.  5602.373

 Observations  320  320  320  320  320  320  320  320

Panel unit root test: Summary 
Series:  D(AGRP)
Date: 10/30/24   Time: 08:42
Sample: 1981 2020
Exogenous variables: Individual effects
User-specified lags: 1
Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test 

Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process) 
Levin, Lin & Chu t* -10.0512  0.0000  8  296

Null: Unit root (assumes individual unit root process) 
Im, Pesaran and Shin W-stat -15.8759  0.0000  8  296
ADF - Fisher Chi-square  199.940  0.0000  8  296
PP - Fisher Chi-square  244.029  0.0000  8  304

** Probabilities for Fisher tests are computed using an asymptotic Chi
        -square distribution. All other tests assume asymptotic normality.
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LIV: 1st Difference 

 

LNAGRL: 1st Difference 

 

LAB: 1st Difference 

 

 

Panel unit root test: Summary 
Series:  D(LIV)
Date: 10/30/24   Time: 08:51
Sample: 1981 2020
Exogenous variables: Individual effects
User-specified lags: 1
Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test 

Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process) 
Levin, Lin & Chu t* -11.4862  0.0000  8  296

Null: Unit root (assumes individual unit root process) 
Im, Pesaran and Shin W-stat -11.0965  0.0000  8  296
ADF - Fisher Chi-square  137.996  0.0000  8  296
PP - Fisher Chi-square  193.278  0.0000  8  304

** Probabilities for Fisher tests are computed using an asymptotic Chi
        -square distribution. All other tests assume asymptotic normality.

Panel unit root test: Summary 
Series:  D(LNAGRL)
Date: 10/30/24   Time: 08:52
Sample: 1981 2020
Exogenous variables: Individual effects
User-specified lags: 1
Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test 

Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process) 
Levin, Lin & Chu t* -7.80772  0.0000  8  296

Null: Unit root (assumes individual unit root process) 
Im, Pesaran and Shin W-stat -9.08513  0.0000  8  296
ADF - Fisher Chi-square  109.675  0.0000  8  296
PP - Fisher Chi-square  205.987  0.0000  8  304

** Probabilities for Fisher tests are computed using an asymptotic Chi
        -square distribution. All other tests assume asymptotic normality.

Panel unit root test: Summary 
Series:  D(LAB)
Date: 10/30/24   Time: 08:54
Sample: 1981 2020
Exogenous variables: Individual effects
User-specified lags: 1
Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test 

Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process) 
Levin, Lin & Chu t* -10.4143  0.0000  8  296

Null: Unit root (assumes individual unit root process) 
Im, Pesaran and Shin W-stat -8.33837  0.0000  8  296
ADF - Fisher Chi-square  97.1372  0.0000  8  296
PP - Fisher Chi-square  181.752  0.0000  8  304

** Probabilities for Fisher tests are computed using an asymptotic Chi
        -square distribution. All other tests assume asymptotic normality.
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TFC: 1st Difference 

 

AMAC: 1st Difference 

 

 

 

 

 

 

 

 

Panel unit root test: Summary 
Series:  D(TFC)
Date: 10/30/24   Time: 08:54
Sample: 1981 2020
Exogenous variables: Individual effects
User-specified lags: 1
Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test 

Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process) 
Levin, Lin & Chu t* -6.45917  0.0000  8  296

Null: Unit root (assumes individual unit root process) 
Im, Pesaran and Shin W-stat -12.1624  0.0000  8  296
ADF - Fisher Chi-square  152.745  0.0000  8  296
PP - Fisher Chi-square  214.803  0.0000  8  304

** Probabilities for Fisher tests are computed using an asymptotic Chi
        -square distribution. All other tests assume asymptotic normality.

Panel unit root test: Summary 
Series:  D(AMAC)
Date: 10/30/24   Time: 08:55
Sample: 1981 2020
Exogenous variables: Individual effects
User-specified lags: 1
Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test 

Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process) 
Levin, Lin & Chu t* -8.65260  0.0000  5  185

Null: Unit root (assumes individual unit root process) 
Im, Pesaran and Shin W-stat -7.06068  0.0000  5  185
ADF - Fisher Chi-square  65.9217  0.0000  5  185
PP - Fisher Chi-square  126.000  0.0000  5  190

** Probabilities for Fisher tests are computed using an asymptotic Chi
        -square distribution. All other tests assume asymptotic normality.
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RAIN: Level 

 

 

TEMP: Level 

 

 

 

 

Panel unit root test: Summary 
Series:  RAIN
Date: 10/30/24   Time: 08:56
Sample: 1981 2020
Exogenous variables: Individual effects
User-specified lags: 1
Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test 

Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process) 
Levin, Lin & Chu t* -4.70422  0.0000  8  304

Null: Unit root (assumes individual unit root process) 
Im, Pesaran and Shin W-stat -8.18039  0.0000  8  304
ADF - Fisher Chi-square  102.889  0.0000  8  304
PP - Fisher Chi-square  158.078  0.0000  8  312

** Probabilities for Fisher tests are computed using an asymptotic Chi
        -square distribution. All other tests assume asymptotic normality.

Panel unit root test: Summary 
Series:  TEMP
Date: 10/30/24   Time: 09:01
Sample: 1981 2020
Exogenous variables: Individual effects
User-specified lags: 1
Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test 

Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process) 
Levin, Lin & Chu t* -8.85009  0.0000  8  304

Null: Unit root (assumes individual unit root process) 
Im, Pesaran and Shin W-stat -9.85671  0.0000  8  304
ADF - Fisher Chi-square  120.569  0.0000  8  304
PP - Fisher Chi-square  188.975  0.0000  8  312

** Probabilities for Fisher tests are computed using an asymptotic Chi
        -square distribution. All other tests assume asymptotic normality.
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Appendix 3: Panel Cointegration 

 

 

 

Pedroni Residual Cointegration Test
Series: AGRP LIV LAB TFC RAIN TEMP 
Date: 10/30/24   Time: 10:27
Sample: 1981 2020
Included observations: 320
Cross-sections included: 8
Null Hypothesis: No cointegration
Trend assumption: Deterministic intercept and trend
Automatic lag length selection based on SIC with a max lag of 8
Newey-West automatic bandwidth selection and Bartlett kernel

Alternative hypothesis: common AR coefs. (within-dimension)
Weighted

Statistic Prob. Statistic Prob.
Panel v-Statistic  1.780535  0.0375  2.041157  0.0206
Panel rho-Statistic -2.516770  0.0059 -1.844263  0.0326
Panel PP-Statistic -6.862833  0.0000 -6.688734  0.0000
Panel ADF-Statistic -7.031124  0.0000 -6.852969  0.0000

Alternative hypothesis: individual AR coefs. (between-dimension)

Statistic Prob.
Group rho-Statistic -0.990628  0.1609
Group PP-Statistic -8.069380  0.0000
Group ADF-Statistic -7.049184  0.0000

Cross section specific results

Phillips-Peron results (non-parametric)

Cross ID AR(1) Variance HAC  Bandwidth Obs
Zimbabwe 0.103 160.1336 159.1767 1.00 39

Mozambique 0.454 55.68151 59.17648 2.00 39
Malawi 0.091 21.03540 18.67217 3.00 39

South Africa -0.193 34.41887 32.34102 3.00 39
Lesotho -0.092 278.8772 232.3517 5.00 39

Botswana 0.189 156.7008 156.7008 0.00 39
Namibia 0.094 16.42088 16.12177 3.00 39
Zambia 0.235 31.70737 2.834864 38.00 39

Augmented Dickey-Fuller results (parametric)

Cross ID AR(1) Variance Lag Max lag Obs
Zimbabwe 0.103 160.1336 0 8 39

Mozambique 0.454 55.68151 0 8 39
Malawi 0.091 21.03540 0 8 39

South Africa -0.193 34.41887 0 8 39
Lesotho -0.092 278.8772 0 8 39

Botswana 0.189 156.7008 0 8 39
Namibia 0.094 16.42088 0 8 39
Zambia 0.235 31.70737 0 8 39
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Appendix 4: Optimal lag length 

 

 

 

 

 

 

 

 

 

 

 

VAR Lag Order Selection Criteria

Endogenous variables: AGRP LIV LAB TFC RAIN TEMP 

Exogenous variables: C 

Date: 12/02/24   Time: 06:45

Sample: 1981 2020

Included observations: 256

 Lag LogL LR FPE AIC SC HQ

0 -6809.479 NA  5.36e+15  53.24593  53.32902  53.27935

1 -5425.115  2693.022  1.43e+11  42.71183   43.29346*  42.94576

2 -5329.135  182.2107  8.94e+10  42.24324  43.32342  42.67768

3 -5239.089  166.7267   5.87e+10*   41.82101*  43.39972   42.45596*

4 -5210.524  51.54988  6.23e+10  41.87910  43.95635  42.71456

5 -5187.729  40.07059  6.93e+10  41.98225  44.55805  43.01823

6 -5165.069  38.76863  7.73e+10  42.08648  45.16081  43.32296

7 -5144.197  34.73296  8.77e+10  42.20466  45.77754  43.64166

8 -5107.925   58.65775*  8.83e+10  42.20254  46.27396  43.84005

 * indicates lag order selected by the criterion

 LR: sequential modified LR test statistic (each test at 5% level)

 FPE: Final prediction error

 AIC: Akaike information criterion

 SC: Schwarz information criterion

 HQ: Hannan-Quinn information criterion
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Appendix 5: PMG/Panel ARDL  

 

 

 

Dependent Variable: D(AGRP)

Method: ARDL

Date: 12/02/24   Time: 05:45

Sample: 1984 2020

Included observations: 296

Dependent lags: 3 (Fixed)

Dynamic regressors (3 lags, fixed): LIV LAB TFC RAIN TEMP 

Fixed regressors: C

Variable Coefficient Std. Error t-Statistic Prob.*  

Long Run Equation

LIV 0.339199 0.086921 3.902397 0.0001

LAB 0.234819 0.066067 3.554273 0.0005

TFC 1.365937 0.139044 9.823762 0.0000

RAIN -1.111003 0.274359 -4.049444 0.0001

TEMP -16.63122 3.763963 -4.418541 0.0000

Short Run Equation

COINTEQ01 -0.260199 0.132078 -1.970034 0.0505

D(AGRP(-1)) -0.270735 0.107602 -2.516075 0.0128

D(AGRP(-2)) -0.200158 0.071946 -2.782056 0.0060

D(LIV) -0.144108 0.225894 -0.637945 0.5244

D(LIV(-1)) -0.156617 0.214831 -0.729023 0.4670

D(LIV(-2)) 0.009541 0.166479 0.057310 0.9544

D(LAB) -0.224834 0.162205 -1.386109 0.1676

D(LAB(-1)) -0.851849 0.319426 -2.666814 0.0084

D(LAB(-2)) 0.059659 0.245419 0.243089 0.8082

D(TFC) -0.073550 0.129995 -0.565793 0.5723

D(TFC(-1)) 0.029784 0.158228 0.188238 0.8509

D(TFC(-2)) 0.279678 0.145041 1.928263 0.0556

D(RAIN) 0.544487 0.510425 1.066733 0.2877

D(RAIN(-1)) 0.618320 0.505360 1.223525 0.2229

D(RAIN(-2)) -0.519872 0.651990 -0.797363 0.4264

D(TEMP) -0.627595 1.236193 -0.507684 0.6124

D(TEMP(-1)) -0.187486 0.963928 -0.194502 0.8460

D(TEMP(-2)) 0.322429 0.539589 0.597546 0.5510

C 144.6408 69.93051 2.068351 0.0402

Root MSE 7.118829     Mean dependent var 2.068007

S.D. dependent var 14.88309     S.E. of regression 9.974468

Akaike info criterion 6.770562     Sum squared resid 16216.87

Schwarz criterion 8.619395     Log likelihood -926.2900

Hannan-Quinn criter. 7.508836

*Note: p-values and any subsequent tests do not account for model

        selection.
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Appendix 6: Hausman Test of the Four versions of the Model 

(I) Model 1: RAIN and TEMP 

 

 

Correlated Random Effects - Hausman Test

Equation: Untitled

Test cross-section random effects

Test Summary Chi-Sq. Statistic Chi-Sq. d.f. Prob. 

Cross-section random 3.754370 5 0.5853

Cross-section random effects test comparisons:

Variable Fixed  Random Var(Diff.) Prob. 

LIV 0.348593 0.350120 0.000038 0.8032

LAB 0.208152 0.205734 0.000064 0.7624

TFC 0.700773 0.686881 0.000229 0.3582

RAIN -0.119758 -0.114620 0.000164 0.6885

TEMP -3.934629 -3.276017 0.424648 0.3122

Cross-section random effects test equation:

Dependent Variable: AGRP

Method: Panel Least Squares

Date: 12/02/24   Time: 05:57

Sample: 1981 2020

Periods included: 40

Cross-sections included: 8

Total panel (balanced) observations: 320

Variable Coefficient Std. Error t-Statistic Prob.  

C 162.2986 38.93338 4.168624 0.0000

LIV 0.348593 0.043510 8.011806 0.0000

LAB 0.208152 0.048421 4.298794 0.0000

TFC 0.700773 0.073527 9.530857 0.0000

RAIN -0.119758 0.040428 -2.962256 0.0033

TEMP -3.934629 1.174523 -3.349980 0.0009

Effects Specification

Cross-section fixed (dummy variables)

R-squared 0.683231     Mean dependent var 80.55353

Adjusted R-squared 0.670849     S.D. dependent var 31.88167

S.E. of regression 18.29104     Akaike info criterion 8.690476

Sum squared resid 102710.6     Schwarz criterion 8.843564

Log likelihood -1377.476     Hannan-Quinn criter. 8.751607

F-statistic 55.18013     Durbin-Watson stat 0.749157

Prob(F-statistic) 0.000000
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(II) Model 2: RAIN, SQRAIN and TEMP 

 

 

Correlated Random Effects - Hausman Test

Equation: Untitled

Test cross-section random effects

Test Summary Chi-Sq. Statistic Chi-Sq. d.f. Prob. 

Cross-section random 156.082699 6 0.0000

Cross-section random effects test comparisons:

Variable Fixed  Random Var(Diff.) Prob. 

LIV 0.348554 0.312482 0.000702 0.1733

LAB 0.208159 0.284704 0.000944 0.0127

TFC 0.700732 0.407369 0.003318 0.0000

RAIN -0.118864 -0.218844 0.022373 0.5039

SQRAIN -0.000003 0.000208 0.000000 0.6417

TEMP -3.930427 -1.915848 1.849544 0.1385

Cross-section random effects test equation:

Dependent Variable: AGRP

Method: Panel Least Squares

Date: 12/02/24   Time: 06:05

Sample: 1981 2020

Periods included: 40

Cross-sections included: 8

Total panel (balanced) observations: 320

Variable Coefficient Std. Error t-Statistic Prob.  

C 162.1334 48.49598 3.343235 0.0009

LIV 0.348554 0.044100 7.903687 0.0000

LAB 0.208159 0.048517 4.290422 0.0000

TFC 0.700732 0.074000 9.469350 0.0000

RAIN -0.118864 0.161138 -0.737657 0.4613

SQRAIN -2.92E-06 0.000510 -0.005730 0.9954

TEMP -3.930427 1.386298 -2.835197 0.0049

Effects Specification

Cross-section fixed (dummy variables)

R-squared 0.683231     Mean dependent var 80.55353

Adjusted R-squared 0.669774     S.D. dependent var 31.88167

S.E. of regression 18.32090     Akaike info criterion 8.696726

Sum squared resid 102710.6     Schwarz criterion 8.861590

Log likelihood -1377.476     Hannan-Quinn criter. 8.762560

F-statistic 50.76959     Durbin-Watson stat 0.749204

Prob(F-statistic) 0.000000
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(III) Model 3: RAIN, TEMP, SQTEMP 

 

Correlated Random Effects - Hausman Test

Equation: Untitled

Test cross-section random effects

Test Summary Chi-Sq. Statistic Chi-Sq. d.f. Prob. 

Cross-section random 114.423067 6 0.0000

** WARNING: estimated cross-section random effects variance is zero.

Cross-section random effects test comparisons:

Variable Fixed  Random Var(Diff.) Prob. 

LIV 0.349687 0.299405 0.000696 0.0567

LAB 0.206628 0.283816 0.001014 0.0154

TFC 0.699160 0.581044 0.002941 0.0294

RAIN -0.118703 -0.151363 0.001221 0.3499

SQTEMP 0.071725 0.423720 0.012217 0.0014

TEMP -8.500043 -26.693703 52.654628 0.0122

Cross-section random effects test equation:

Dependent Variable: AGRP

Method: Panel Least Squares

Date: 12/02/24   Time: 06:14

Sample: 1981 2020

Periods included: 40

Cross-sections included: 8

Total panel (balanced) observations: 320

Variable Coefficient Std. Error t-Statistic Prob.  

C 233.6326 128.5873 1.816918 0.0702

LIV 0.349687 0.043597 8.020830 0.0000

LAB 0.206628 0.048544 4.256526 0.0000

TFC 0.699160 0.073658 9.491960 0.0000

RAIN -0.118703 0.040512 -2.930063 0.0036

SQTEMP 0.071725 0.123210 0.582136 0.5609

TEMP -8.500043 7.930167 -1.071862 0.2846

Effects Specification

Cross-section fixed (dummy variables)

R-squared 0.683582     Mean dependent var 80.55353

Adjusted R-squared 0.670139     S.D. dependent var 31.88167

S.E. of regression 18.31077     Akaike info criterion 8.695620

Sum squared resid 102596.9     Schwarz criterion 8.860484

Log likelihood -1377.299     Hannan-Quinn criter. 8.761453

F-statistic 50.85188     Durbin-Watson stat 0.753739

Prob(F-statistic) 0.000000
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(IV) Model 4: RAIN, SQRAIN, TEMP, SQTEMP 

 

Correlated Random Effects - Hausman Test

Equation: Untitled

Test cross-section random effects

Test Summary Chi-Sq. Statistic Chi-Sq. d.f. Prob. 

Cross-section random 103.853222 7 0.0000

Cross-section random effects test comparisons:

Variable Fixed  Random Var(Diff.) Prob. 

LIV 0.349550 0.301722 0.000743 0.0793

LAB 0.206653 0.294632 0.001008 0.0056

TFC 0.699012 0.570687 0.002994 0.0190

RAIN -0.115517 -0.331983 0.022588 0.1498

SQRAIN -0.000010 0.000767 0.000000 0.0873

SQTEMP 0.071789 0.472677 0.012043 0.0003

TEMP -8.489110 -29.696327 52.273236 0.0034

Cross-section random effects test equation:

Dependent Variable: AGRP

Method: Panel Least Squares

Date: 12/02/24   Time: 06:13

Sample: 1981 2020

Periods included: 40

Cross-sections included: 8

Total panel (balanced) observations: 320

Variable Coefficient Std. Error t-Statistic Prob.  

C 233.1071 131.3511 1.774688 0.0769

LIV 0.349550 0.044181 7.911742 0.0000

LAB 0.206653 0.048639 4.248732 0.0000

TFC 0.699012 0.074139 9.428372 0.0000

RAIN -0.115517 0.161415 -0.715656 0.4748

SQRAIN -1.04E-05 0.000511 -0.020390 0.9837

SQTEMP 0.071789 0.123451 0.581514 0.5613

TEMP -8.489110 7.961227 -1.066307 0.2871

Effects Specification

Cross-section fixed (dummy variables)

R-squared 0.683582     Mean dependent var 80.55353

Adjusted R-squared 0.669058     S.D. dependent var 31.88167

S.E. of regression 18.34075     Akaike info criterion 8.701868

Sum squared resid 102596.8     Schwarz criterion 8.878508

Log likelihood -1377.299     Hannan-Quinn criter. 8.772404

F-statistic 47.06538     Durbin-Watson stat 0.753911

Prob(F-statistic) 0.000000
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Appendix 7: Diagnostic Tests 

(I) Normality Test 

 

 

(II) Cross Section Dependence Test 
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Series: Standardized Residuals

Sample 1981 2020

Observations 320

Mean       2.45e-14

Median  -2.840938

Maximum  75.39412

Minimum -55.43050

Std. Dev.   24.49417

Skewness   0.487771

Kurtosis   2.983650

Jarque-Bera  12.69268

Probability  0.001753 

Residual Cross-Section Dependence Test
Null hypothesis: No cross-section dependence (correlation) in
        weighted residuals
Equation: Untitled
Periods included: 40
Cross-sections included: 8
Total panel observations: 320
Note: non-zero cross-section means detected in data
Cross-section means were removed during computation of
        correlations

Test Statistic  d.f.  Prob.  

Breusch-Pagan LM 28.10603 28 0.4588
Pesaran scaled LM 0.014169 0.9887
Pesaran CD 0.715967 0.4740



 152 

Model 2: Food Inflation  

Appendix 1: Descriptive Statistics 

 

 

Appendix 2: Unit Root Test 

FCPI: Level 

 

 

 

 

 

FCPI CROP FEX ARMI FCON RAIN TEMP
 Mean  69.74708  80.55353  19.80734  0.851625  25.99124  63.10138  32.15822
 Median  10.78271  82.04000  8.665654  0.684363  20.25891  47.89917  32.85000
 Maximum  7375.300  178.3300  96.02369  4.153999  99.87735  276.6742  39.81917
 Minimum -15.08000  19.07000  0.000000  0.000000  0.000000  0.878333  20.44917
 Std. Dev.  585.1390  31.88167  27.73022  0.881837  24.05584  61.29251  4.190739
 Skewness  12.23730  0.011120  1.612010  1.031663  0.798552  1.785385 -1.378189
 Kurtosis  152.8441  2.322160  4.348777  3.497080  2.779997  5.784460  4.411737

 Jarque-Bera  307363.3  6.132827  162.8467  60.05871  34.65526  273.3815  127.8750
 Probability  0.000000  0.046588  0.000000  0.000000  0.000000  0.000000  0.000000

 Sum  22319.07  25777.13  6338.350  272.5200  8317.197  20192.44  10290.63
 Sum Sq. Dev.  1.09E+08  324244.7  245299.8  248.0659  184600.1  1198410.  5602.373

 Observations  320  320  320  320  320  320  320

Panel unit root test: Summary 
Series:  FCPI
Date: 10/30/24   Time: 19:28
Sample: 1981 2020
Exogenous variables: Individual effects
User-specified lags: 1
Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test 

Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process) 
Levin, Lin & Chu t* -6.19515  0.0000  8  304

Null: Unit root (assumes individual unit root process) 
Im, Pesaran and Shin W-stat -6.12046  0.0000  8  304
ADF - Fisher Chi-square  70.5727  0.0000  8  304
PP - Fisher Chi-square  73.9673  0.0000  8  312

** Probabilities for Fisher tests are computed using an asymptotic Chi
        -square distribution. All other tests assume asymptotic normality.
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CROP: 1st difference 

 

 

FEX: Level 

 

 

 

 

 

Panel unit root test: Summary 
Series:  D(CROP)
Date: 10/30/24   Time: 19:27
Sample: 1981 2020
Exogenous variables: Individual effects
User-specified lags: 1
Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test 

Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process) 
Levin, Lin & Chu t* -10.0512  0.0000  8  296

Null: Unit root (assumes individual unit root process) 
Im, Pesaran and Shin W-stat -15.8759  0.0000  8  296
ADF - Fisher Chi-square  199.940  0.0000  8  296
PP - Fisher Chi-square  244.029  0.0000  8  304

** Probabilities for Fisher tests are computed using an asymptotic Chi
        -square distribution. All other tests assume asymptotic normality.

Panel unit root test: Summary 
Series:  FEX
Date: 10/30/24   Time: 19:59
Sample: 1981 2020
Exogenous variables: Individual effects, individual linear trends
User-specified lags: 1
Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test 

Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process) 
Levin, Lin & Chu t* -0.97599  0.1645  8  304
Breitung t-stat -3.89343  0.0000  8  296

Null: Unit root (assumes individual unit root process) 
Im, Pesaran and Shin W-stat -2.52724  0.0057  8  304
ADF - Fisher Chi-square  34.7582  0.0043  8  304
PP - Fisher Chi-square  33.3163  0.0067  8  312

** Probabilities for Fisher tests are computed using an asymptotic Chi
        -square distribution. All other tests assume asymptotic normality.
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ARMI: 1st difference 

 

 

FCON: Level 

 

 

 

 

 

 

 

Panel unit root test: Summary 
Series:  D(ARMI)
Date: 10/30/24   Time: 20:02
Sample: 1981 2020
Exogenous variables: Individual effects
User-specified lags: 1
Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test 

Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process) 
Levin, Lin & Chu t* -8.43096  0.0000  8  296

Null: Unit root (assumes individual unit root process) 
Im, Pesaran and Shin W-stat -9.59015  0.0000  8  296
ADF - Fisher Chi-square  115.224  0.0000  8  296
PP - Fisher Chi-square  245.518  0.0000  8  304

** Probabilities for Fisher tests are computed using an asymptotic Chi
        -square distribution. All other tests assume asymptotic normality.

Panel unit root test: Summary 
Series:  FCON
Date: 10/30/24   Time: 20:02
Sample: 1981 2020
Exogenous variables: Individual effects
User-specified lags: 1
Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test 

Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process) 
Levin, Lin & Chu t* -2.64008  0.0041  8  304

Null: Unit root (assumes individual unit root process) 
Im, Pesaran and Shin W-stat -4.09203  0.0000  8  304
ADF - Fisher Chi-square  45.9171  0.0001  8  304
PP - Fisher Chi-square  80.3911  0.0000  8  312

** Probabilities for Fisher tests are computed using an asymptotic Chi
        -square distribution. All other tests assume asymptotic normality.
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RAIN: Level 

 

 

TEMP: Level 

 

 

 

 

 

 

 

Panel unit root test: Summary 
Series:  RAIN
Date: 10/30/24   Time: 08:56
Sample: 1981 2020
Exogenous variables: Individual effects
User-specified lags: 1
Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test 

Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process) 
Levin, Lin & Chu t* -4.70422  0.0000  8  304

Null: Unit root (assumes individual unit root process) 
Im, Pesaran and Shin W-stat -8.18039  0.0000  8  304
ADF - Fisher Chi-square  102.889  0.0000  8  304
PP - Fisher Chi-square  158.078  0.0000  8  312

** Probabilities for Fisher tests are computed using an asymptotic Chi
        -square distribution. All other tests assume asymptotic normality.

Panel unit root test: Summary 
Series:  TEMP
Date: 10/30/24   Time: 09:01
Sample: 1981 2020
Exogenous variables: Individual effects
User-specified lags: 1
Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test 

Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process) 
Levin, Lin & Chu t* -8.85009  0.0000  8  304

Null: Unit root (assumes individual unit root process) 
Im, Pesaran and Shin W-stat -9.85671  0.0000  8  304
ADF - Fisher Chi-square  120.569  0.0000  8  304
PP - Fisher Chi-square  188.975  0.0000  8  312

** Probabilities for Fisher tests are computed using an asymptotic Chi
        -square distribution. All other tests assume asymptotic normality.
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Appendix 3: Panel Cointegration Test 

 

 

 

Pedroni Residual Cointegration Test
Series: FCPI CROP FEX ARMI FCON RAIN TEMP 
Date: 10/30/24   Time: 20:09
Sample: 1981 2020
Included observations: 320
Cross-sections included: 8
Null Hypothesis: No cointegration
Trend assumption: Deterministic intercept and trend
Automatic lag length selection based on SIC with a max lag of 8
Newey-West automatic bandwidth selection and Bartlett kernel

Alternative hypothesis: common AR coefs. (within-dimension)
Weighted

Statistic Prob. Statistic Prob.
Panel v-Statistic -4.287462  1.0000 -4.013769  1.0000
Panel rho-Statistic -1.300491  0.0967  0.398372  0.6548
Panel PP-Statistic -6.637621  0.0000 -5.014555  0.0000
Panel ADF-Statistic -6.715991  0.0000 -5.138696  0.0000

Alternative hypothesis: individual AR coefs. (between-dimension)

Statistic Prob.
Group rho-Statistic  1.170329  0.8791
Group PP-Statistic -7.504847  0.0000
Group ADF-Statistic -5.505580  0.0000

Cross section specific results

Phillips-Peron results (non-parametric)

Cross ID AR(1) Variance HAC  Bandwidth Obs
Zimbabwe 0.094 1255035. 1139294. 3.00 39

Mozambique 0.129 110.2592 110.2592 0.00 39
Malawi 0.388 170.4616 157.6640 4.00 39

South Africa 0.051 16.88796 10.28619 10.00 39
Lesotho 0.053 16.25854 1.414972 28.00 39

Botswana 0.348 11.42278 11.64736 2.00 39
Namibia 0.036 17.34003 11.55476 6.00 39
Zambia 0.362 773.3316 681.2801 2.00 39

Augmented Dickey-Fuller results (parametric)

Cross ID AR(1) Variance Lag Max lag Obs
Zimbabwe 0.094 1255035. 0 8 39

Mozambique 0.129 110.2592 0 8 39
Malawi 0.388 170.4616 0 8 39

South Africa 0.051 16.88796 0 8 39
Lesotho -0.295 14.35394 1 8 38

Botswana 0.348 11.42278 0 8 39
Namibia 0.036 17.34003 0 8 39
Zambia 0.362 773.3316 0 8 39



 157 

Appendix 4: Optimal lag length 

 

 

 

 

 

 

 

 

 

 

 

 

VAR Lag Order Selection Criteria

Endogenous variables: FCPI CROP FEX ARMI FCON RAIN TEMP 

Exogenous variables: C 

Date: 12/02/24   Time: 07:17

Sample: 1981 2020

Included observations: 256

 Lag LogL LR FPE AIC SC HQ

0 -7961.898 NA  2.57e+18  62.25701  62.35395  62.29600

1 -6729.808  2387.174  2.49e+14  53.01412   53.78963*  53.32603

2 -6610.450  224.7274  1.44e+14  52.46446  53.91853  53.04928

3 -6479.207  239.9292   7.58e+13*   51.82193*  53.95458   52.67967*

4 -6436.731   75.32789*  8.01e+13  51.87290  54.68412  53.00356

5 -6405.297  54.02726  9.25e+13  52.01014  55.49992  53.41371

6 -6371.465  56.29993  1.05e+14  52.12863  56.29698  53.80513

7 -6344.938  42.69191  1.27e+14  52.30420  57.15112  54.25361

8 -6316.451  44.28779  1.52e+14  52.46446  57.98995  54.68679

 * indicates lag order selected by the criterion

 LR: sequential modified LR test statistic (each test at 5% level)

 FPE: Final prediction error

 AIC: Akaike information criterion

 SC: Schwarz information criterion

 HQ: Hannan-Quinn information criterion
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Appendix 5: PMG/Panel ARDL 

 

 

 

 

Variable Coefficient Std. Error t-Statistic Prob.*  

Long Run Equation

CROP 0.020886 0.013041 1.601605 0.1127

FEX 0.127261 0.041682 3.053161 0.0030

ARMI -3.697446 0.419302 -8.818091 0.0000

FCON 0.612101 0.071959 8.506206 0.0000

RAIN -0.019810 0.015140 -1.308472 0.1940

TEMP 0.301518 0.067274 4.481925 0.0000

Short Run Equation

COINTEQ01 -0.453458 0.215064 -2.108484 0.0378

D(FCPI(-1)) 0.287511 0.235392 1.221415 0.2251

D(FCPI(-2)) -0.068349 0.158440 -0.431389 0.6672

D(FCPI(-3)) 0.302569 0.177608 1.703576 0.0919

D(CROP) -1.522149 1.179497 -1.290508 0.2002

D(CROP(-1)) -0.482499 0.269738 -1.788771 0.0770

D(CROP(-2)) 0.054536 0.486677 0.112059 0.9110

D(CROP(-3)) 3.085577 2.924944 1.054918 0.2943

D(FEX) -10.86789 12.19591 -0.891110 0.3752

D(FEX(-1)) -7.095231 5.622147 -1.262014 0.2102

D(FEX(-2)) 4.310921 4.416176 0.976166 0.3316

D(FEX(-3)) -1.020080 0.825297 -1.236016 0.2197

D(ARMI) 263.1718 248.1145 1.060687 0.2917

D(ARMI(-1)) 97.67005 99.33121 0.983277 0.3281

D(ARMI(-2)) -75.29501 80.72050 -0.932787 0.3534

D(ARMI(-3)) 38.11176 35.87968 1.062210 0.2910

D(FCON) 1.917229 1.882651 1.018367 0.3112

D(FCON(-1)) -0.781687 0.903747 -0.864940 0.3894

D(FCON(-2)) -2.672423 2.533380 -1.054885 0.2943

D(FCON(-3)) -3.196884 3.125143 -1.022956 0.3091

D(RAIN) -55.68692 55.14847 -1.009764 0.3153

D(RAIN(-1)) 36.92729 37.31937 0.989494 0.3251

D(RAIN(-2)) 15.11163 15.56062 0.971146 0.3341

D(RAIN(-3)) 65.83740 65.96584 0.998053 0.3209

D(TEMP) -28.69005 23.86817 -1.202021 0.2325

D(TEMP(-1)) 23.79896 27.79379 0.856269 0.3941

D(TEMP(-2)) -8.054747 4.129310 -1.950628 0.0542

D(TEMP(-3)) 61.16259 63.22871 0.967323 0.3360

Root MSE 91.46366     Mean dependent var 1.901882

S.D. dependent var 578.0528     S.E. of regression 172.4655

Akaike info criterion 7.013033     Sum squared resid 2676992.

Schwarz criterion 9.721514     Log likelihood -892.0853

Hannan-Quinn criter. 8.094581

*Note: p-values and any subsequent tests do not account for model

        selection.

Dependent Variable: D(FCPI)

Method: ARDL

Date: 12/02/24   Time: 07:25

Sample: 1984 2020

Included observations: 296

Dependent lags: 3 (Fixed)

Dynamic regressors (3 lags, fixed): CROP FEX ARMI FCON RAIN TEMP 

Fixed regressors: 
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Appendix 6: Hausman Test 

 

 

 

 

Correlated Random Effects - Hausman Test
Equation: Untitled
Test cross-section random effects

Test Summary Chi-Sq. Statistic Chi-Sq. d.f. Prob. 

Cross-section random 3.472834 5 0.6275

Cross-section random effects test comparisons:

Variable Fixed  Random Var(Diff.) Prob. 

RAIN 0.769388 -0.321120 0.756317 0.2099
TEMP 48.575792 8.354478 1079.130123 0.2208
FCON 2.199265 2.053559 1.617083 0.9088
ARMI 85.633105 80.355877 73.896949 0.5393

CROP -0.662882 -0.454205 0.117836 0.5433

Cross-section random effects test equation:
Dependent Variable: FCPI
Method: Panel Least Squares
Date: 10/30/24   Time: 20:20
Sample: 1981 2020
Periods included: 40
Cross-sections included: 8
Total panel (balanced) observations: 320

Variable Coefficient Std. Error t-Statistic Prob.  

C -1617.605 1232.132 -1.312850 0.1902
RAIN 0.769388 1.263310 0.609025 0.5430
TEMP 48.57579 36.40209 1.334423 0.1831
FCON 2.199265 2.324568 0.946096 0.3448
ARMI 85.63310 40.66473 2.105832 0.0360

CROP -0.662882 1.391145 -0.476501 0.6341

Effects Specification

Cross-section fixed (dummy variables)

R-squared 0.083516     Mean dependent var 69.74708
Adjusted R-squared 0.047692     S.D. dependent var 585.1390
S.E. of regression 571.0153     Akaike info criterion 15.57249
Sum squared resid 1.00E+08     Schwarz criterion 15.72557
Log likelihood -2478.598     Hannan-Quinn criter. 15.63362
F-statistic 2.331307     Durbin-Watson stat 0.943727
Prob(F-statistic) 0.007219
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Appendix 7: Diagnostic Tests 

(I) Normality Test 

 

 

(II) Cross Section Dependence Test 
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Series: Standardized Residuals

Sample 1981 2020

Observations 320

Mean      -1.31e-14

Median  -40.89165

Maximum  7241.877

Minimum -325.9672

Std. Dev.   576.1359

Skewness   11.74370

Kurtosis   145.0313

Jarque-Bera  276327.1

Probability  0.000000 

Residual Cross-Section Dependence Test
Null hypothesis: No cross-section dependence (correlation) in
        weighted residuals
Equation: Untitled
Periods included: 40
Cross-sections included: 8
Total panel observations: 320
Note: non-zero cross-section means detected in data
Cross-section means were removed during computation of
        correlations

Test Statistic  d.f.  Prob.  

Breusch-Pagan LM 303.5008 28 0.0000
Pesaran scaled LM 36.81534 0.0000
Pesaran CD 3.977204 0.0001




