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ABSTRACT

The present study analyzes the impact of climate change on agricultural production and food
inflation in Southern Africa by employing quantitative analysis of annual data from 1981 to 2020.
Annual mean temperature and average rainfall are employed as proxies for climate change, the
analysis focuses on the agricultural production and food inflation as the dependent variables. To
assess the order of integration of both the regressands and regressors of interest, three panel unit
root tests are employed; Levin, Lin and Chu (LLC); Im, Pesaran, and Shin (IPS); and Fisher Chi-
square tests. Furthermore, the PMG/Panel ARDL approach for cointegration is employed to
evaluate the long run relationship among the variables. The results indicate that temperature and
rainfall patterns have a negative and significant impact on agricultural productivity as a 1°C
increase in temperature leads to 16.63 units of decrease in agricultural output. It could therefore
be contended that the agricultural sector in Southern Africa is particularly at risk from climate
change due to the unique geology and farming systems of this region. On the other hand, only
temperature has a positive and significant impact on food inflation, since temperature is a critical
determinant of crop yields, warmer temperatures negatively affect the growth cycles of staple crops
by causing heat stress and reducing water availability, hence increased food prices. To mitigate
these challenges, this study recommends climate-resilient farming practices, input tariff
reductions, enhancement of regional trade integration, and support for renewable energies so that
productivity improves while food prices remain stable. Flexible monetary policies and increased
social protection measures will thus be substantially instrumental in safeguarding livelihoods and
food security for the population, fostering a strong agricultural economy against both structural

and climatic challenges.
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CHAPTER ONE: INTRODUCTION

1.1. Background of the study

Intergovernmental Panel on Climate Change (IPCC) defined climate change as the assembly of
weather in various temporal scales, spanning from several months to hundreds of thousands of
years, and generally involves factors which include temperature, rainfall, and wind (Le Treut et
al., 2007). In relation to that, IPCC has explained extreme climate events as extreme deviation

from the normal statistical levels in a particular region (McPhillips et al., 2018).

Climate change has had a variety of consequences on global agriculture during the past several
years as a result of changes in both temperature and rainfall patterns. High temperatures, for
example, reduce crop yields by reducing the soil moisture content and increasing weed and pest
infestations. On the other hand, high temperatures may speed up frost periods, thus promoting the
possibility of cultivation in cooler but marginally cropped areas (Lesk et al., 2021). Precipitation
variability further amplifies the probability of crop failure and extended production decline. This,
in turn, affects rainfed agricultural systems with great variability, especially in the rainfall pattern,
which restricts soil moisture and adds to vulnerability (Zaveri et al., 2020). While irrigation
reduces some of the risk from climate variability, these systems depend on reliable water supplies

in their own right and are thus subject to alterations in river flow quantity in both space and time.

For instance, the fourth assessment report by the IPCC discussed the future impacts of climatic
changes on agriculture and foresees a general rise in average temperature, increase in
desertification, heat waves, water stress, and intense rainfall events across nearly every part of the
world (Bhattacharyya et al., 2020). Such extreme weather conditions significantly affect countries
whose economies rely heavily on agriculture and whose GDP comprises a significant proportion
of agricultural output. Anderson et al. (2020), projected that a temperature rise of not less than
2.5°C or even greater could lead to crop yields falling and substantial food price increases due to
surging global demand beyond expanded capacity in food production. Climate change may
increasingly be vulnerable to the rainfed agricultural systems of Aftrica. Furthermore, over 70% of
Africa's population is located in the rural areas, and to a large extent rely on agriculture. Moreover,

upwards of a quarter of all continental GDP emanates from agriculture (Moyo, 2016). Besides



presenting uncertainties within agricultural productions, climate change decreases soil nutrient
availability, hence impacting productive capacity. Due to this, agricultural output decreases
ultimately causing food to become more costly. Rising food prices indicate demand and supply
imbalances and increasing deficiencies of resources, which can be caused by supply factors
inclusive of decreased productivity from climatic changes and decreased agricultural land resulting
from the degradation of soil and transition into alternative uses, or demand factors consisting of

population growth and income advancement (Odongo et al., 2022).

However, despite the vast body of literature on climate change and its impact on agricultural
productivity, there remains a gap in understanding its implications for food inflation and economic
stability in Southern Africa. Most of the studies that are presently published including that of
Kilroy (2015), focus on the bio-physical impacts of climate change, such as changes in temperature
and precipitation, while mainly neglecting the socio-economic impacts, such as inflation of food
items and availability of food at the household level. Moreover, there are limited studies that
explicitly examine the extent to which climate variability influences the production level in areas
that heavily rely on agriculture for survival and economic development. This study aims to address
this gap by examining the impacts of climate change on agricultural productivity and food price
inflation in Southern Africa, thereby offering essential regional evidence that can guide policy

formulation and adaptation strategies.

In order to carry out an in-depth analysis, this study focuses on Malawi, Lesotho, Zimbabwe,
Botswana, Namibia, Mozambique, South Africa, and Zambia, due to their heavy dependence on
agriculture, range of climatic variations, and most notably, availability of credible data. All these
countries a combination of arid, semi-arid, and tropical climates, making them vulnerable to
climatic variability and its impacts on food security and inflation. Malawi and Zimbabwe are
heavily reliant on rain-fed maize production and therefore are susceptible to irregular rainfall and
prolonged drought, which usually results in food shortage (Mapila et al., 2022). Lesotho is
vulnerable to periodic cycles of drought and soil erosion, which threaten its smallholder agriculture
and livestock production (Pryor et al., 2022). Botswana struggles to maintain its subsistence
farming and cattle sector due to its semi-arid conditions and lack of cultivable land (Nhamo et al.,
2019). Desertification and drought reduce farm output in Namibia, which is the region's driest

country (Liu and Zou, 2021). On the other hand, Mozambique is experiencing regular food



shortages as a result of the tropical cyclones and floods, which destroy crops and infrastructure

(Okou et al., 2022).

South Africa, the largest producer in the region, is facing intensifying water stress and rising
temperature variation destabilizing many practices of agriculture (Shikwamba et al., 2023). While
Zambia, a country largely dependent on agriculture for employment and GDP is encountered with
irregular rainfall patterns and prolonged dry periods, posing a threat to the country’s farm
production and economic sustainability (Phiri et al., 2020). There is no continent more familiar
with climate change and its effects on agricultural productivity than Africa, where the majority of

national economies still rely heavily on the agricultural and other climate-sensitive sectors.

1.2. Statement of the research problem

In any economy, maintaining stable prices is the essential objective of monetary policy. However,
in developing nations where the impoverished utilize a significant amount of their disposable
income on consumption of food, high food price inflation impacts not solely macroeconomic

stability but also small farmers and impoverished consumers (Pawlak & Kotodziejczak, 2020).

Southern Africa is presently facing a decline in agricultural output and an increase in food costs
due to long-lasting droughts, erratic rainfall, and higher temperatures (Nhemachena et al., 2020).
Although extremely vulnerable to climate change, agriculture remains a key industry for economic
stability considering that it employs more than 60% of the population and contributes significantly
to GDP. However, efforts aimed at mitigating the impacts of climate change, including
conservation agriculture and the cultivation of drought-resistant crops, have not entirely alleviated
the adverse effects on agricultural output and food inflation (Mabhaudhi et al., 2019). Cereal
production in the region is projected to decline by almost 50% by 2080, consequently intensifying

food insecurity (Yerlikaya et al., 2020).

In Southern Africa, increasing temperatures and decreasing precipitation have resulted in
diminished agricultural productivity, contributing to heightened volatility in food prices. For
instance, in South Africa, the drought of 2015-2016 resulted in a 45% reduction in maize
production, contributing to a food inflation rate of 12% by December 2016 (StatsSA, 2018). In
2022, Zimbabwe saw a 45% decrease in maize yields, while food inflation rose to 55.3% in March

2024 (Zimstat, 2024). In February 2024, maize prices in Mozambique increased by 12%,



surpassing the five-year average by 20% (FAO, 2024). Meanwhile, Botswana experienced a peak
in food inflation at 14.6% in 2023, which subsequently declined to 1.2% in 2024 as a result of
decreasing global cereal prices (StatsBots, 2024). In Lesotho, ongoing crop failures compelled
41% of rural households to allocate more than half of their income to food (Sekaran et al., 2021).
In Malawi, maize prices increased by 160% relative to the five-year average, resulting in a 32.3%
inflation rate in April 2024 (IPC, 2024). The 2019 drought in Namibia caused a 2% increase in the
price of food, which increased to 6% in 2021 when there was a global increase in gas prices (Liu
& Zhou, 2021; Shikangalah, 2020). The inability to regulate agricultural productivity has dire
economic repercussions as inflationary pressures in the agricultural sector accelerate poverty and
cause macroeconomic uncertainty. Current climate adaptation and food security policies have been
unable to effectively to address these concerns, rendering numerous countries susceptible to
external shocks including global food price swings and catastrophic weather events (England et

al., 2018).

This may be evidenced by the South African National Climate Change Adaptation Strategy
(NCCAS), which presents a general structure for climate change adaptation across sectors,
including agriculture. Its operation is greatly disabled by the lack of adequate enforcement
measures and insufficiency of budgetary allocation (Khavhagali et al., 2024). Critics point out that
despite a well-defined plan, it fails to convert objectives into concrete action, especially at local
levels, where farm firms are particularly exposed (Matikinca et al., 2024). This current study
explores the relationship between climate change and its impact on agricultural production and

food inflation in Southern Africa, based on a panel ARDL econometric model.

1.3. Research questions

Understanding the impact of climate change on agricultural production and food inflation in
Southern Africa is imperative. More specifically, this study seeks to address the following

questions:

e How do climate change risk indicators impact agricultural output in Southern Africa?
e How does climate change impact food inflation in Southern Africa?
e What is the impact of climate change on the relationship between agricultural production

and food inflation in this region?



1.4. Research objectives

1.4.1. Primary objective

The main objective of this study is to analyze the impact of climate change on agricultural
production and food inflation in Southern Africa over the period of 1981 to 2020.

1.4.2. Secondary objectives

Theoretical objectives

In line with this study, the following theoretical objectives are formulated:

e To review and discuss the theories on agricultural production, food inflation and climate
change.
e To conduct a literature review on the empirical studies that analyzed the relationship

between agricultural production and food inflation.

1.4.3. Empirical objectives

In line with the research questions of the study, the following empirical objectives are formulated:

e To assess the impact of climate change on agricultural production in Southern Africa.
e To evaluate the impact of climate change on food inflation in Southern Africa.

e To analyze the relationship between agricultural production and food inflation in Southern

Africa.

1.5. Hypothesis of the study

The study hypothesizes the following three sets of hypotheses:
Hypothesis 1

Ho: Climate change and related variables do not exhibit any significant relationship with

agricultural output.
Hi: Climate change and related variables exhibit a significant relationship with agricultural output.
Hypothesis 2

Ho: Climate change and related variables do not exhibit any significant relationship with food

inflation.



Hi: Climate change and related variables exhibit a significant relationship with food inflation.
Hypothesis 3

Ho: Agricultural output and food inflation do not exhibit any significant relationship.

Hi: Agricultural output and food inflation exhibit a significant relationship.

1.6. Significance of the study

Instead of addressing local adaptation measures, most studies dealing with the probable effects of
climate change on world food supplies, including that by Fischer et al. (1994), tend to focus on the
inherent vulnerabilities of agricultural systems. Moreover, most of the studies that are presently
published focus on the bio-physical impacts of climate change, such as changes in temperature and
precipitation, while mainly neglecting the socio-economic impacts, such as inflation of food items
and availability of food at the household level. More holistic methods that consider both the
biophysical and the socioeconomic aspects are required, as suggested by Mendelsohn et al. (2000).
The cross-sectional analysis and simulation models commonly applied in previous studies do not

precisely capture the dynamic and complex nature of the effects.

This research project will therefore inform on practical and region-specific initiatives that may
offset the adverse effects of climate change on agriculture through research into local adaptation
techniques and their efficacies. This study, therefore, tries to address the above-mentioned
methodological deficiencies by integrating empirical data with econometric modeling tools for a

comprehensive understanding of implications.

The present study will therefore help in informed decision-making by farmers and the government
on how variable climatic conditions impact yields and water availability for crops, livestock
management, and its related practices to enhance resilience and sustainability in agriculture. Food
price variability may affect food accessibility and enhance poverty, affecting general economic
stability and social wellbeing through inflation rates. This research therefore contributes further to
the proactive measures that countries within Southern Africa and the respective central banks may
wish to take in mitigating climate change-related impacts on agricultural output and eventually

food inflation.



1.7. Methodology

To investigate the impact of climate change on agricultural production and food inflation Southern
Africa, the study's empirical analysis employs quantitative secondary data that was obtained
from FAOSTAT, NASA POWER, and WDI database. The study makes use of panel data
spanning from 1981 to 2020. The first regressand of this study is agricultural production while
regressors encompass the following agricultural aspects, livestock, land, labor, machinery, total
fertilizer consumption and temperature and rainfall. The second dependent variable for this study
is food inflation while independent variables include crop production, food exports, agricultural
raw material imports, total fertilizer consumption, rainfall and temperature. Several diagnostic
tests were carried out including the normality test and cross section dependence test in order to

evaluate the model's validity.

The Panel ARDL cointegration approach is used in this study after considering the results of the
panel unit root test. EViews 12 was further employed to conduct the previously suggested
econometric analysis. Chapter 4 offers a further explanation on the methodology employed to

ascertain the correlation between the variables.

1.8. Ethical Consideration

The current study employs secondary data derived from the FAOSTAT, NASA POWER, and WDI
data sources. The obtained data involves yearly quantitative data pertaining the selected climate
change, agricultural production and food inflation variables. The aforementioned database renders
the data utilized in the study to be publicly available, and it believed that these data sources follow
and comply with the fundamental principles of ethical use when gathering and disseminating data.

The study acknowledges the data source and additional information sources presented in the study.
1.9.0utline of the study

The study encompasses the following chapters:

Chapter 1: Introduction and background of the study

This chapter covers the introductory framework and contextual background of the research, as well

as stating the research problem statement together with the related objectives. It further highlights



the hypothesis of the study. Finally, it explains the significance of the study, its methodology,

ethical considerations, and gives an outline of the structure of the study.
Chapter 2: Dynamics of climate change in Southern Africa

This chapter explores the intricate relationship between climate change, extreme weather events
and the socio-economic landscape of Southern Africa. Furthermore, it discusses the historical and
projected trends of climate change and the potential effects these have on various sectors, including

agriculture, water resources, and food prices in the selected countries.
Chapter 3: Literature Review

This chapter gives a detailed discussion of the literature. The literature review covers inflation
theories, including the Keynesian theory of inflation through the lens of cost-push inflation. The
chapter further employs a conceptual approach to theoretically examine the impact of climate
change on agricultural output. Conclusively, this chapter discusses the empirical literature by

drawing references from previous studies.
Chapter 4: Methodology

This chapter provides the methodology, including a brief review of data sources, specification of
the model, and variable description. The chapter further addresses the various tests utilised in the

study, including the diagnostic tests, unit root test, cointegration test, and Panel ARDL model.
Chapter 5: Results and discussion

Chapter 5 of this study presents the findings from the tests performed on EViews 12 software. The
chapter also includes a detailed explanation of the results to provide valuable knowledge on the

correlation between the variables in the Southern African context.
Chapter 6: Conclusion and Recommendation

This final chapter concludes the assessment of the impact of climate change on agricultural
production and food inflation by summarising the study's findings. It further provides research

recommendations and prospects for future studies.



CHAPTER 2: THE DYNAMICS OF CLIMATE CHANGE IN SOUTHERN AFRICA

2.1. Introduction

The Southern Africa region has been highlighted as a climate change hotspot, that is, a place where
climate change impacts are unusually high within a global context. These changes in climate are
largely driven by human activities, especially the global burning of fossil fuels and the conversion
of natural vegetation into croplands, pastures, and human settlements. Thus, the current chapter is
an attempt at analyzing socioeconomic vulnerability in light of climate change concerning South
Africa, Zimbabwe, Zambia, Mozambique, Botswana, Lesotho, Malawi, and Namibia; for example,
emphasizing potential impacts sector-by-sector with further discussions on historical trending’s

and possible future scenarios.

2.2. The case of South Africa

The country is situated in an area that is termed a 'drought belt' and is the fifth utmost water scarce
nation across Sub-Saharan Africa. South Africa is extremely sensitive to climatic variability and
change considering its strong dependency on rain-fed agriculture and natural resources,

widespread levels of poverty, and a limited adaptive capacity (Shikwamba et al., 2023).

2.2.1. Implications of climate change on the main sectors

Hydrology sector

Due to its geology, South Africa has always received irregular precipitation, thus experiencing the
uneven distribution of river and groundwater resources. The country has a high level of scarcity
brought about by low and variable rainfall, high evaporation rates, and increasing demands from
agriculture, industry, and urban areas (Mabhaudhi et al., 2021). Decreasing rainfall and higher
evaporation rates, exacerbated by rising temperatures, are expected to reduce soil moisture, leading
to diminished river runoff and groundwater recharge (Nkosi et al., 2021). In semi-arid areas such
as South Africa if the rainfall decreases, for example by 1 litre (1 millimeter per square meter in a
year), the amount of water available as a usable resource decrease by about 3 litres (Scholes and
Engelbrecht, 2021). This non-linear response means even slight drops in that ratio might switch
perennial rivers into the intermittent category. Make no mistake, the majority of South Africa's
freshwater resources, especially in areas that may be barely adequate to begin with, are very

vulnerable to climate change, and under future climate change projections, this could get worse



under an even (further) warming world, but only if those impacts are not curtailed through

aggressive mitigation (Mabhaudhi et al., 2021).

However, the problem goes beyond scarcity to include deteriorating water quality. At the moment,
40% of freshwater systems are in a critical state, while 80% have been degraded due to increased
pollution levels (Du Plessis, 2017). The country is experiencing water shortage problems, with
98% of the available water already being allocated. Such that it is unable to meet rising demand
for water-based power generation and agricultural production, the catalysts for employment and
economic well-being (Seetal., 2021). Vulnerable agricultural communities are also stressed by
climate variability and changing precipitation patterns. Hence, adaptation strategies must consider
these dynamics to ensure agricultural productivity supported primarily by irrigation-based
agriculture of vegetables, fruits, and wine. Only 1.5% of land is irrigated in the country, but it
contributes to 30% of all the crops, proving the importance of irrigation in the South African sector

(Christian et al., 2018).

Agricultural sector

According to Kwame et al. (2022), the agriculture sector in South Africa is one of the key sectors
in the overall economy where over 860 000 workers have direct employment in the sector thereby
contributing to the country's food security. Agro-industrial commodity chains for wheat, sugar
cane and rice make up a consumption of approximately 94% in the country while maize is the
largest crop in this sector (Muroyiwa and Mushunje, 2017). Climate change's effects on agriculture
cannot continue to be disregarded, as agricultural productivity depends greatly on the accessible
supply of water. Furthermore, dry-land farmers who rely on rain-fed crops for their sustenance are
extremely susceptible (Boonwichai et al., 2018). Climate change continues to adversely affect
agriculture with severe reduction in crop yield contributing to increasing food insecurity
worldwide (Olabanji et al., 2020). The reason is that most agricultural crops considered important
for ensuring food security maize, wheat and rice, for example, have relatively high consumptive-
use intensity in their production. For instance, the estimated amount of water necessary to produce
one kilogram of all three of these crops is 1.5m?, 1.0m?>, and 2.5m’, respectively (Thomas et al.,

2022).

As a result, regions with low supply of water brought about by the impact of climatic changes

suffer severe reductions in crop yields, jeopardizing long-term security of food. Agriculture
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accounts for only about 4% of the country's GDP (Nhemachena et al., 2020). However, regardless
of this relatively insignificant contribution to the economy of the country, the agricultural sector
contributes to almost 10% of the overall labor force in the country, and around one-third of the
country's total produce of crops is exported with significant returns on investment (Olabanji et al.,

2020).

In addition, climate change has currently more than tripled the risks of long-term droughts in the
winter’s low precipitation zone, a risk which will continue to escalate with increased global
warming. For example, South Africa suffered one of the most severe multiyear droughts during
2015 to 2017, during which a Cape Town disastrous weather-related drought extended to
agriculture, hydrological and socio-economic impacts (Naik and Abiodun, 2024). During this
protracted drought period, the storage of water levels in the main reservoirs of the Western Cape
decreased roughly 23% while the remaining 12% of the water from dams was not usable (Botai et
al., 2017). The province became known as a catastrophic area, and the crisis led the local
government to enforce strict controls of water on agricultural and industrial users while scrambling
to find a way to prevent the taps from running totally dry. The drought has significantly affected

agriculture, livelihoods and communities Naik and Abiodun (2024).

For example, the agricultural industry experienced losses of around R5.9 billion and a loss of at
least 30 000 jobs (Oluwatayo and Braide, 2022). On the other hand, the projected decrease in
rainfall in the Western Cape by 2050 could be about 30% compared to the level recorded in 2019,
hence showing possible shifts in climate pattern (Steyn et al., 2019). Such rainfall declines could
have a major effect on agriculture by affecting surface water budgets and dam levels (Naik and
Abiodun, 2020). Therefore, drought and climate change may have major effects on long-term
availability of water and agricultural productivity, in addition to increasing temperatures and

evaporation.

2.2.2. Implications of climate change on the food inflation

Climate change and dire weather events are intensifying and disrupting South Africa’s fragile food
system (Johnston et al., 2024). The cascading effects of droughts, storms, flooding, rising sea levels
and increased pests and disease all impact the country’s ability to produce food, leading to food
insecurity and increased food prices. South Africa is recuperating from one of its most severe

droughts in the past decade (Baudoin et al., 2017). The period between 2015 to 2016 was
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disastrous, with 2015 being the most drought-prone year in history since rainfall measurements

commenced in 1904 (StatsSA, 2018).

These weather conditions have immediately affected the food supply and prices in South Africa.
According to the World Bank (2022), it is estimated that since 1961, climate change has prompted
a 21% decrease in worldwide productivity of agriculture. General food price inflation during the
2015 and 2016 droughts jumped by more than 15%, as reported by Adam and Paice, (2017).
According to data from South African Grain Information Service (SAGIS), commercial maize
production in particular fell by 45% in 2015 to 2016 compared to previous years, as a result South
Africa had to import significant volumes of maize to balance the supply with demand (StatsSA,
2018). The decrease in agriculture production contributed to the rise in food inflation in 2016,
which reached a peak of 12% in December of that year (StatsSA, 2018). Throughout 2016, sugar
prices rose by 34% and vegetable oil prices increased by 11.4% (FAO, 2017). The resulting food
supply shocks have ever since driven double digit inflation in South Africa for essentials, such as

grains, cereals, vegetables and cooking oils (StatsSA, 2022).

Further supply restrictions and increased input costs resulted in global food prices reaching an all-
time high in 2022, stretching back to January 2009. South Africa's total inflation rate in October
2022 was 7.6%, while food inflation stood well above that, with food price increases of 12% from
the previous year (SARB, 2022). Rising food prices, which are required expenditures, increase
poverty and deprivation, food insecurity, and the economy (Mbajiorgu and Odeku, 2023). This
disproportionately affects the low-income household, which spends a greater proportion of their
income on food. In 2023, the annual average of food price inflation was 11%, slightly higher than

9.5% recorded in 2022; this stood at 6.5% in 2021 and 4.8% in 2020 (StatsSA, 2024).

Furthermore, wholesale prices of white maize grain have increased by 3.3% compared to May
2024 and a 38.7% increase compared to June 2023 (FAO, 2024). The prices in South Africa heavily
influence prices in the import dependent countries of Botswana, Lesotho, Namibia and Eswatini.
These inflationary pressures can be largely attributed to gradual climate-related impacts
experienced in previous years. Therefore, climate change contributes to the country’s weak food
system and makes it more vulnerable to price shocks as it negatively impacts significant crops that

make up nearly half of the world’s food supply (Masipa, 2017).
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2.2.3. Future Climate Projections

Increased rainfall variability and long-duration droughts

Higher rainfall irregularity along with increased temperatures are currently predicted to have
severe consequences on South African agricultural output (Botai et al., 2016). For example, a study
by Theron et al. (2020), forecast a decrease in precipitation in the Western Cape area, which would
result in a decrease in water readily accessible to agriculture, with associated socioeconomic
consequences for farmers in this area. This, therefore, means that the projected 1.2 °C in 2020,
2.4 °C in 2050, and 4.2 °C by the year 2080 rise in temperature and a projected decline in rainfall
of about 5 to 10% over the next 50 years consequently poses a high risk to South Africa's
availability of food and socio-economic stability (Olabanji et al., 2020).With global warming
reaching 1.5°C or more, the more frequent high-pressure systems which reduce summer rainfall
will also increase multi-year droughts in the summer rainfall zone (Engelbrecht et al., 2024). As
global warming continues, regional droughts will be more frequent, longer in duration, and more
intense, which presents a serious risk to agriculture and water delivery systems. Considering the
socioeconomic significance of agriculture and food security, there is a pressing need to develop
and continually assess viable adaptation strategies to manage climate change effectively (Kwame

et al., 2022).

Decrease in yield and viability of most major agricultural products

Most of the major agricultural products are thus expected to show a steep decline in yield and
viability. Each crop has optimum temperature at different stages of development. The daytime
mean temperature for most crops’ ranges between 27°C and 30°C. Cereals, for example,
experience almost complete failure of pollination at temperatures above 40°C during the day and
above 30°C at night, with 50% success reduction when daytime temperatures are above 36°C and

nighttime temperatures are above 26°C (Scholes and Engelbrecht, 2021).

Furthermore, for crops to successfully complete their life cycles, the soil must be sufficiently moist
for a minimum amount of time. In South Africa, crop yields tend to increase linearly with soil
moisture duration during the growing season, within their tolerance ranges (Thornton and Herrero,
2015). However, the country is already too dry for optimal crop production over most of its extent.
In the majority of areas, further dryness will result in lower crop yields. Reduced water resources

and competition from other industries limit the potential to make up for this through improved
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irrigation. Additionally, the viability of the livestock is compromised under rising temperatures.
Overall, agriculture in South Africa, including downstream value addition, is already under climate
stress, which will intensify with global warming. Throughout South Africa's interior, temperatures
are rising rapidly than expected, and drier soils are becoming more prevalent. In 2019,
approximately 11% of South African’s population was classified as food insecure (Ziga, and
Karriem, 2022). The risk of food insecurity, and the challenge to national food sovereignty, will
increase in South Africa with a global temperature rise of 1.5°C, and even more so with further

warming (Satgar and Cherry, 2021).

2.3. The case of Zimbabwe

Zimbabwe, a landlocked country in Southern Africa, shares borders with Zambia, Mozambique,
Botswana, and South Africa. The subsequent sections cover Zimbabwe's economic susceptibility
to climate change, the effect of climate change on agriculture and food price increases, and

ultimately the expected climate projections for 2050.

2.3.1. Socioeconomic vulnerability to climate change

Between 1980 and 1990, Zimbabwe experienced rapid economic growth; the average growth of
the GDP is 5.5% with a high record compared to the average in Sub-Saharan Africa (Ncube, 2019).
However, the quality of economic stability worsened between 2000 and 2008 due to governance
issues, economic mismanagement, and decreased international support (Moyo and Tsakata, 2017).
The introduction of Zimbabwe's Fast Track Land Reform Programme in 2000, which was set to
redistribute commercial farms to the landless indigenous populations for historical land
inequalities and promoting family farmers, further disrupted commercial agricultural production
and led to an economic decline. According to Mkodzongi and Lawrence (2019), this program
undermined investor confidence, and foreign direct investment was therefore reduced in
Zimbabwe's agriculture. Uncertainty over property rights and land tenure further discouraged both
local and international investors from investing in agricultural infrastructure and technology. As
shown by Moyo and Tsakata (2017), such a decline in agricultural productivity was coupled with

reduced export earnings from agriculture, adding to broader economic instability.

The GDP growth rate fell for Zimbabwe, and it negatively impacted the levels of poverty while
increasing dependence on exploiting natural resources for survival. According to Matandare

(2017), this was the period between 2000 to 2008, which also corresponded with environmental
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issues of rising temperatures, erratic rainfall, and frequent droughts. It most affected rural areas,
as 62% of the population is located there, and agriculture comprises 15 to 18% of Zimbabwe's

GDP while accounting for 60% of inputs and 40% of export earnings.

The heavy reliance on agriculture that is dependent on rainfall, along with high poverty levels, low
human and physical capital, and inadequate infrastructure, contributes to the country's high
vulnerability to climate change. Not having enough irrigation infrastructure that would dampen
the consequences of droughts further worsens the effects on agriculture. The negative
consequences of climate change have led to a decline in export earnings, a factor that has
negatively contributed to GDP and increased unemployment rates. In the last twenty years, these
effects have called for the need for climate change adaptation strategies as a sure way of securing

economic stability (Mkodzongi and Lawrence, 2019).

2.3.2. Impact of climate change on the agricultural sector

Zimbabwe's agricultural production is diverse in comparison to numerous other tropical countries.
Sugar, cotton, maize, tobacco and sugar dominate crop production, with groundnuts, wheat,

sorghum, coffee, citrus, tea, and vegetables providing substantially less monetary contributions.

The economy and livelihoods of Zimbabwe's poor are especially vulnerable to climate change due
to their reliance on rain-fed agriculture. In this country, variation in rainfall is directly related to
economic growth, reflecting the agricultural sector's dominance and vulnerability to water stress.
Drought poses a significant problem to agriculture, impacting both cattle and crops. In 2015,
agricultural output declined by 5%, and in 2016, by a further 3.6% (World Bank, 2017). Both years
were characterized by drought conditions, which peaked in the 2015-2016 El Nino-induced
drought that caused 2.8 million individuals in the country to suffer from food insecurity (Matunhu
et al., 2022). Pests and diseases affecting crops and livestock pose a big challenge, especially given

the likelihood that climate change would shift their distribution and prevalence.

For instance, the fall armyworm emerged in 2016, a pest that had not been previously identified in
the country and has the potential to result in maize crop losses of up to 70% if not effectively
managed (Tambo et al., 2021).Therefore, climate change in semi-arid areas presents significant

concerns to natural processes that promote food supply for cattle and moisture for rain-reliant crop
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cultivation (Descheemaeker et al., 2018). In particular, change in climate is predicted to

result in the growth of marginal lands, which is currently occurring in Zimbabwe.

2.3.3. Food inflation dynamics as a result of climate change

Zimbabwe, located in the region's sensitive agricultural belt, has repeatedly encountered negative
effects of El Nifio from 1982 to current times (Mugiyo et al., 2023). Historically, El Nifio events
in Zimbabwe have been linked to disruptions of climatic patterns, including rainfall, resulting in
both localized and widespread impacts on livelihoods and ecosystems. El Nifio is climatic
phenomena characterized by rising temperatures of the sea surface in the central and eastern

equatorial parts of the Pacific Ocean (Mugiyo et al., 2023).

In the year 2022, the country was experiencing a protracted drought; this was the driest year in this
region in 40 years. With maize yields 45% lower than in 2021, as a result an estimated 2.9 million
people faced extreme food insecurity from January to March of 2022 (Mugiyo et al., 2023). Due
to the continuous decrease in maize yields of the previous years, Zimbabwe is grappling with high
inflation driven by food prices. The annual inflation rate in Zimbabwe continued to rise in March
2024, hitting an over one-year high of 55.3%, up from 47.6% in February, amid the sharp
depreciation of the local currency (Zimstat, 2024). On a monthly basis, consumer prices rose by
4.9% in March, following a 5.4% surge in the previous month (Zimstat, 2024). In Zimbabwe,
annual food inflation has trended upward since August 2023, Zimbabwe’s annual blended inflation

rate rose from 55.3% in March to 57.5% in April 2024 as illustrated in figure 2.1 (Zimstat, 2024).
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Figure 2.1: Blended Inflation Rates
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Consumer prices were 2.9% higher month on month compared to 4.9% during the previous month.
The continued increase in inflation is exerting pressure on all commodity prices and eroding
household purchasing power across the country (Zimstat, 2024). Poor crop production has resulted
in an atypically poor market supply of grains in the drought-affected areas of Zimbabwe. In
Zimbabwe, staple grain prices are now higher than those recorded during the peak lean season in
February and March 2024, and the alternative maize meal prices in July were 20% to 25% higher
than normal (FAO, 2024). The lack of rain induced by the El Nino global weather pattern has also
affected electricity production, as Zimbabwe relies on hydroelectric power (Dube and Nhamo,

2023).

2.3.4. Projected climate changes by 2050

Increase in temperature

Compared to historical average of 24.8 to 25.5°C, temperatures are projected to increase by at least
1.8°C in 2050, with increases of 2 to 2.7°C in the hottest months of October to December (Duube,
2023). A similar rise of 1.8 to 2.2°C is expected for all other months, including the cooler winter
and high summer months (Tesfaye et al., 2015). Added to this, the forecast decrease in precipitation
is likely to have a complex effect on Zimbabwe's agricultural sector. High-temperature increases,

particularly for October to December reaching about 2 to 2.7°C, will increase crop water
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requirements and evapotranspiration losses from the soils of farming areas, concurrent with low

rainfalls within these months (Hunter et al, 2020).

The combination exacerbates the risk of crop failure in crops such as maize, tomatoes, and peppers
that are highly sensitive to climate stress during the establishment phase. In addition, increased
average temperatures will likely include an increase in frequency or intensity of heat waves and
unusually hot days, which further enhances the loss through evapotranspiration of water and crop
stress. A combination of decreased rainfall and increasing temperature has a greater likelihood
of reducing agricultural productivity, partly through decreased yield or outright crop failure,
especially of those heat- and drought-sensitive agricultural produce, including wheat and maize

(Hunter et al., 2020).

Reduction in rainfall

A consistent prediction for all ten provinces in Zimbabwe is a reduction in both mean monthly and
total yearly rainfall from the baseline to 2050. Specifically, rainfall at the commencement of the
rainy season in October and November is expected to decrease significantly, from 24.4 to 10.6mm
per month and from 73.9 to 54mm per month, respectively, resulting in total reductions of 14mm
and 20mm per season (Panagos et al., 2022). Further declines are expected in the peak of the rainy
season between December and March, with monthly rainfall decreasing by 10 to 12mm per month
(Panagos et al., 2022). These declines over the course of the rainy season will serve to lower the
overall seasonal rainfall between October and March by 14%, from 572 to 494mm per season

(Hunter et al, 2020).

An additional effect of these changes is the likely variation in the timing of rainfall onset at the
start of the growing season, which will differ between provinces and agroecological zones. This
could lead to insufficient precipitation necessary for successful cultivation during the traditional
commencement of the growing season in some areas. As a result, changes in the climate could
impede the expected start of rainfall in comparison to the traditional agricultural timeline. shifting
the onset of key activities like field preparation and sowing. In general, the overall reduction in
monthly rainfall and the probable delay in the onset of rainfall are expected to result in major shifts
in local crop choices and agricultural practices, hence requiring far-reaching adjustments in

farming strategies to suit the changing climatic conditions by 2050 (Mpala and Simatele, 2024).
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2.4. The case of Zambia

2.4.1. Overview of the economy and agriculture in Zambia

Climate change in Zambia has presented itself in the form of a greater degree of extreme weather
occurrences that seriously affect crop yields, particularly maize, which is the staple food for most
Zambians. In excess of 98% of the smallholder households cultivate maize, occupying more than
54% of agricultural land (Phiri et al., 2020). The traditional schedule of farming is altered by this
unpredictability of extreme weather conditions, thus resulting in poor harvests and low agricultural
productivity. In addition to food security being at risk, this further lowers the standards of living
for farmers, who constitute 65% of the labor force (Ngoma et al., 2021). Effects spiral across the
economy, since a reduced agricultural output translates to higher food prices, increased poverty,
and increasing vulnerability to other exogenous economic shocks. More than 57.5% of the
population, as of 2015, lived below the poverty threshold, and the average unemployment rate
from 2015 to 2018 was approximately 7.31% (Phiri et al., 2020). The inflation rates were 10.11%
in 2015, 17.87% in 2016, 6.58% in 2017, and 7.49% in 2018, driven by currency depreciation,

increased electricity tariffs, and lower food commodity supplies (Kamuhuza and Jianya, 2022).

Moreover, climate change exacerbates fiscal challenges in Zambia. Because of this, the
government is forced to divert resources to address climate-related damages and support affected
communities-straining already overburdened public finances with high debt levels. The debt-to-
GDP ratio increased from 25% in 2012 to 61% in 2016, showing the fiscal pressure on the country
(Tembo et al., 2020). This, in essence, reduces the government's scope to invest in other important
sectors such as health, education, and building infrastructure. This therefore hampers the wheel of
economic growth and development in the long run. Further consequences of climate change in the
country include the dependence for a great part of its energy supply on hydropower which makes
the economy of Zambia vulnerable to climatic occurrences such as droughts (Borowski, 2022).
Reduced rainfall has led to energy deficits, decreasing productivity in the manufacturing industry
by 60 to 70%, which accounted for an average of 7% of GDP from 2010 to 2017, thus introducing

significant uncertainty to Zambia's overall economic growth (Tembo et al., 2020).

In Zambia, there exist policies, for instance, the National Agriculture Policy under the Ministry of
Agriculture, formulated with an intention to foster development within the agricultural sector. This

provides guidelines for agricultural development, utilization of sustainable resources, irrigation
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promotion, production of crops, agro-processing, livestock, and fishery development. Besides that,
institutional and legislative frameworks are dealt with, cooperatives supported, and climate change
issues addressed as stated by Bwalya and Deka, 2016. Despite of this policy, among others, the
agricultural sector still suffers from low irrigation, low mechanization at smallholder level, low
private sector participation, and low access to finance and credit. There is also a decline in
investment in agricultural research, unsustainable natural resource utilization, and low resilience

to climate change effects.

2.4.2. Implications of climate change on crop production in Zambia

The agricultural industry remains vital in Zambia, accounting for approximately 6% of national
GDP (World Bank, 2019). The industry further generates approximately 22.3% of employment
creation within the country, with 4.3% in the formal sector and 18% in the informal sector
(Zamstats, 2019). The sector mainly comprises smallholder farmers, who mostly produce maize
and rain dependent crops (Juliet et al., 2016). This production strategy has rendered the country,
and especially rural smallholders, more prone to climate fluctuations and variations. Crop
production is the main objective of small and medium-scale agriculture for two reasons: sustenance
and earnings from marketed output (Ngoma et al., 2021). Climatic changes and variations have
contributed to crop and livelihood losses, increasing food insecurity, and a decrease in agriculture's
contribution to the country's GDP (Alfani et al., 2019). Rainfall is projected to get more
unpredictable, and rainfall patterns are likely to fluctuate, rendering Zambian agriculture more
susceptible to climate shocks. This is exacerbated by the fact that more than 90% of the crop grown

by smallholders is reliant on rainfall (Ngoma et al., 2021).

Since the 1990s, extreme climate events have had a significant influence on crop output in the
country; droughts are the most common climate shock that rural small-scale farmers in Zambia
encounter, with 76% of small-scale farmers identified as prone to vulnerability. According to
Alfani et al. (2019), households impacted by the El Nifio drought from 2015 to 2016 endured a
20% decline in maize output and up to a 37% decrease in earnings, all other things being
equal. Other repercussions include considerable fluctuations in maize and maize meal prices as a
result of shortages in supply accompanied by poor irrigation; in certain years, maize yields have
been barely 40% of the long-term average (Mulenga et al., 2019). Long dry spells within a season,

as well as shorter rainfall seasons, have contributed significantly to the country's low yield over
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the last two decades. These factors impede progress towards food security and hunger eradication.
Currently, cereals account for approximately 63% of Zambia's energy requirements, however

cereals such as maize, the main grain, are prone to climate change (Mulenga et al., 2019).

However, since sorghum is a drought-tolerant crop, it is being promoted particularly in drought-
prone areas to increase food security in places with frequent short rain periods. Climate change
has posed a threat to sustainable agricultural practices, food security, and the country's GDP,
necessitating a better understanding of the magnitudes of climate change's impacts on agriculture

in order to support national adaptation strategy (von Grebmer et al., 2019).

2.4.3. Implications of climate change on food inflation in Zambia

In the past decade, Zambia experienced high inflationary episodes increasing from 7.9% in
December 2014 to 21.1% in December 2015 prior to decreasing to 6.6% in 2017 (Chipili, 2022).
The resumption of high inflationary pressures in this country in 2015 was caused by the steep
increase in domestic fuel pump prices and the decreased availability of agricultural produce caused
by drought, primarily maize, which is the primary staple (Chemura et al., 2022). High inflation
was linked to the drought years of 1995, 1998, 2001, 2003, 2005, 2013, 2015, 2016, and 2018
(Chipili, 2022). Considering that agricultural production depends on rainfall, while food makes up
a significant portion of the CPI basket, climate change had a huge impact on inflation (Tembo et

al., 2020), consequently highlighting the impact of supply shocks on inflation

The country experienced a severe drought that started in mid-January 2024, affecting close to half
of Zambia's population (Ngoma et al., 2024). In the country, a continued dry spell damaged about
43% of the planted grain, leading to a complete crop failure (Ngoma et al., 2024). This has raised
the prices of food in all provinces in Zambia and reduced the level of access to affordable
foodstuffs, hence aggravating food insecurity for millions of people across the country (World
Bank, 2024). Besides, inflation reached 13.70% in April 2024, while the annual inflation rate in
Zambia increased to 15.5% in August 2024, reaching its peak level since December 2021, from
15.4% in the previous month (Zamstats, 2024).This is primarily due to the increase in inflation
caused by El Nifio drought, which has resulted in increased food prices from 17.4% to 17.6%
(Funyina et al., 2024).The horrific drought has resulted in poor crop yields, reduced hydropower,
and increased import costs. In Zambia, annual food inflation in June 2024 was 16.8 percent, up

from 16.2 percent the previous month, and is projected to increase further (Zamstats, 2024).
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2.4.4. Projected Climate Trends

Severe impacts on the economy

According to Tembo et al. (2020), it is estimated that by 2045 to 2050, climate change could cause
Zambia's GDP to decline by approximately 6%. It is further expected that the effect will increase
gradually over time (Ngoma et al., 2021). A study by Arndt et al. (2019), projects that if worldwide
carbon emissions are not regulated, Zambia's average level of GDP between 2046 and 2050 is most
probable to be between -3% and -1%. According to a 2019 report published by the United Nations
Office for Disaster Risk Reduction (UNDRR) and the Centre for International Media Assistance
(CIMA), droughts have the potential to more than quadruple the impact on GDP in a high-emission
scenario. The assessment takes into account the yearly average of possible GDP affected from

2016, with reduced production of hydropower playing an integral part in these losses.

Increase in temperature across Zambia

According to Hamududu and Ngoma (2019), temperatures will rise by 1.9°C and 2.3°C by 2050
and 2100, respectively, under a high emissions scenario. Similarly, a study conducted by Ngoma
et al. (2021), predicts that temperatures will be roughly 1.8°C higher on average by 2046 to 2050
if global GHG emissions are not limited; the study also indicates that temperature rise in Zambia
might reach 3.6°C. According to the study's estimate, increases in temperature from all Zambian
areas will most certainly exceed the commonly used 1.5°C threshold. Another study by Mulungu
et al. (2021), predicts that the average annual temperature will rise by 1.2 to 3.4°C in 2060, with
warming occurring at a faster rate in the south and west. Based on the analysis, the regularity of
warmer days and nights is expected to significantly increase. Similarly, a report by SADRI (2021),
projects that hot days will increase by 15 to 29% by 2060, while warm nights will rise by 26 to

54% in the same period.
Decrease in rainfall in the Southern and Western regions

According to Hamududu and Ngoma (2019), rainfall will decline by roughly 3% by mid-century
and by down to 0.6% by the end of the century across the country. However, the study finds
significant geographic disparities, with the southern, eastern, and western regions predicted to be
far severely impacted compared to the north. Ngoma et al. (2021), similarly forecast significant

decrease in precipitation in the southern and western regions, averaging 3% to 4%. However, in
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the worst-case scenario, these regions might encounter a 20 to 30% decrease in rainfall, making

them extremely susceptible to climate change.

2.5. The case of Mozambique

Situated along the Indian Ocean in southeast Africa, Mozambique is extremely sensitive to the
changing climate and is shares borders South Africa, Malawi, Tanzania, Zambia, Eswatini,

Zimbabwe.

2.5.1. Broader Key Macroeconomic Impacts and Vulnerabilities

Effects of climate change on food inflation and its implications for food security

Despite being a net importer of food, Mozambique's primary exports include sugar, tobacco,
soybeans, legumes, seeds, and nuts, while its primary imports are wheat, palm oil, rice, sugar, and
maize (FAO, 2021). Inflation reached a five-year high of 9.8% in 2022 and moderated to 7.1% in
2023 as global commodity prices subsided (World Bank, 2024). A study by Odongo et al. (2022),
revealed that temperature fluctuations and rainfall greatly raise the country's food and total
inflation rates. The results also showed that temperature fluctuations have an impact on
Mozambique's ability to produce energy, which impacts the cost of food and other commodities in
the consumer basket. According to a study by Baez et al. (2020), food markets near regions
impacted by adverse weather conditions show more fluctuation in the price of maize in particular,

which may additionally heighten the risks to food security for those in need in Mozambique.

A study conducted by Odongo et al. (2022), observed that in Mozambique, there is a significant
spillover of foreign inflation by means of imported prices into domestic prices. Severe weather
conditions having regional effects will exacerbate food inflation and, consequently, food security
challenges as the country depends on the regional market for some of its essential food imports,
including wheat. Given that climate change is also predicted to have a detrimental impact on maize
output in the majority of neighboring countries, including Zambia and Malawi, Mozambique's
lower maize yields may increase the country's dependency on imports, which are projected to
become increasingly costly (Thomas et al., 2022). Overall, food inflation is expected to affect
Mozambique's already susceptible population, as over 60% of the country's population suffers
from abject poverty (World Bank, 2023). According to a study by Amosi and Anyah (2024), the

impact of climate change on the recent agricultural season due to the recent Tropical Storm Filipo
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which led to strong winds, heavy rainfall, along with flooding and other cumulative effects of
multiple and recurrent shocks over recent years due to Tropical Cyclone Freddy in the previous
year have dire consequences of increased food insecurity. These climate change-related shocks
have destroyed 31,000 hectares of various crops, food stocks and sources of income for numerous
households (USAID, 2024). In February 2024, the average price of maize grain rose by 12%, this
is usually the case during this time of the year (FAO, 2024). In February, the average price of maize
grain increased by 20% from the previous five-year average and 24% from the previous year (FAO,
2024). The accumulated negative effects of challenges over the last five years constitute the root
cause of this year's high costs. The prices of rice and maize meal remained generally stable between
January and February. However, they were, on average, 7% higher than last year's prices and

almost 20% higher than the five-year average (FEWS NET, 2024).

Headline inflation in the region is likely to continue rising due to lower production, increased
import prices, and rising energy costs. Poor macroeconomic conditions, such as inflation and
decreasing currency exchange rates, are likely to increase the consequences of regional shortages

in production on the ability of households to meet their fundamental needs (Okou et al., 2022).

Limited fiscal space for climate adaptation actions in Mozambique

Government debt in Mozambique was at 102.6% in 2022, with interest payments accounting for
10.7% of total revenues that year (IMF, 2023). Mozambique is vulnerable to currency risk since
71.0% of its total debt is in foreign currency (IMF, 2023). Climate change may impact its trade
balance in the future. While adaptability efforts may be less costly than frequent disaster support
systems, they are projected to have a substantial impact on Mozambique's fiscal positions within
the existing climate finance framework (Aligishiev et al., 2022). The Belgian government's recent
offer of a €2.4 million "debt-for-climate swap" may be a significant start-up towards enhancing

Mozambique's climate and economic resilience (IMF, 2023).

2.5.2. Overview of the agricultural sector in Mozambique

Agricultural land represents 52.7% of Mozambique's land area, with the remaining portion being
covered by forests (World Bank, 2020). However, since the majority farming occurs in areas that
are vulnerable to drought and flooding, only 7.2% of the land is arable, whereas less than 10% of
the arable land is utilized (World Bank, 2020). Only a small portion of the land in the southern

provinces is suitable for irrigation, despite their greatest need for it. While groundwater is used
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sparingly, mostly by smallholders, the majority of irrigation projects use surface water from rivers
(FAO, 2016). Approximately 95% of agricultural production is produced by smallholder farmers,
who are subject to climate variability because they primarily engage in rainfall-dependent
agriculture (Armand et al., 2019). According to Manuel et al. (2020), maize is the main crop for
nutrition and makes up 72% of all small and medium-sized farming units and is then followed by

beans and cassava.

Climate change is projected to worsen the possibilities of flooding, thus affecting essential value
chains such as sesame and pigeon pea, with negative consequences for local markets and farmers'
income (Mulungu et al., 2021). For instance, a study by Baez et al. (2020), estimated that when
cyclones, floods, or drought hit an economy, the consumption of food may decline up to 25 to
30%. Furthermore, rural communities are more vulnerable to the negative effects of severe weather
conditions on agricultural output, in which 90% rely on agriculture as the primary source of
livelihood Ayanlade et al., (2022). Pre-existing vulnerabilities in Mozambique's agricultural sector
are expected to undermine the country's capacity to adjust to climate change concerns. These
include lack of water infrastructure, interruptions in electricity supply, insufficient storage and
logistics facilities, and underinvestment (ITA, 2022). The significant proportion of small-scale
farmers is likely to give rise to shortcomings with implementation for adaption strategies and the
wider adoption of climate-smart methods of cultivation. While irrigation may contribute to
reducing the risks of climate change, water supply is expected to decrease and demands for

irrigation in Mozambique are likely to be unmet (Mulungu et al., 2021).

2.5.3. Projected Climate Trends

Low rainfall and increased temperature

Temperatures are projected to increase across the country, with rainfall becoming more erratic,
particularly in Mozambique's south. Figure 2.2 depicts the expected changes in Mozambique's
temperature and yearly rainfall. According to World Bank forecasts, temperature increases are
predicted to continue until 2090, although yearly precipitation does not change considerably over

time however is estimated to be more variable than previous averages.

Mozambique's Nationally Determined Contributions (NDCs) predict a rise in temperature

throughout the country, accompanied by variety of warm days, and also increased fluctuations and
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intensity of precipitation (Mavume et al., 2021). Mozambique's National Climate Change
Adaptation and Mitigation Strategy (NCCAMS) includes forecasts of a 2 to 9% decline in average
precipitation by 2075. According to a report by Irish Aid (2017), temperatures along with the
duration of hot days will rise on average, although precipitation is unlikely to change significantly,

despite the sole exception of an increase in rainfall intensity.

Figure 2.2: Forecasted changes of weather conditions in Mozambique at the national level

o 2 000
O
£ 1 = 1750
= E 1500
e 28 ¥ 51250
3 E 1000
8 26 E_
i ¢ 750
Y &
o -
k. 500
22 250
o Q Q o o
g 8 § g g 8 g § § g8 g8 8
o~ o~ o~ ~N o~ o~ o~ o~ o~N o~ o~ o~
Hist. Ref. Per. 1995-2014 SSP1.1-1.9 Hist. Ref. Per. 1995-2014 1 SSP1.1-1.9

m SSP2-2.6 SSP2-4.5 wmm SSP3-7.0 wem SSPS-85 s SSP2-2.6 SSP2-4.5 wmm SSP3-7.0 wem SSP5-8.5

Source: World Bank Climate Change Knowledge Portal (2023
2.6. The case of Botswana

2.6.1. Implications of climate change on agricultural productivity

In order to ensure its food security, Botswana imports 90% of its total food and is heavily reliant
on the performance of neighbouring country's agricultural sectors (Bahta et al., 2017). Botswana's
agriculture is primarily rain-fed, rendering the country particularly vulnerable to climatic
unpredictability and change. Climate change trends are expected to jeopardize regional grain
production in addition to the export and import of essential primary crops in Botswana and
throughout Southern Africa (Nhamo et al., 2019). This alone affects import supply, food prices,

and thus the availability of food, as crop production have already decreased in recent years.

For Botswana, the price of grains and market reliance are strategically linked, and the country
depends on imports for sustaining the national demand for fundamental goods including sorghum
and maize, which are primarily sourced from South Africa (Masipa, 2017). For instance, while

South Africa's low rainfall in 2002 did not result in food shortages, this was regionally
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concerning considering that South Africa is the Botswana's primarily food exporter (Masipa,
2017). A healthy sorghum crop requires approximately 300mm of water in the root zone, which is
already difficult to achieve in Botswana due to inadequate rainfall (Dietz et al., 2021). Due to high
evapo-transpiration, the crop is water-stressed for the majority of the time and cannot produce

optimal yields.

Over fifty percent of the populace resides in rural regions and relies primarily on sustenance
agriculture and livestock husbandry. Domestic agriculture accounts for only a small portion of
local food needs and contributes minimally to GDP; despite this, it still serves as a social and
cultural benchmark. Botswana's crop output is further limited by conventional farming practices,
frequent droughts, erosion, and infestations of pests. Livestock, which is dominated by cattle and
is currently projected to be 2 to 3 million head, has been declining for several years (Urich et al.,
2021). Given the forecast of rising temperatures and decreased precipitation, specifically in key
agricultural zones in the country's east, sorghum and maize yields are projected to decrease by
10% to 35% by mid-century, posing serious challenges for livestock (Urich et al., 2021). An
effective land use management approach will be necessary to restrict land usage and minimize

pressure during periods of average to below-average rainfall (Atkinson et al., 2019).

2.6.2. Implications of climate change on food prices in Botswana

The overall production of cereal is forecasted at 73 000 tons in 2023, about 15% lower than the
five-year average, reflecting the less-than-average rainfall amounts and uneven temporal
distribution. High temperatures during the cropping season also worsened the risks of reduced
rainfall on crop yields. However, the yearly food inflation rate decelerated during all of 2023 and
was pegged to 9% in August 2023 from 13% a year earlier, in particular, because of an easing
bread-and-cereals price (StatsBots, 2023). Given that the bulk of the country's national cereal
requirements are imported, deceleration in price growth largely reflects a decline in commodity
prices on the international market and a relatively stable exchange rate (FAO, 2023). Inflation-or
a general rise in the level of prices for goods and services-has been easing this 2024, moving from
14.6% in August 2023 to 9.3% at the beginning of the year and down to 1.2% in August of the
same year (Statsbots, 2024). However, such decline has largely been influenced by the slide in the
prices of fuel earlier on this year and more or less stable price movements in other commodity

groups other than the commodity grouping of food and non-food, non-alcoholic drinks.
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2.6.3. Projected Climate Key Trends

Increased temperature

Temperature is estimated to rise in Southern Africa, particularly in Botswana, with average
monthly temperature changes increasing by 2.5°C in the 2050s and 5.0°C by the end of the century
under a high-emission scenario (Urich et al., 2021). According to Mulungu et al. (2021), under a
high-emission circumstance, the frequency of days with high temperatures is predicted to rise by
138 days by the end of the century, with the largest significant spikes occurring between November
and March. Higher temperature will also have the consequence of more frequent and intense heat
waves, with higher evapotranspiration rates. These consequences will impact many aspects of local
economic development, agricultural productivity, and beyond. As can be seen in Figure 2.3, during
a high-emission circumstance (RCP 8.5), minimal temperatures are bound to rise at a rapid pace
by the middle of the century. More records of heat and conditions of extreme heat will pose serious
ramifications for both livestock and human health, ecosystems, agriculture, and the production of
energy.

Figure 2.3: Historical and predicted average temperatures in Botswana from 1986 to 2099
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Reduced precipitation

Given Botswana's enormous dimensions, arid environment, and diverse geography, the majority
of the country is predicted to receive less precipitation; however, the northeast portions are
expected to see more precipitation (Matenge et al., 2023). From April to September, conditions are
expected to be slightly drier, increasing the frequency of droughts and dry spells. The graph below

depicts changes in monthly precipitation, with the greatest decline projected in the course of the
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country's main rainy season from October to April (World Bank Group, 2021). Water supplies are
likely to be more strained in regions with lower precipitation forecasts. In addition to rising
temperatures, the country's evapotranspiration rate is predicted to rise further. With increasing
severity and frequency of droughts, the Southern African region may face significant implications
on the quality and supply of water, threatening the health of wetland ecosystems, agriculture, and
cattle populations (World Bank Group, 2021). Under the RCP8.5 high emissions scenario, annual
average precipitation is projected to decline partially by the end of the century.

Figure 2.4: Annual average precipitation in Botswana from 1986 to 2099
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2.7. The case of Lesotho

2.7.1. Implications of climate change on the economic sectors

Reduced water availability

Lesotho is known to have ample water resources, forming one of the major water catchment areas
in Southern Africa, which supplies over 50% of the total catchment runoft (Pryor et al., 2022). The
national economy highly relies on climatic conditions, where water serves as a major source of
energy and one of the prominent exports to South Africa. The water supply is vital to promoting
socioeconomic growth and the country's ecosystem sustainability, given that more than 95% of
electricity consumed in Lesotho is from hydropower (MEMWA, 2013). While Lesotho has
substantial levels of poverty and wealth inequality, water accounts for approximately 10% of the
total GDP (World Bank Group, 2021). A significant amount of this benefit is derived from revenues

related with the Lesotho Highlands Water Project, a multistage infrastructure project that permits
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water to be transferred from Lesotho's water-rich highlands to the African continent's economic
engine in Gauteng while also contributing to the advancement of hydropower resources in Lesotho
(Wendt, 2023). Despite its enormous water resources, Lesotho is highly susceptible to the effects

of frequent and recurring floods and droughts.

The severe drought of 2015 to 2016 resulted in a 21% decline in wheat production and an urgent
water scarcity as the country endured protracted dry spells characterized by low rainfall and high
temperatures, causing large-scale agricultural damage (Dick-Sagoe et al., 2023). According to the
Disaster Management Authority (2015), total national cereal production (maize, sorghum, and
wheat) was estimated to be 89,000 tonnes to feed a population of around 350,948 tonnes. Small-
scale farmers and households with agricultural livelihoods were particularly affected and faced
disruptions as an immediate consequence of reduced production and rising costs, which increased
the risk of food insecurity and malnutrition. These vulnerable populations also experienced
temporary food insecurity from 2015 to 2017 (Dick-Sagoe et al., 2023). The country's biophysical
features, particularly its significant amount of high-altitude rangeland and acutely erodible soils in

the lowlands, make it more vulnerable to precipitation fluctuations and reduces water availability.

Declining crop production in Lesotho

Agriculture in Lesotho is primarily rainfed and is therefore extremely sensitive to the variation in
precipitation, making attempts to increase food security extremely challenging. This sector is also
vital in the creation of employment opportunities in the country since it creates about 60% to 70%
of the labor income generated from farming. Major crops grown constitute maize, sorghum, and
wheat, which form approximately 60%, 20%, and 10%, respectively, of the total area cropped
(Verschuur et al., 2021). Lesotho's agricultural industry is characterised by low and diminishing
production, which is which has recently been worsened by the implications of climate variation.
As it stands, both the food and agricultural industries face significant risks not solely from
historical yearly precipitation, but also from changes in climate (Nhemachena et al., 2020).
Weather conditions account for 80% of the variability in agricultural productivity in Lesotho,
particularly in rainfed systems. Rainfall variability affects not just the amount of land cultivated

but also the consequent agricultural yields (Wendt, 2023).

Future climate projections regarding rainfall variability show that it would very likely lead to food

inadequacy due to pressure from decreasing precipitation and increased temperatures. Effective
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adaptation measures notwithstanding, the trend of crop yields decline may continue nationwide.
While Lesotho's geographic setting and location present numerous opportunities, the country's
basic economic structure is extremely vulnerable to subsequent shifts in weather patterns. Ensuring
a strong system for sustainable management and prospective growth of water resources will be
crucial for achieving long-term improvements through economic development in the commercial,

service, industrial, and agricultural sectors (Verschuur et al., 2021).

2.7.2. Implications of climate change on food prices

Lesotho experienced one of the worst droughts in 35 years, primarily caused by El Nifio (World
Food Program, 2015). The drought, combined with Lesotho's dependence on rain-fed agriculture,
means that many households depended on food purchases for the most of 2016 and 2017.
Throughout 2016, the general consumer price index increased, so did food inflation. Food prices
rose by 15% per year in May 2016, and by 10% in September 2016, showing that food costs are
rising faster than the entire basket (Lesotho Bureau of Statistics, 2016).

Maize meal prices increased during 2015, above both the previous year's average and the preceding
five years' average, according to the Lesotho Disaster Management Authority (2015). Increases in
prices fluctuated between 20% in Qacha's Nek to 32% in Butha Buthe during December 2014 and
December 2015 (Disaster Management Authority, 2015). This continuous rise in food costs is
projected to diminish consumer purchasing power and worsen Lesotho's food security situation
(FAO, 2016). As a result, Lesotho faces a major food security crisis due to the impact of the El
Nino-induced drought. The main factor contributing to local price increases in Lesotho and South
Africa has been the tightening of maize supplies due the production failure caused by the El Nifio-

induced drought (Veschuur et al., 2021).

Persistent crop failures, dwindling food production, water shortages, and skyrocketing food prices
have severely hit the country’s agricultural production with 41% of rural households now forced
to spend more than half of their income just to put food on the table (Sekaran et al., 2021). The
inflation rate was forecasted to reach 7.6% in 2022, decreasing to 5.9% in 2023, mainly due to a
rise in the rate of food price inflation which fell to 8% in December from 8.10% in November
2022 (Central Bank of Lesotho, 2023). Headline inflation in April was 7.1%, surpassing 4.5% in
July 2023. The highest level recorded so far this year was 8.2% in January 2024. Inflationary

pressures may have been exacerbated by dryness conditions during important growing phases,
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which had an adverse effect on crops and fed into increased prices, causing households to purchase

food earlier than usual (IMF, 2024).

2.7.3. Projected Future Climate Trends

Increase in temperature

Temperatures are anticipated to rise in the region, with mean monthly temperature variations
increasing by more than 2.0°C in the 2050s and 4.4°C by the end of the century under a high-
emission scenario (Climate Change Knowledge Porta, 2021). Heat waves are projected to occur
more frequently, as are increasing rates of evapotranspiration, which will have an impact on many
areas of local economic development and agricultural output. Across all emission scenarios (RCP

2.6,RCP4.5,RCP 6.0, and RCP 8.5), temperatures in Lesotho are expected to rise over the century.

As demonstrated in Figure 2.5, under a high-emission scenario, average temperatures are predicted
to rise substantially over the next century. Temperature is projected to rise throughout the year due
to the seasonal cycle. Increased and intense heat waves will have adverse effects on human and
animal health, agriculture, and ecosystems. Predicted rises in temperatures could widen up new
agricultural areas, enabling cultivation in formerly unproductive areas; yet persistent
challenges with shallow soils on steep slopes may raise the risk of soil erosion (Climate Change
Knowledge Portal, 2021).

Figure 2.5: Projected Average Temperature for Lesotho
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Decrease in precipitation

Higher temperatures are projected to increase the rate of evapotranspiration in Lesotho and
Southern Africa, putting pressure on water resources. As droughts become more regular and
severe, the region's water supply and agriculture are likely to suffer. A concomitant increase in
flooding episodes poses major water pollution concerns to wetland habitats, agriculture, and
animal groups. Precipitation in Lesotho is widely diverse; northern portions of the country are
projected to experience less than average rainfall through mid-century, with moderately more than

normal precipitation until the end of the century (Climate Change Knowledge Portal, 2021).

According to the World Bank Group (2021), southern Lesotho is anticipated to experience below-
average rainfall of 50 to 100mm annually till the end of the century. Lesotho's projected
precipitation regime will only minimally deviate from documented historical patterns under the
highest emissions scenario. However, variations in rainfall patterns in Lesotho are expected to
result in a rise in severe rainfall events, along with the likelihood of long dry intervals between
storms. These changes may intensify the country's drought zones, and decreased precipitation

could result in a significant decline in crop yield (Wendt, 2023).

2.8. The case of Malawi

Malawi is an attenuated, landlocked country in southeast of the continent, shares borders with
Tanzania, Zambia, and Mozambique. The country is prone to a range of climatic variabilities,
including heavy precipitation and hurricanes, periodic conditions of drought, and unpredictable

cyclones.

2.8.1. Socio-Economic Vulnerabilities

Malawian economy in the face of climate change

Climate-sensitive industries characterize Malawi's economy, where fishing, forestry, and
agriculture comprised 22.7% of the GDP and 62% of the total labor force as of 2021. This is
according to data obtained from the World Bank for 2023. It was tobacco, however, that continued
to remain the significant cash crop for Malawi and accounted for nearly 50% of revenue earned
through exports. Other major agricultural exports include tea, sugar, and cotton from Malawi,
which accounts for at least 85% of its total exports. Furthermore, most of the facilities such as

roads, energy, and water supply remain poorly developed; therefore, any deterioration due to
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climate change is more likely to have a worse effect on other sectors. Malawi's most recent
Nationally Determined Contribution (NDC) projects that climate change will cost the country at
least 5% of its GDP each year (Chirambo, 2020).

According to Arndt et al. (2014), the effects of changes in climate on the economy of Malawi are
anticipated to worsen over time, as a result of decreased crop productivity and increased
impairment to transportation infrastructure as the prevalence and magnitude of severe weather
events increases. A World Bank Group report (2022), analyses five potential climatic scenarios and
concludes that changes in climate could lower Malawi's GDP by amounts greater than those
forecasted by the NDC should the ongoing trajectory of low-growth development persists.
Corresponding to Arndt et al. (2014), the report concludes that impairment of bridges and roads is
projected to be the primary channel of the impact of variations in climate on Malawi's economy,
notably in a rainy scenario, due to the country's roadway vulnerability to flooding. The second
most important channel is expected to be a decrease in the productivity of labor, specifically in
extreme temperature scenarios. This is followed by reductions in crop production as a result of

temperature and precipitation fluctuations in a dry scenario.
Malawi’s unsustainable fiscal position

As of July 2022, the International Monetary Fund (IMF) determined that Malawi's external and
total public debt was in distress (IMF, 2022). In 2022, the government debt increased to 76.6% of
GDP, resulting in a fiscal deficit of 8.8% of GDP. It worsened because of the rising commodity
prices resulting from the conflict between Russia and Ukraine, which raised food costs, caused a
severe lack of foreign exchange, and caused inflation to skyrocket to 26.7% as of October 2022
(World Bank, 2023). Continuous climate-related shocks continue to make Malawi economically
vulnerable and distressed by debt, causing frequent and severe weather events disrupting
agriculture, reducing economic growth, increasing government spending on disaster response,
creating foreign exchange shortages, and driving inflation. The government tried to achieve fiscal
consolidation to reduce the deficit through the reduction of non-priority spending and enhancing
revenue collection. Despite these developments, Malawi till date has enormous fiscal ultimatums
that lie ahead in its efforts toward poverty and inequality reduction, considering the increasing

investment required in infrastructure, social services, and response to climate change (Raga, 2023).
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2.8.2. Overview of the Malawian agricultural sector

The agriculture sector accounts for a large percentage of the economy of Malawi and employs a
great deal of the workforce. In Malawi, just a minimal amount of agricultural land is irrigated, and
commercial estates manage the majority of it. Despite the fact that irrigation is becoming more
popular, with 61 977 hectares expected by 2019, it comes at a high expense (Mapila et al., 2022).
Consequently, crop yield in Malawi continues to be heavily dependent on precipitation. Large-
scale farmers focus solely on exporting sugar, tea, tobacco, and macadamia. Small-scale producers
are primarily subsistence farmers that grow legumes, maize, cassava, rice, and sweet potatoes.
Ultimately, 80% of Malawi's populace lives in communities that rely on rain-dependent harvesting
agriculture (World Bank, 2018). Many essential crops have demonstrated diminishing agricultural
yield. Investment in agriculture is required to improve productivity and provide greater resilience
to unfavorable climate events. Potential economic shocks are made more severe by the increased
likelihood of minimal yield seasons in agriculture. In the case of high emissions, these effects are
likely to be substantially greater. Climate warming may double the frequency of low-yield

occurrences for maize (Stevens and Mandani, 2016).

2.8.3. Implications of climate change on food inflation

Inflation increased from 20.8% in 2022 to 28% in 2023. Malawi continues to experience high
levels of inflation, with a year-on-year inflation rate of 32.3% for April 2024, and elevated food
prices, with maize prices averaging 160% above the five-year average (IPC, 2024). The high cost
of agricultural inputs in 2023 has further exacerbated the situation for the poorest and most
vulnerable households (FAO, 2023). Increased costs of transporting imported foods and
agricultural inputs, due to devaluation and depreciation of the Malawi currency, are thus elevating
transportation costs for such food and agricultural inputs during the lean season of November 2024
to April 2025 (FAO, 2023). Recurrent climate shocks have left a considerable number of Malawian
families needing emergency food assistance. Forecasted La Nifia conditions are projected to result
in above-average rainfall with floods predicted in many of the drought affected districts toward

the last quarter of 2024 to the first quarter of 2025 rainy season (IPCC, 2022).

2.8.4. Future climate trends

The average temperature is projected to rise further during the 2020s and 2060s, maybe much

higher if global emissions reduction efforts fail. Thomas et al. (2022), employed a broad ensemble
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of climate estimates from 2000 to 2069 to generate frequency ranges for temperature and rainfall,

displayed in Figure 2.6. The figures show the average daily maximum temperature for the warmest

month during the most humid three months of the year for each pixel, in addition to the total

amount of rainfall for the most humid three months of the year for each pixel for the specified

decade. The scenario with lower emissions is shown in the figure as 2C, and the scenario with

greater emission levels is shown as PF. Under the less emission scenario, the variation in the daily

peak temperature during the warmest months of the year is minimal, whereas, under the higher

emissions scenario, it is enormous.

Figure 2.6: Projected changes in rainfall and average daily peak temperatures for the wettest

three-month and the hottest month period from 2020s to 2060s
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The combined fluctuation and unpredictability of precipitation throughout Malawi's wettest
months, especially under a heightened emissions scenario, escalates the risk of drought,
particularly in the south. Although the average rainfall of the wettest three months is expected to
change minimal at the country level, for the most extreme emission forecast (that is, the ‘reference’
forecast, which is moderately greater than the PF forecast); a slight decrease in average rainfall
and moderately greater variation in rainfall indicate an approximate double of drought frequency
in the south and a potential increase of 50% for the majority of the country. This potential
variability is due to rainfall patterns and greater vulnerability (Thomas et al., 2022). World Bank
(2018) also reported an increasing risk of reduced precipitation, notably in Malawi's southern
regions accompanied by additional days of prolonged dryness each year. A corresponding study
by IFAD (2020), predicts a total drop in Malawi's yearly and seasonal rainfall by mid-century, with

a 10.5% decrease in seasonal precipitation from October to April.

2.9. The case of Namibia

The nation is experiencing water stress, which is mostly manifested by extremely high evaporation
rates of 83% and low and highly unpredictable average annual rainfall. Natural disasters are
common in Namibia, the country therefore struggles with drought and flooding (Shikangalah,

2020).

2.9.1. Implications of climate change on the hydrology sector

Drought impacts on the hydrology sector

Water is essential in many economic areas, including agriculture, cattle, fishing, mining, and
industry. Despite its small contribution to GDP, agriculture consumes up to 75% of total water
output in Namibia (Liu and Zou, 2021). However, agriculture's water productivity is far lower than
normal. Droughts are now a regular occurrence in most parts of the country; in recent decades,
droughts occurred from 2012 to 2013 and in 2019. The drought in 2012 to 2013 was expected to
be the most severe of the decade, with almost 42% of the overall populace experiencing food
insufficiency (Shikangalah, 2020). The El Nino Southern Oscillation (ENSO) had a substantial
impact on Namibia's rainfall and temperature, resulting in lesser than average rainfall which was

received during the ENSO (Shikangalah, 2020).
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According to Mupambwa et al. (2021), the average yearly precipitation for nearly two-thirds of
the country is 250mm during normal rainy seasons and less during ENSO. With such little average
rainfall, the country is primarily reliant on groundwater systems for supply. It is believed that only
2% of Namibia's precipitation ends up as surface run-off, with only 1% accessible to recharge
groundwater. The remaining 97% is lost through direct evaporation (83%) and evapotranspiration
(14%). Rainfall frequently evaporates before reaching the ground, and a 1% change in rainfall has
an effect of 1.2 to 1.6% on carrying capacity. A slight decline in the amount of precipitation as a
result of changes in climate will exacerbate water scarcity, reduce livestock, decrease agricultural

productivity in Namibia (Liu and Zou, 2021).
Projected climate trends in the hydrology sector

Changes in precipitation across Angola and Zambia of 10 to 20% by 2050 would have a 20 to 30%
impact on discharge and drainage of perennial rivers in northern Namibia (Thorn et al., 2023).
Furthermore, the majority of the country's irrigation projects are situated along the perennial
northern rivers that form its borders. As a result, diminishing flow from these rivers may jeopardize
irrigation development for greater food production, as envisaged by Namibia's government. As
temperatures rise over 3°C, evaporation also rises by 5% to 15%, making even less water
accessible for discharge and storage (Spear et al., 2018). Daily peak temperature is expected to rise
by 5 to 6°C by the end of the century. Namibia's groundwater often serves as a drought buffer in
many areas; however, persistent future droughts are projected to lead to descending groundwater

tables and declining flows of surface water (Thorn et al., 2023).

2.9.2. Implications of climate change on the agricultural sector

Drought impacts on the agricultural sector

The agricultural industry is essential to Namibia's economy and food security, accounting for 7%
to 10% of the country's GDP (World Bank, 2018). Seventy percent of Namibia's population
is reliant on rain-fed agricultural output, with about 48% of rural households relying on
subsistence farming. Agricultural exports, particularly livestock, beef, and grapes, are a significant
element of the country's trade portfolio. However, with the recent and ongoing climate shocks in
the country, there has been a sharp decrease in agricultural output, thus disrupting economic

stability (Simaku and Sheefeni, 2017).
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For instance, during the 2019 drought, Namibia and Botswana's annual agricultural output was
predicted to be less than 50% of the 5-year average (FAO, 2019). Furthermore, production in the
sector decreased by 17.5%, with crop growth being the most severely hit. Figure 2.7 shows that as
the cultivated area decreased in 2019, output fell from a significant 10% in 2018 to a negative
18%. Furthermore, livestock production was already negative in 2018, and it fell even worse in
2019. As total production of crop decreased during 2019, the production of cereal was predicted
to be 53% less than in 2018 and 42% lesser than the 20-year average. In Figure 7, "P" represents

projection.

Figure 2.7: Annual percentage (%) changes of farming activities
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The agricultural sector's sensitivity to climate, in addition to its dependence on rainfall and water

supplies, have significant repercussions for Namibian farmers and the economy as a whole.

Projected climate trends in the agricultural sector

Agriculture in Namibia (crop production, livestock husbandry, and fishing) is extremely vulnerable
to weather conditions. Temperatures across the country are expected to rise by an average of 3.8°C
to 5.1°C. Together, these conditions and future extreme climates will have an enormous impact on
crop productivity and livestock (Spear et al., 2018). Climate change could have significant
implications for agriculture, and thus GDP. Even heat-tolerant crops inclusive of millet are

expected to suffer due to climate change in Namibia's drought-prone regions. Cereal crop yields
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are expected to decrease by up to 20% in the northeastern region and 50% in the northcentral
region under rainfed circumstances (Karunaratne et al., 2015). Heat and water stress on livestock
are likely to reduce feed intake, milk output, and reproductive rates. Climate change is expected
to reduce livestock carrying capacity across the country by 10% in the northeastern region, 15%
to 30% in the northcentral region, and 35% in the central region (Nhamo et al., 2019). These
changes will put more pressure on grazing lands and animal management systems. Cattle numbers
are expected to fall to around 51% of current levels by 2080 as carrying capacity declines (Spear

etal., 2018).

2.9.3. Implications of climate change on food inflation

In 2019, Namibia experienced a nationwide drought, and most of its provinces are still recovering
from the disaster (Shikangalah, 2020). The impact of the drought affected both crop and livestock
production. During this period, food and nonfood prices increased twice by 2 to 6% until 2021.
This price increment was further triggered by the increased global fuel prices, as a result, people’s

purchasing power reduced (Liu and Zhou, 2021).

In addition, poor rainfalls in the northern crop-producing area during the 2022-2023 farming
season and localized flooding in the northeast in January 2023 led to poor crop productions
(USAID, 2024). This has been the cause of the increases in the prices of foods and non-foods that
started in March 2022 and are expected to last throughout 2023, partly supported by high import
costs for fuel, food, and fertilizers. High and erratic global commodity prices negatively affected
the purchasing power of the poor. In 2023 to 2024, poor communities experienced a prolonged
lean season due to inadequate food supply. On the other hand, food prices peaked at 14.6% during
the peak lean season for households dependent on food markets but has been consistently
decreasing since then. This coincides with Namibia's most significant trading partner, South

Africa, where it stabilized in December 2023 at 7.4% (Namibian Statistics Agency, 2023).

Prolonged dry spells and erratic rainfall, exacerbated by El Nifio, in the 2023 to 2024 rainfall
season have had a negative impact on crop and livestock production in 2024 (IPC, 2023). The
Namibia Metrological Service Climate Bulletin report for March 2024 indicated that the rainfall
performance over Namibia has been minimal with the bulk of the country having received below-
normal rainfall for the period of October 2023 to April 2024 (IPC, 2024). According to the
Namibian Statistics Agency (2023), the average annual inflation rate for May 2024 stood at 5.2%,
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this also exacerbates the existing food security challenges and demanding increased humanitarian

support, livelihoods recovery, and resilience building.

2.10. Conclusion

Based on this review, it is undisputed that climate change poses substantial risks to key economic
sectors and has far-reaching consequences for achieving developmental goals such as alleviation
of poverty and development sustainability. Southern Africa faces a multifaceted challenge, mostly
affecting the water and agricultural sectors due to decreased rainfall and rising temperatures. These
changes jeopardise water availability and agricultural systems' ability to supply rising food demand
from a growing population while also contributing to sustainable development. As a result,
comprehending how change in climate and its unpredictability affect water supplies and
agricultural systems is critical in developing response strategies to establish resilient systems.
Most African countries, including those discussed in this research, have limited fiscal
flexibility and large public debt. As a result, macro-level climate change mitigation policies that

require huge financial easing may be unfeasible in the short to medium term.
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CHAPTER 3: LITERATURE REVIEW

3.1. Introduction

This section reviews the literature by looking at the theories that inform the relationship between
climate change, agricultural production and food inflation. To address the objective of this
literature, a comprehensive and critical discussion of relevant academic articles, reports and
empirical studies focusing on the economic impacts of climate change on agricultural output and
food inflation will be analyzed. This section will further highlight literature gaps that the study

intends to address.

3.2. Theoretical Framework

It is commonly accepted in both theory and practice that determining the factors that contribute to
inflation is crucial to pursuing an anti-inflationary policy that effectively aims to achieve price
stability. This theoretical literature framework attempts to investigate the theoretical perspectives
of inflation through the lenses of cost-push inflation under the Keynesian Theory in order meet the
study's theoretical objectives. The review will employ a conceptual framework to better explore

how climate change affects agricultural output.

3.2.1. Keynesian Theory of Inflation

Since both policymakers and society are directly and indirectly impacted by the results of inflation,
it is still a crucial macroeconomic issue that they continue to regularly monitor. Additionally, the
detrimental effects of climate change on agriculture cause crop yields and productivity to fluctuate,
which in turn causes changes in the availability of food and fuels food inflation (Paudel et al.,
2023). Understanding what inflation is, how it is calculated, and why it matters (the cost,

challenges. and repercussions) are essential to comprehending the factors that influence inflation.

Inflation is defined as a long-term increase in the general cost of goods and services within an
economy (Salim, 2019). When prices increase across the board, each unit of currency may buy
fewer goods and services. Accordingly, inflation also indicates a decline in the purchasing power
of money as well as a decline in the actual value of the economy's internal medium of exchange

and unit of account (Bonab, 2017).
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In the Monetarist view, increases in money supply are controlled by slowdowns in the velocity of
circulation of money, meaning that the extra money is likely not spent on goods or services but on
investments in capital assets, which would stimulate economic growth and therefore increase the
output rather than price (Ball, 2017). Even though monetarists contend that inflation is strictly a
monetary process that can only occur when the money supply expands more rapidly than output
capacity, the Keynesian theory of inflation takes a distinct approach to what defines inflation.
Madito and Odhiambo (2017), argue that monetarist economists disagree with the non-monetary
causes of inflation posited by Keynesian theory, such as changes in government fiscal policies,
cost-push factors, and scarcity of food and fuel. They argue that inflation can only emerge from
excessive increase in the supply of money. However, Keynesians contend that imbalances in

aggregate demand and supply are the root causes of inflation.

The Keynesian theory provides insight into inflation in the complexity real world of government
policy, supply disruption, and cost of production. However, this theory underestimates the
importance of monetary determinants and long-run inflation expectations which are central aspects
of the operation of contemporary central banks (Wei & Xie, 2020). While the Keynesian theory is
relevant for short-term inflationary shocks, its assertion that cost-push inflation may persist
without monetary expansion faces significant criticism (Fornaro and Wolf, 2023). In the modern
global economy, where trade, financial markets, and technology increasingly shape dynamics, it is

essential to integrate these factors into inflation models to appropriately represent price stability.

In a broader context, the impact of climate change on agricultural productivity and food inflation
in Southern Africa can be analyzed through the lens of Keynesian theories of inflation. While
Keynesian theories of inflation are primarily concerned with macroeconomic factors, they provide
insights into the possible implications of climate change on the variables in question. According
to the Keynesian theory, only two types of inflation arise, either based on the demand side factors
which result in demand-pull inflation or based on the supply side factors, resulting in cost-push
inflation (Kahn, 2022). Based on the two determinants of inflation, the current study is informed

by cost-push inflation.

3.2.2. Cost-push inflation

Cost-push inflation occurs when the aggregate supply of goods and services which can be

produced in the economy falls (Shaik et al., 2022). A rise in production costs is frequently the
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reason for this decline in total supply. Consequently, consumers pay more for the final products as

a result of the increased production expenses (Charles et al., 2022).

In contrast to the demand-pull hypothesis, which claims that inflation arises as a direct or indirect
result of both expansionary monetary and fiscal policies, the cost-push theory proposes that prices
rise as a result of factor prices that accelerate faster than factor productivity. One of the effects of
cost-push inflation is that high production costs frequently lead to a decrease in employment rates
as firms strive to offset higher production costs, especially in a labor-intensive work environment.
This frequently leads to a decrease in productivity, which then results to a reduction in output.
Monetarists argue that a tight fiscal policy without a decrease in the rate of monetary expansion
cannot decrease inflation (Palley, 2015). The cost push theory proposes that inflation occurs as a
result of a reduction in aggregate supply. However, the cost-push inflation theory upholds that
wage increases prompt prices of goods and services to rise (hence the term "cost-push inflation"),
which is frequently perpetuated by trade unions or due to pricing policies imposed by monopolistic
and oligopolistic firms in the economy. Alternatively, this process can be understood through wage
and salary increases, in addition to an increase in the cost of raw materials utilized as inputs in
firms' manufacturing processes. Cost-push inflation is further explained by rising import raw

material prices (also known as imported inflation) and the decreasing value of the local currency

(Machlup, 2020).

The underlying assumption is that wage earners and profit recipients desire incomes that exceed
the total value of their production when the economy is at full employment. Consequently, at any
given time, one or both groups will be dissatisfied (Brown & Johnson, 2017). If wage earners are
dissatisfied, they demand higher wages, which employers may partially concede during
negotiations, initially impacting profits. Subsequently, employers raise prices to compensate for
increased costs, although this restores profits, it simultaneously diminishes the real incomes of
wage earners, thereby laying the groundwork for another iteration of demand for increased wages
(Blanchard & Johnson, 2013). If the money supply remained constant, this process would lead to
growing monetary tightness, making it more challenging to finance wage increases and acquisition
of goods with recently raised prices. It would also hinder overall production and distribution,
although in some cases, the velocity of circulation can rise significantly, enabling the limited

supply of money to be more effectively utilized. In practice, the money supply adjusts according
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to demand, partially because monetary authorities aim to avoid the disruption of capital markets

that would arise from severe monetary tightness and substantial increases in interest rates.

Overall, the interplay between wage earners, profit recipients, price adjustments, and the money
supply demonstrates the complex dynamics and considerations involved in balancing incomes,
prices, and monetary conditions in an economy (Moore, 2023). This kind of inflation is possible
under the Imperfectly Competitive Market and is driven by the following causes among many

(Park & Shin, 2019):
(I) Increased cost of key inputs

A surge in the cost of domestic or imported inputs including oil and raw materials raises
manufacturing costs in a range of industries (Shaik et al., 2022). Faced with rising production
costs, firms may respond by limiting output and raising pricing for their goods and services
(Machlup, 2020). This price hike could have a knock-on impact, raising the cost of goods and
services across the economy. For instance, an increase in oil prices, which is a primary input for
many sectors of the economy, can result in higher petrol costs (Su et al., 2021). When petrol prices
rise, it becomes more costly to transport goods. Given that many products must be shipped from
one location to another, the additional cost of transportation is frequently passed on to consumers.

As aresult, the prices of numerous commodities may rise, even if they are unrelated to petrol (Dua

and Goel, 2021).
(IT) Supply Shocks

Supply shocks are also the source of cost-push inflation. A supply shock is an abrupt shift in the
price of a commodity or service (Ascari et al., 2024). Adverse supply shocks are often events that
increase the cost of production. A negative supply shock can lead to stagflation when prices rise
and output falls (Fornaro and Wolf, 2023). The most typical source of supply shocks is oil prices.
The Organization of Petroleum Exporting Countries (OPEC) drastically raised oil prices twice:
once in 1973-1974, when prices quadrupled and then redoubled, and again in 1979-1980, when
prices more than doubled again (Aronson and Cowhey, 2019). Domestic economies cannot remain
insulated from such external price shocks, as they must accept the increased foreign prices. These
shocks are worsened when the prices of imported goods used in domestic production are calculated

in local currency. If the price shock coincides with local currency devaluation or higher tariffs, it
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further raises the cost of domestic goods due to the increased production expenses (Krugman,

2017).
(IIT) Climate-Driven Inflation

Climate change, as well as the mitigation efforts that accompany it, have nonlinear and long-term
consequences on the economy's supply and demand. As climate change accelerates, central banks
confront two new obstacles to their price stability targets (Boneva et al., 2022). The first is
climateflation, which refers to the inflationary effects of a warming planet. The second is
greenflation, which refers to inflationary pressures caused by the implementation of climate
mitigation policies in order to achieve a low-carbon economy (Oman et al., 2024). Greenflation,
on the other hand, refers to the inflationary pressure that comes with transitioning to a carbon-
neutral economy. The first occurrence is comparable to an adverse supply shock, whereas the
second is a combination of both supply and demand disruptions (Guerrieri et al., 2022).
Thus, due to climateflation and greenflation, central banks must strike a strong balance between
ensuring stability of prices and promoting a resilient economy. Each of these occurs on different
timescales and with varying degrees of impact, with fossil fuel fundamentals being the most
immediate and visible, climate risks being the most disruptive and emerging, and green transition
inflation being transitory and still largely hypothetical (Sahuc et al., 2023). The following section
discusses how climateflation exacerbates supply chain disruptions and the long-term repercussions

on economic viability.
Impact of climateflation on supply disruption

Climateflation refers to larger inflationary effects caused by climatic phenomena such as extreme
weather, natural catastrophes, and supply chain disruptions. As the frequency of natural disasters
and severe weather occurrences increases, so does their impact on economic activity and pricing
(Panwar and Sen, 2019). For instance, the extraordinary droughts in many parts of the world have
contributed to the recent steep increase in food costs, which is putting a strain on a society that is

already struggling.

Climate change serves as a negative productivity shock, increasing the marginal cost of production
and causing inflationary pressures in the economy (Kabundi et al., 2022). Similarly, catastrophic

weather events that decrease the availability of inputs cause inflation and supply shocks, disrupting
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the supply chain. Kanike (2023), defines supply chain disruption as an interruption in the flow of
manufacturing, sales, and distribution of certain commodities or services. Cost-push inflation can
also occur due to supply shocks in specific industries, such as natural disasters or extreme weather
(Ciccarelli and Marotta, 2024). Periodically, severe cyclones and hurricanes occur frequently
around the world, destroying vast amounts of agricultural output and causing significant increases
in the price of processed food, leading in temporary periods of greater inflation (Kumar et al.,

2022).

A recent study by Patel et al. (2022), incorporates theories of inflation to examine the relationship
between climate change, price pass-through mechanisms, and inflation persistence. The authors
discuss the New Keynesian framework, which highlights the role of price stickiness and cost-push
factors in shaping inflation dynamics. They argue that climate change-induced supply shocks can
disrupt price pass-through mechanisms, leading to changes in the degree and duration of price
adjustments in the economy and influencing inflation persistence. The study emphasizes the
importance of understanding the underlying mechanisms through which climate change impacts

price dynamics to design effective inflation targeting policies in the context of a changing climate.
Fossilflation as a cost-push factor

Many emerging and industrialized countries are facing worsening inflation at a faster rate than at
any point in the previous decade (Ahmed et al., 2021). This has been fueled in part by rising energy
prices, either as a direct component of the consumer price index (CPI) basket or as an underlying
input cost in the manufacturing and transportation of other goods. The direct inflationary impacts
of a greater price of carbon energy are referred to as fossilflation, a form of inflation caused by an
increase in the price of fossil fuels and hence linked directly to an economy's reliance on such fuels

(Jackson, 2024).

Carbon pricing and environmental restrictions, for instance, might increase firms' production costs
as they promote the transition to a net-zero economy. Increased operational costs for facilities that
remain integrated in a fossil-fuel-based energy system may have an impact on prices, with these
costs passed on to consumers (Davis et al, 2020). The exposure of many countries to recent energy
shocks has prompted deeper reflection on the supply insecurities inherent in global energy markets,
the continued reliance on fossil fuel-based energy, the price volatility it causes, and the role of the

energy transition in easing these tensions (Davis et al, 2020). Fossilflation is anticipated to be a
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transient phenomenon that will fade as emissions decline. However, the transition period is
expected to last far beyond the short term, and so will have a significant impact on central banks'
monetary policy (Jackson, 2024). Greenflation may result from firms shifting away from carbon

energy and towards non-carbon energy, often known as greenflation (Simmens, 2023).
Greenflation

Another climate-related element that contributes to cost-push inflation is greenflation, which is
associated with the costs of transitioning to a carbon-neutral economy. As sectors and industries
embrace greener technologies and comply with stronger environmental rules, production costs
may rise (Olivsson and Vestin, 2023). Shifting from fossil fuels to renewable energy sources may
necessitate large upfront investment in new technology and infrastructure (Kabel and Bassim,
2020). Higher costs of production can be passed on to the consumer in the form of increased prices,
resulting in cost-push inflation. Furthermore, as demand for green technologies and products
expands, supply may struggle to keep up, causing costs to increase further (Kabel and Bassim,

2020).

3.2.3. Conceptual approach

Impact of climate change on agricultural output

Climate change presents enormous challenges to agricultural systems worldwide. This conceptual
framework analyses the complex effects of climate change on agricultural output, with an emphasis
on the arable farming and livestock industries. Understanding these effects is critical for creating

adaptive solutions that assure food security and sustainable farming practices.

Agricultural production is carried out through identifying crops that are appropriate for the climate
of a particular region and using adequate farming techniques. Thus, agriculture is a climatic
sensitive bio-industry with distinct geographical characteristics. Regional characteristics refer to
ecological features that are determined by the region's climate. Climate change disrupts the
agriculture ecosystem, altering agricultural climatic variables such as temperature, precipitation,
and sunlight while also effecting the arable, livestock, and hydrological sectors (Kim, 2012).
According to Kumari et al. (2020), the effects of climate change on the arable and livestock sectors

can be seen in biological changes such as variations in flowering and harvesting seasons, quality
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alterations, and shifts in cultivated areas. Figure 3.1 below illustrates the progression of climate

change's effects on the agriculture industry.

Figure 3.1: Flow of climate change impact on the agricultural sector
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Climate change causes biological changes in the livestock sector, such as fertilization and breeding,
which in turn alters pasture growth patterns (Henry et al., 2018). Higher temperatures may speed
crop development cycles, limiting the amount of time available for grain filling and resulting in
below average yields. For crops like wheat and maize, extreme heat during critical growth stages,
such as flowering and grain filling, drastically reduces productivity. Additionally, increased
temperatures reduce not only livestock fertility, but alter breeding cycles, and negatively affect the
health of newborn animals. Livestock under heat stress result in less milk production, less weight
gain, and low productivity altogether. Rojas-Downing et al. (2017), attested that water supply for
irrigation is directly impacted by alterations in precipitation patterns. Changed precipitation
patterns affect soil moisture, which is crucial for crop development. Excessive rainfall leads to the
problems of waterlogging, soil erosion, and loss of nutrients, while drought condition degrades the
soil, hence lowering agricultural productivity. Agricultural productivity may remain low during

the time and resources needed to recover from these occurrences (Eekhout et al., 2018).

According to Shrestha (2019), changes in climate disrupts the agricultural ecology, giving rise to
blights and pests, spurring population movement, and reducing biodiversity. Warmer temperatures
and changing precipitation patterns bring about advantageous conditions for pests and diseases,

affecting sustainability and the yield of crops. This necessitates increased pesticide use, which can
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have further environmental and economic implications. Changes in climate further alter species
composition and distribution within agricultural ecosystems. On the other hand, biodiversity loss
compromises ecosystem resilience, reducing the natural services that support productive

agriculture, such as pollination and pest control.

Climate change also has an impact on hydrology, including subsurface water level, water
temperature, flow of rivers, and the quality of water in lakes and marshes, through rainfall,
evaporation, and moist soil content (Oliazadeh et al., 2022). in particular, climate change increases
precipitation, which increases outflow, whereas rising temperatures increase evaporation, which
reduces outflow. When climatic changes, such as higher temperatures occur, the boundary and
suitable areas for cultivation shift north, and thereby the primary fields for cultivation alter
resulting in the expansion of arable land in some regions and a reduction in others (Kim, 2012).
Farmers may need to adapt by changing crop varieties or farming practices to suit new climatic
conditions. The effects of climate change on agriculture are mixed, with good impacts offering
opportunities and negative consequences resulting in costs. As a result, it is a mandate to develop
adaptation techniques that can maximize opportunities while minimizing costs to ensure

sustainable agriculture development.

3.3. Empirical literature

The empirical research on how climate change affects food prices, specifically in developing
nations, 1s examined. Several studies have found that climate change has the potential to impair

agricultural output, resulting in a rise in food prices.

3.3.1. Climate change as a driver of food and overall inflation

The risks of climate change influencing key economic variables are divided into physical and
transitional impacts (Anderson et al., 2020). This section will explore the macroeconomic effects
of both the physical and transitional impacts associated with climate change by drawing evidence

from various countries.

(I) Physical Impacts of climate change

According to Walsh et al. (2020), the physical effects of climate change are caused by an upward

trend in both the severity and frequency of acute weather conditions such as flooding, high
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temperatures, and windstorms, in addition to gradual or chronic climate changes such as rising

temperatures and sea levels.

A study by Fajri et al. (2019), evaluated the implications of climate change on food prices in
Indonesian districts impacted by the El Nino and La Nina phenomenon. According to the study,
the key factor driving climate change in Indonesia is the El Nino Southern Oscillation (ENSO),
which is segmented into three phases: El Nino, La Nina, and Normal. The study additionally noted
that ENSO has an essential role in climate variability and precipitation severity, which can have
an impact on the agricultural sector, particularly the food crops sub-sector, which is exceptionally
prone to climate change. The findings revealed that E1 Nino has a significant impact on the increase
of soybean and rice prices, in addition to the decline in maize prices. While La Nina greatly impacts
the rise in rice prices, El Nino has an even bigger impact on food prices than La Nina. Based on
the findings, the study indicated that rice is the most vulnerable commodity to changing climates
considering that both the El Nino and La Nina phases might induce a surge in rice prices. These
findings are consistent with economic theories that emphasize inflation, specifically in alignment
with the agricultural price transmission theory, thereby strengthening theoretical expectations of
price changes created by climate changes. Fajri et al. (2019) used local correlation analysis to
evaluate the relationship of climate, however, the present study expands the analysis by exploring
arange of additional climate variables using the ARDL approach to provide a more comprehensive
understanding of both short and long-run relationships between climate variables and food prices

across the Southern African region.

Heinen et al. (2019), investigated the implications of severe weather on consumer prices in
countries that are developing by creating a monthly dataset of prospective hurricane and flood
destruction indices and relating it to inflation data for 15 Caribbean islands. The study follows
hurricanes based on a wind speed index. This is considering that stronger winds are very
destructive to infrastructure, houses, and even crops. The index reflects the localized impact of
wind speed, which indirectly captures storm surges and heavy rainfall contributing to extensive
economic damage in the region. Floods are detected based on excessive rainfall data. This aspect
of the study proxies the extent of destruction from extreme precipitation, which can lead to water
overflow and erosion, damaging agricultural land and disrupting local economies. The

econometric model employed in the study reveals that extreme weather occurrences can have a
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significant impact on prices. To demonstrate potential welfare losses from such pricing impacts,
the study paired its estimations for Jamaica using event probability and pricing elasticities derived
from a demand system. The findings revealed that projected monthly losses are minor, however
uncommon events can cause significant drops in monthly wellbeing due to price rises. While
physical consequences of climate change have been proven to temporarily increase inflation,
particularly food prices, these effects have tended to fade in the longer term. The study also
contended that the consequences of such disasters may be worse in the future should extreme

weather conditions become more common and severe.

Beirne et al. (2022), investigated the impact of catastrophic events (droughts, earthquakes, storms,
floods, heat and volcanic eruptions) on eurozone inflation. Estimating panel and customized
structural vector autoregression models by integrating estimated disaster impairment with monthly
Harmonized Index of Consumer Prices data for all eurozone nations from 1996 to 2021. Aside
from evaluating the influence on total headline inflation, the study looked at effects on its 12 main
sub-indices and additional sub-categories of food price inflation. The findings indicated that
natural catastrophes have a considerable positive influence on total headline inflation, with
divergent results at the sub-index level, resulting in diverse inflation effects among countries. Italy,
France, Germany, and Spain were shown to have had the most natural disasters of any of the sample
countries. Most of the disasters were caused by floods and storms, with earthquakes, extreme
temperature events, wildfires, and droughts occurring less frequently. Therefore, the study
indicates that natural disasters cause inflationary pressure disruption to supply chains,
infrastructure damage, and loss of agricultural productivity-especially in the food sector. The study
therefore denotes that these risks can increase with climate change since it is linked with dire
weather conditions that are likely to be more frequent or intense, making it quite very difficult to

maintain price stability by central banks such as the European Central Bank.

The Central Bank of Seychelles (2022) conducted a study on the challenge of climate change and
its implications for inflation in the SADC region. Carbon emissions were used as one of the
variables to measure the intensity of climate change, and it was noted that higher magnitudes of
CO2 imply increased severity in climate events. These are associated with disruptions in supply
chains, which in turn may cause inflationary pressures. The results indicate that for every 1%

increase in carbon emissions, there was a corresponding 0.38% increase in the year-on-year
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inflation rate, significant at the 10% level. On the other hand, natural disasters-cum-climate change
have contributed to the spiraling inflation due to breakdowns in the supply chain, particularly food.
In some cases, the rate of food inflation has increased greatly owing to the disruption in its
availability. On the other hand, whilst prices of some sub-categories of the CPI may increase during
the aftermath of a disaster, prices of other sub-categories may fall due to depressed economic
activity, thus resulting in no overall rise in headline CPI. Thus, this is indicative that the effect of
disasters on inflation is ambiguous and is dependent on the aftermath of the crisis (Parker, 2018).
Nevertheless, the result of the estimation indicates inflationary effects of rising carbon emissions
in the SADC region based on the data sampled between 2015 and 2019. This relationship is
primarily due to supply-side factors, such as drought-induced crop failures, which increase

inflationary pressures.

Cevik and Jalles (2023), employed a local forecasting technique to empirically evaluate whether
climate shocks, defined as climate-induced natural disasters (storms, droughts, and temperature),
affect inflation and economic development in a broad panel of nations from 1970 to 2020.
According to the findings, both inflation and real GDP growth respond substantially and differently
in terms of direction and magnitude to various types of climate-related disasters. The study
discovered that while high temperatures lower inflation, droughts and storms raise inflation. In the
event of a temperature shock, headline inflation falls significantly below its original level in the
first year and over time. This decline hits a bottom about four years after the shock, when headline
inflation is 3.5 percentage points lower than it would have been if the temperature shock had not
occurred. A drought shock, on the other hand, generates a quick increase in headline inflation
above its previous level, which lasts for some time and amounts to approximately 1.5% greater
than if the shock did not occur. Storms, on the other hand, have an identifiable impact pattern that
distinguishes them from other forms of weather disasters. The study found that headline inflation
rises by about 0.2% in the first year following the storm shock, though it then falls by 1% in the

long term if the shock did not occur.

A study by Cunpu et al. (2023), used the mean temperature serves as an alternative indication for
climatic shocks. The authors employed panel data from 1995 to 2021 for the 26 selected countries:
America includes 4 countries, Asia includes 8 countries, Oceania includes 1 country, and Europe

includes 13 countries. They investigated the impact of temperature variations on levels of
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consumer prices. The results showed that temperature variation and high prices are positively
related in the selected countries, which is consistent even after taking the analysis through various
robustness tests. Furthermore, accounting for heterogeneity reveals that the extent of inflation's
response to variations in temperatures varies by country. In terms of underlying mechanisms, this
study highlighted the importance of energy demand as an essential channel influencing inflationary
pressures at the country level, as changes in temperatures affect agricultural output and energy

demand, which ultimately impacts global price levels when demand exceeds supply.

(IT) Transition impacts of climate change

As the economy transitions to a low-carbon and eventually net-zero economy, a number of
transitional effects on the macroeconomy emerge from the process of modifying policies,
preferences, and technology (Hallegatte et al., 2024). These impacts can be orderly, leading to a
smooth transition, whereas a disruptive transition may induce amplified effects on the economy

through the various channels.

A study by Mairate (2023), aimed at investigating the macroeconomic implications of the green
transition using scenarios, asserted that the transition to a carbon-neutral economy is currently
disrupting the supply side of many industries, especially those reliant on fossil fuels. According to
the same study, as carbon pricing and more stringent environmental regulations are implemented,
energy costs increase for industries that have not fully transitioned to renewable energy sources.
These increased costs trickle down to goods and services, causing cost-push inflation. This makes
the agricultural sector very vulnerable to increases in the costs of fossil fuels, as it is highly
dependent on these for fertilizers, transportation, and energy (Wang et al., 2024). Higher costs for
these inputs, aside from the impact of climatic changes on crop yields, result in increased food

prices and add to food inflation.

In addition, financial stability is exposed to both physical and transition risks. Many central banks
worldwide have recognized the need to consider the rising financial risks of climate change
(Network for Greening Financial System, 2021). These include potential loan losses for banks as
aresult of business disruptions and bankruptcy caused by hurricanes, wildfires, droughts, and other
extreme occurrences. Transition risks linked with the shift to a carbon-neutral economy include
unanticipated reductions in the value of assets or firms that rely on fossil fuels (Semieniuk et al.,

2021). Even long-term threats can have an immediate impact when investors revalue assets for a
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low-carbon future. Financial firms with low carbon emissions may yet be extremely sensitive to
climate-related credit risk through loans to affected businesses or mortgages on coastal real estate.
If such exposures were broadly comparable across regions or industries, the associated climate-

related risk could negatively impact the financial system's overall stability (Semieniuk et al., 2021).

Such structural changes required by the energy transition also create inflationary pressure. The
transition from carbon-intensive industries towards renewable energy sectors, requires
considerable reallocation of inputs and financial investments which tends to cause input
bottlenecks (Zakeri et al. 2022). This includes shortages of pivotal resources in renewable energy
systems that may result in price increases. It also creates implications for the economy in lower
economic growth influenced by the reallocation of resources from carbon-emitting sectors to
cleaner options, thus causing temporary disequilibrium (While and Eadson, 2022). Even renewable
energy, though it may cut costs over the long term, creates significant risks in inflation within a

transition period.

3.3.2. Climate change as a contributing factor to lower agricultural output

Climate change, through physical and transitional risks, has had negative impacts on agricultural
output. Physical risks here include increasing temperatures, changed rainfall patterns, and rising
frequencies of extreme weather conditions, disrupting the optimal climate conditions that were
once required for crop yield and livestock productivity. This often coincides with increasing scale
of soil fertility deterioration and pest and disease pressures. Conventional agricultural systems as
both a significant source of emissions and a potential part of the solution to climate change, may
face transitional risks. These risks could be subjected to new regulation, market changes or

changing consumer preferences in the face of climate impacts (e.g., Belmin et al., 2023).

(I) Physical impacts of climate change on agricultural output

In the study of Alboghdady and El-Hendawy (2016), the production function model was employed
using FER analysis on the impacts of climate change and variability upon agricultural production
in the MENA region. The panel data utilized in the study are pooled from 20 countries across the
MENA region spanning from 1961 to 2009. The results indicated that with a 1% increase in
temperature during winter, agricultural production decreased by 1.12%. In addition, it was found
that with a 1% increase in the variability of temperature during winter and spring, agricultural

production decreased by 0.09% and 0.14%, respectively. Results further indicated that increased
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precipitation during the winter and fall seasons, along with changes in rainfall during the winter
and summer seasons, had a negative impact. The computed parameters for squared temperature
and precipitation show that the changing climate has a strong quadratic impact on agricultural

output in the MENA region.

A study by Agba et al. (2017), studied the impact of both climate change and non-climate change
variables on crop production in Nigeria. The study adopted an empirical research approach using
secondary sources of time series annual data from reputable sources for the period 1980 to 2013
and employed the Error Correction Mechanism for the analysis. Results showed that in the short
run, only rainfall has a significantly positive relationship with crop production. However, in the
long run, the study found that CO2 emissions, rainfall, temperature, and carbon emissions will
significantly influence crop production. Additionally, carbon dioxide and carbon emissions from
manufacturing and industrial activities negatively impact crop production. Furthermore, non-
climate change characteristics such as economically active population, gross capital formation,
and irrigation-ready land area all had a considerable beneficial impact on agricultural output. To
limit the consequences of climate change on crop output, the study proposed that policymakers
develop policies that assist farmers in adopting climate-resilient farming practices. Furthermore,
governments and other relevant agencies should develop programmes to encourage people to get

more involved in agricultural production.

Another study by Haile et al. (2017), which intended to evaluate the effect of changing climates,
extreme weather events, and price risk on the global supply of food by analyzing the factors
influencing global production for maize, wheat, rice, and soybeans between 1961 and 2013. Using
seasonal production data, changes in prices and volatility statistics at the country level, and future
climate data from 32 global circulation models, the study forecasted that climate change could
lower world agricultural production by 9% in the 2030s and 23% in the 2050s. Furthermore,
climate change could result in 1 to 3% larger yearly fluctuations in global food production during
the next four decades. The study discovered a strong, positive, and statistically significant supply
response to changing prices for all four crops. However, output fluctuations in prices, which
signals risk to farmers, limits the supply of these important global agricultural staple crops,
particularly wheat and maize. The study discovered that climate change has a considerable

negative impact on the production of the world's important staple crops. Weather extremes, namely
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shocks in temperature and precipitation during crop growing months, have a negative impact on
the production of the aforementioned food crops. Extremes of weather also increase the yearly
oscillations of food supply and therefore may further increase volatility with its adverse effects on
production and poor consumers. Mitigating and adapting to climate change in a combination
approach, a key component for the fulfillment of global production and the quest for food security
is hereby addressed.

Sibanda and Ndlela (2019), investigated the link between carbon emissions, agricultural
production, and industrial output in South Africa. This study employed data from 1960 to 2017 at
an annual frequency, resulting in 58 yearly observations. The Autoregressive Distributed Lag
approach was used to estimate the model on a bivariate basis. The results showed that agriculture
and industrial output have little influence on carbon emissions. In contrast, carbon emissions and
industrial output both have an impact on agricultural output. The findings imply that climate
change caused by carbon emissions has resulted in lower agricultural output due to the harmful
impact that carbon emissions have on plants and the environment, hence jeopardizing food
security. The study concluded that there is a considerable correlation among industrial and
agricultural output, implying that a properly functioning industrial sector will result in an increase

in agriculture output.

According to Letta et al. (2022), the empirical literature on the impact of weather shocks on
agricultural prices often focusses on post-harvest price dynamics rather than pre-harvest ones. The
study uses the intra-annual competitive storage theory to experimentally analyze the role of
weather shocks in traders' expectations of pre-harvest price swings in India's local marketplaces.
Using a panel of district-level monthly wholesale food prices from 2004 to 2017, the study uses
the time gap between a weather anomaly and the associated supply shock to isolate price reactions
caused by changes in forecasts. According to the study, drought conditions significantly increase
food expenditures during the growing season, even before harvest failure occurs. These findings
suggest that markets respond swiftly to expected supply shortages by updating their views and
responding accordingly, and that the expectation channel accounts for a sizable percentage of
supply-side food price movements. When compared directly to the effects of the same weather
anomalies on pricing in the first harvest month, expectations predict more than 80% of the total

price impact.
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Another study by Otim et al. (2023), examines the effect relationship and the direction of causality
between CO; emission and Agricultural Production Index, with the intervention of renewable
energy consumption, arable land and governance. The authors cover a time period between 1996
and 2019. The study has a transversal approach covering 6 countries within the East African
Community regional block. These include Kenya, Rwanda, Uganda, Burundi, Tanzania, and the
Democratic Republic of Congo. The study has utilized pooled mean group/autoregressive
distributed lag and fixed effect approaches and has performed the Dumitrescu and Hurlin Granger
non-causality test on the causality of the considered variables. The long-run model indicated that
CO2 emissions, renewable energy consumption, labor force and arable land size all have positive
effects on the crop production index. Apart from this, consumption of renewable energy, arable
land size and good governance have a positive relationship with the livestock production index.
The CO2 emissions both ways are not the Granger cause of crop production index, whereas the
significant effects of good governance and the size of arable land showed inconclusive results on

agricultural production.

(IT) Transition impacts of climate change on agricultural output

A study by Lehtonen et al (2022), which attempted to analyse the transition of agriculture to low
carbon avenues with regional distributive implications, maintained the following:

This study, based on agricultural sector modelling, demonstrates how changes in food consumption
and land use strategies might reduce GHG emissions from Finnish agriculture, while considering
the effects on regional levels of agricultural production, GHG emissions, land use, and farm
revenue. The findings suggest that it is difficult to achieve a significant reduction in GHG
emissions from agriculture by simply changing diet as agricultural emissions are closely linked
with essential activities inclusive of livestock farming and crop production, which are fundamental
for food security. Changing food consumption patterns, such as reducing livestock product intake,
can lower emissions, but it also disproportionately impacts regions reliant on livestock farming.
Regions such as Finland may face income losses and economic disruption, making the transition
socially and economically difficult. The most effective way to reduce GHG emissions from
agriculture is to combine changes in food and land use; yet relatively disadvantaged regions with
substantial shares of livestock production and peatlands may face significant agricultural and land
use restructuring. Furthermore, the sectoral disruptions caused by a disorderly transition to a low-

carbon economy can be significant, posing serious financial risks. The study, therefore, provides

58



more incentive for government officials and financial institutions to promote and prepare for an

early and orderly transition.

3.4 Assessment of literature

A complete social welfare analysis is needed to quantify the extent of total economic losses from
climate change. This covers everything from direct losses of income and production, the value of
resources, goods, and services that are no longer available or the reduced quality, damage to
productive capital and infrastructure, decreases in ecosystem services, impact on morbidity and
mortality as well as loss of subjective well-being from more intangible advantages such as the
extinction of species or deterioration of ecosystems (Piontek et al., 2021). Existing literature such
as that from the study of Kilroy (2015), and that of Sintayehu (2018), is more focused on
biophysical impacts such as change in crop yields, soil health, and water availability. Less attention
is given to the socioeconomic factors that arise due to climate change, particularly food and overall

inflation.

Therefore, there remains a major gap in understanding the impact of climate change on food prices,
and economic resilience, including the effectiveness of adaptation strategies and policy
interventions to stabilize food prices and increases in agricultural productivity. Solely a few studies
considered both sides of this imbalance, indicating a neglect of the need for more integrated
research that combines biophysical and socio-economic dimensions, particularly on the
relationship of climate change, agricultural production, and inflation with food prices (Piontek et

al., 2021).

3.5. Chapter Summary

This section addressed the numerous theoretical and empirical approaches used to unravel and

diagnose the relationship between climate change, agricultural production, and food inflation.

Amongst other theories that determine inflation, this section included the Keynesian theory by
focusing on the cost-push inflation which occurs when overall price increases due to increased
costs of wages and raw material. This section also used the conceptual approach to describe the
impact of climate change on the agricultural sector. From a very critical analysis of the available
empirical literature, it is observable that climate change presents a big challenge since the results

indicate that the relationship between climate patterns, agricultural productivity, and economic
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stability is complex and multidimensional. The reviewed studies consistently show that disruption
due to climate change, manifested in extreme weather events, altering rainfall patterns, or even
rising temperatures, has its reflections in agricultural production and, further, in food security and

supply chains, bringing inflationary pressures on foods.
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CHAPTER 4: RESEARCH METHODOLOGY

4.1. Introduction

This chapter presents the research design to be adopted for the study, which gives a systematic
approach in analyzing the impact of climate change on agricultural production and food inflation
in Southern Africa. It starts with the research design, which describes the overall strategy and
framework that guide the study. The section on data sources and sampling describes the methods
of data collection and sampling techniques used to ensure reliability. In that respect, the model
specification and description of variables detail the analytical models with which the variables are
defined, and their respective roles. Ultimately, the estimation methods section would focus on the

statistical techniques necessary for data analysis to ensure findings are robust and valid.

4.2. Research design

The study employs a correlational research design using secondary data to determine the impact
of independent variables on dependent variables (Seeram, 2019). The study uses two models and
in the first model, agricultural production serves as the dependent variable, while independent
variables encompass labor, livestock, machinery, fertilizer, agricultural land, as well as rainfall and
temperature. In the second model, food inflation is the dependent variable, with independent
variables comprising crop production index, food exports, oil prices index, agricultural raw
material imports, rainfall, and temperature. This study aims to determine the impact of climate

change on agricultural production and food inflation in Southern Africa.
4.3. Model 1: Agricultural Production

4.3.1. Data Sources and sampling

This study employs a production function method and an inflation model to investigate the effects
of climate change on agricultural production and food inflation in Southern Africa. The empirical
analysis is based on panel data from 8 Southern African countries for the time period between 1981

and 2020, thus equivalent to 320 observations.

This sample size is selected based on the fact that it will be representative of the long-term trend
and cyclical variations, capturing the slow effects of climate change while also being recent enough

to reflect the current climatic conditions. The countries are selected based on their heavy reliance
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on agriculture, diverse climatic conditions, and most importantly, based on the availability of
reliable data that can enable the study to make meaningful conclusions applicable to the broader
region. The countries to be studied are Malawi, Lesotho, Zimbabwe, Botswana, Namibia,
Mozambique, South Africa, and Zambia. Temperature and precipitation data will be obtained from
the NASA Prediction Of Worldwide Energy Resources. The study uses country-level climate data
for mean annual temperature in °C, and average annual rainfall in mm, since these

are the most commonly used meteorological variables in these studies.

For economic variables such as agricultural production index, livestock production index,
economically active population in agriculture, agricultural land, agricultural machinery, and
fertilizers consumption, data in the model will be obtained from the Food and Agriculture
Organization of United Nations Statistics Division (FAOSTAT) and World Development Indicators
(WDI). The NASA Prediction of Worldwide Energy Resources (POWER) is reliable because the
high-resolution, scientifically developed data by experts are accurate and reliable. On the other
hand, Food and Agriculture Organization of the United Nations Statistics Division-FAOSTAT and
World Development Indicators (WDI) are reliable sources because they provide comprehensive,
standardized, and globally recognized statistics on agriculture. Data from the two mentioned
sources ensures credibility and reliability of the study due to their wide usage in research and

policymaking.

4.3.2. Model Specification and Discussion of Variables

To examine the impact of climate change on agricultural production in Southern African countries,
the study specifies a production function where the agricultural production index is a function of
a number of economic inputs and climate factors: AGRP=f(LAB, LIV, AMAC, TFC, AGRL,
RAIN, TEMP). AGRP represents the agricultural production index; LAB, LIV, AMAC, TFC, and
AGRL are agricultural labor, livestock, agricultural machinery, total fertilizer consumption, and
agricultural land, respectively. The proxy of capital stock is agricultural machinery that represents
the number of tractors. Climatic factors that may impact agricultural production are represented
by rainfall (RAIN) and temperature (TEMP). This specification of the production function is
adapted from a study by Belloumi (2014), in which the contribution of climate change to changes
in agricultural production in countries from Eastern and Southern Africa was examined. The major

advantage of using the production function framework is that it explicitly controls for other inputs
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(Ochieng et al., 2016). The agricultural production model used in the present study comprises the

subsequent specification form:

AGRPi: = B0* LIVi"'* AGRL:"? *LABi"3 "AMACit#* * TFCit?’ *¢*

% eﬁ'6RAINit+ﬂ 7RAINit*+ f8TEMPit+ f9TEMPit’ “.1)

According to the FAO (2020), each commodity's production volumes are determined by the 2014-
2016 global commodity price averages and averaged for the year. The unit of production is
international dollars, not production quantity or local currency. LIV represents the livestock
production index (2004-2006 = 100). AGRL is for agricultural land (in hectares), and it refers to
the percentage of land area that is arable, under crop rotation, or under permanent grazing. LAB
stands for the total number of economically active individuals in agriculture, AMAC for the
number of wheel and crawler tractors in operation, and TFC for the total amount of agricultural
fertilizer consumed in kilograms per hectare of arable land. Climate variables include rainfall and

temperature. Climate variables are rainfall (mm per year) and temperature (°C per year).

Considering that the study takes into account several countries over many years, the analysis
incorporates a mechanism to capture regional and temporal scale differences. After taking the log
on both sides of the model given by equation (4.1), the panel data model is given by equation (4.2)

for any country i at time t:

INAGRP: = Bo+ B1 InLTVi + B2 InAGRLi+ B3 InLABu+ B4 InAMAC;+ BsInTFCi
+ Bs RAINy+ 8- RAINi? + Bs TEMP; + Bs TEMP:? + & (4.2)

where InAGRP, InLIV, InAGRL, InLAB, INnAMAC, and InTFC are the logarithms for agricultural
production index, livestock production index, agricultural land, agricultural labor,
agricultural machinery, and total fertilizer consumption, respectively. To account for the nonlinear
relationship between agricultural production and climate factors, the model estimates both linear
and quadratic terms for climate variables. The error term is represented by &i.. The coefficients to

be estimated are Bs.
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Table 4.1: Variable Description

Variable Abbreviation | Description Measurable | Expected
Indicator sign
Agriculture AGRP The FAO agricultural output indices
Production show the corresponding percentage of Index Dependent
Index (2004- aggregate agricultural output for each Variable
2006 = 100) year as compared to the base year 2004-
2006.
Livestock LIV The livestock production index includes
Production meat and milk from all sources, dairy
Index products such as cheese and eggs, wool, Index ()
(2004-2006 = honey, raw silk, and hides and skins.
100)
Agricultural AGRL Agricultural land is defined as the area
Land of land that is cultivable, under crop | Hectares ()
(hectares) rotation, or under permanent grazing.
Labor LAB Agricultural labor refers to the number
in agriculture of people who work in the agricultural % of total
sector or are economically involved in | labor force (+)
agriculture.
Total TFC Total fertilizer consumption
Fertilizers in agriculture in kilograms per hectare of
Consumption arable land. Kg/ha (+)
(tons)
Agricultural AMAC Agricultural machinery refers to the total
machinery, number of wheel and crawler tractors | Tractors per ()
tractors (excluding garden tractors) employed in | 100km? of

agriculture.

arable land
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Average

rainfall (mm RAIN The mean rainfall is the country's long- )
per year) term average of yearly rainfall volume | mm per year

Mean annual TEMP Mean annual temperature °C per year )
temperature

4.4. Model 2: Food Inflation
4.4.1. Data and Methods

The study includes annual panel data from eight Southern African countries: Malawi, Lesotho,
Zimbabwe, Botswana, Namibia, Mozambique, South Africa, and Zambia. The study contains 320
observations from 1981 to 2020. The estimation sample was chosen based on the availability of
data on the primary variables of interest, as well as the availability of high frequency annual data.
Food pricing indices are acquired from the relevant country databases, whereas the food consumer
price index, crop production index, agriculture raw material imports, and food exports are obtained

from the FAOSTAT database. Rainfall and temperature data are collected from NASA POWER.

4.4.2. Model specification and Discussion of variables

Consistent with past studies, such as Nahoussé's (2019), which investigated the drivers of inflation
in West Africa, this study specifies a food inflation model that includes climate change proxies in
the form of yearly mean rainfall and yearly average temperatures. Equation (4.3) specifies the

general equation for estimation.
wic= o + PXi¢ + i1 + it 4.3)
where mit is the food price index for country 1 in time t, X represents exogenous forces driving

inflation, mit-1 is the lagged regressand, ai represents country-specific effects, and ¢; is the error

term. Equation (4.4) specifies the model to be estimated.

FCPIit = ai + p1CROPit + B2FEXic + psARMIitc + p4OILPRIi¢ +psFPRIit + BeRAINic +
B7TEMPit + BsFPIic-1+ Eit 4.4

Where the FCPI captures the Food Consumer Price Index, and it is the dependent variable in this

model for this study. CROP is the crop production index, FEX is the food exports (% of
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merchandise exports), ARMI is the agricultural raw materials imports (% of merchandise imports),
OILPR is the oil price index, FPRI is the fertilizer price index and climate refers to the two proxies
of climate change risk indicators, namely: annual average rainfall amounts (R) and annual mean

in temperature (T).

The study employs average rainfall and mean temperature data to highlight the unpredictability in
food availability that contributes to high food costs. Improved rainfall is expected to lower food
inflation as supply expands, resulting in greater agricultural productivity. However, significant
variations in rainfall and temperature are expected to induce inflation. Temperature fluctuations
have a distinct impact on inflation than average monthly rainfall since high temperatures are
associated with drought, which causes inflation. Temperature fluctuations cause inadequate rainfall
thus resulting in drought, lowering hydropower generation capacity both directly and indirectly by
means of electricity price connections to other consumer basket commodities including food and
non-food non-fuel products. Price changes in the global oil market affect local fuel costs in all of
the countries under consideration, which are predominantly fuel importers. A surge in international
oil prices would thus bring about a rise in prices of domestic fuel, which would then lead to a rise

in the prices of food resulting from higher transportation costs.

Table 4.2 shows a definition of the key variables used in the study, along with their definitions,
measurement indicators, and hypothesized impact on food inflation. The study considers a group
of agricultural, climatic, and economic variables to analyze their impact on food prices. All of the
variables are selected based on empirical and theoretical significance, with hypothesized signs that

determine whether each variable is likely to increase or decrease food inflation.
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Table 4.2: Variable Discussion

Variables Abbreviation | Discussion Measurable | Expected
Indicator Sign
The food price index tracks the
Food FCPI changes in the prices of a basket of Index Dependent
Consumer food items overtime. Higher food Variable
Price Index prices can directly contribute to food
inflation as it becomes more expensive
for consumers to purchase essential
food items.
Crop Measures the overall productivity of
production agricultural ~ crops. Less  crop Index (-)
index CROP production
(20142016 can result in reduced food supply,
=100) potentially leading to increased food
prices and higher inflationary pressure.
If a significant proportion of the % of
Food country’s food production is exported | merchandise
exports (% FEX to other regions, it can reduce domestic exports (+)
of food supply and increase domestic
merchandise food prices, thus contributing to food
exports) inflation.
Changes in the worldwide oil market
Oil affect domestic prices for fuel,
Price Index OILPR resulting in higher prices of food Index ()

for countries hat mostly import fuel.
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Agricultural Higher import costs for agricultural

raw material ARMI materials lead to increased production % of

imports (% costs which result in increased food merchandise ()

of prices and ultimately inflation. exports

merchandise

exports)

Fertilizer Changes in fertilizer prices impact the

price index FPRI Farmers' input costs, affecting their Index
decisions on crop production and (+)
ultimately influencing food prices.

Average

rainfall RAIN The mean rainfall is the country's long- | mm per year (-)
term average of yearly rainfall volume

Mean in

temperature. TEMP Mean annual temperature °C per year ()

4.5. Estimation techniques and procedures

4.5.1. Descriptive Statistics test

Calculating descriptive statistics represents a vital first step when conducting research and should
always occur before making inferential statistical comparisons (Kaur et al., 2018). Descriptive
statistics are methods used to effectively summarize and describe the main features of a dataset in
an organized manner by providing an overview of the relationship and patterns between variables
in a sample (Mishra et al., 2019). That is, it would comprise central tendency measures, like mean,
median, and mode, describing the average for a set of data; there would be measures of variability
such as range, variance, and standard deviation that give a description of spread or dispersion of
the data. There are also descriptive statistics portraying data through graphical means; thus comes
the histogram, the box-and-whisker plots, and scatter plots to pictorially show the data represented
(Cooksey and Cooksey, 2020). Therefore, the descriptive statistics to be undertaken in this study
will help in the identification of outliers and analysis of data, which also informs the selection of

appropriate statistical methods for further analysis.
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4.5.2. Correlation Analysis

To test for possible relationships among the studied variables, the correlation analysis which tests
the association between two or more quantitative variables is utilised. This approach is primarily
predicated on the assumption of a linear relationship among the quantitative variables. Similar to
the measures of association for binary variables, correlation analysis quantifies both the intensity
and direction of the relationship between the variables (Schober et al., 2018). The outcome of a
correlation analysis is a correlation coefficient that ranges from negative one to positive one. A
correlation coefficient of positive one signifies a perfect positive linear relationship between two
variables, a coefficient of negative one signifies a perfect negative linear relationship, while a
coefficient of zero indicates the absence of a linear relationship between the two variables under

examination (Gogtay and Thatte, 2017).

4.5.3. Panel Unit Root test

Unit root tests are one of the statistical tests applied to determine whether a time-series variable is
stationary or possesses a unit root, implying that it is non-stationary (Khraief et al., 2020). The unit
root tests are important in determining the stochastic properties of the variables under
investigation. Furthermore, unit root tests assist in examining the presence of a spurious
relationship which occurs when two non-stationary variables appear to be correlated purely due to

chance, without any genuine underlying relationship (Herranz, 2017).

The order of integration of the variables of interest will be determined using three panel unit root
tests: Levin, Lin, and Chu (LLC) and Im, Pesaran, and Shin (IPS), as well as Fisher Chi-square
tests. These tests presume cross-sectional dependence between units. The LLC test presupposes
that the residuals are unbiased and equally dispersed with a mean of zero and a constant variance,
and that the autoregressive parameter is the same across all panels (Lau et al., 2019). While the
LLC test allows for differences in intercepts across panels, the IPS test allows for differences in
both intercepts and slopes, accommodating more heterogeneity among the cross-sectional units.
Im et al. (2003), developed the IPS panel unit root test, which is less restrictive and more powerful
than other tests such as (LLC), established by Levin et al. (2002). IPS's proposed test addresses
Levin and Lin's serial correlation problem by assuming heterogeneity across units in a dynamic
panel framework (Mburamatare et al., 2022). These tests have a non-stationarity null hypothesis,

and comparing the results from multiple approaches is an effective way to assess the veracity of
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the conclusions (Lau et al., 2019). The rejection criteria for both the Levin Lin Chu (LLC) and Im
Pesaran Shin (IPS) panel unit root tests stipulate that the test statistic must be sufficiently negative,

leading to the rejection of the null hypothesis of a unit root if the p-value is below 0.05.

The Fisher-type test has been proposed as a remedy by Maddala and Wu (1999) and Choi (2001),
for several defects in LLC and IPS frameworks. These authors have proposed the use of non-
parametric Fisher-type test based on the combination of p-values of unit root test statistics, for
example, the ADF test, computed for each cross-sectional unit. While the LLC test restricts the
alternative to maintaining the same parameter p in both the null and under-alternative conditions,
for the Fisher test it becomes more general; thereby allowing flexibility. The null is presented as
all panels have unit root meaning that a panel is nonstationary where the alternative hypothesis to
test is that at least a single panel is stationary. Similarly to the LLC and IPS test, the Fisher Chi-
square test rejects the null hypothesis when the aggregated p-value is less than 0.05, indicating that
at least one panel is stationary (Maddala & Wu, 1999; Choi, 2001).

4.5.4. Lag Length Selection

Selecting the most suitable lag length is a critical step before running the panel cointegration test.
The process is quite crucial since the incorrect lag length will result in model misspecification,
which will ultimately make the results invalid and unreliable (Han et al., 2017). To ensure the
selection of an appropriate lag length, standard information criteria is employed, namely, the
Akaike Information Criterion (AIC) and Schwarz Criterion (SC). The lag length selection is based
on values for which either Akaike Information Criterion (AIC) or Schwarz Criterion (SC) are

minimized. The best criterion that best fits the model is the one with the lowest figure.

4.5.5. Panel Cointegration Test

After determining whether or not the variables have a unit root, a panel cointegration test is
performed. This is to determine whether there is a long-term relationship between the variables.
Panel cointegration tests are divided into three types: Pedroni residual cointegration tests, Kao
residual cointegration tests, and the Johansen fisher panel cointegration test (Kalymbetova et al.,
2021). The Pedroni cointegration test is the most commonly used in panel data regression analysis
as it accounts for cross-sectional dependence, particularly when countries have similar outlooks
(economic, social, political, etc.) while allowing for significant heterogeneity (Dankumo, 2021).

However, for robustness, both Kao and Pedroni cointegration panel tests are employed in this study
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to determine whether there is a long-term correlation between independent and dependent
variables. These tests involve a null hypothesis of no cointegration. Rejecting the null hypothesis

implies that the variables are cointegrated across all panels.

According to Dincer and Yuksel (2023), the Pedroni cointegration test permits variation in the
dynamics of the cointegrating vectors across multiple cross-sectional units, allowing for greater
flexibility than the Kao test. Pedroni (1995), offered seven distinct statistics for evaluating panel
data co-integration. The first four are based on pooling, known as the within dimension, while the
last three are based on the between dimension. Both types of testing are based on the null
hypothesis of no cointegration. To reject the null hypothesis that there is no co-integration, the

calculated test statistics must be less than the tabulated critical value.

Similar to the Pedroni cointegration, the Kao cointegration test acknowledges the heterogeneity
between cointegrating vectors both in the short-run and long-run (Herigbaldi & Mufidah, 2023).
As much as the Kao cointegration test uses the same basic approach as the Pedroni test (the
residual-based approach), the test also considers cross-section specific intercepts and
homogeneous coefficients during the first-stage regressors (Cetin & Ecevit, 2015). The null
hypothesis for Kao cointegration test is that there exists no cointegration between the cross-
sectional variables while the alternative hypothesis assumes the presence of a long-run relationship

between variables. If the p-value falls below 0.05, the null hypothesis is rejected.

4.5.6. Pooled Mean Group (PMG)/Panel Autoregressive Distributed Lag (ARDL)

If no cointegration is discovered after performing the panel unit root tests and cointegration tests,
the panel ARDL model is employed. To estimate long-term associations using the autoregressive
distributed lag model, a non-stationary series is required. A series is deemed non-stationary if its
mean, variance, and covariance change with time (Brooks, 2019). The ARDL framework restricts

variables to being either integrated of order 1(0) or I(1).

The panel ARDL model is used in this study to investigate the relationship between climate change,
agricultural production, and food inflation in southern Africa. Pooled Mean Group (PMG)
estimation, often known as the panel ARDL model, offers the advantage of identifying dynamic
long and short run correlations (Mensah et al., 2019). This estimate permits the short-run

coefficients, including intercepts, the rate of adjustment to long-run equilibrium values, and error
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variances, to vary by nation, yet the long-run slope coefficients are consistent across countries.
This is especially relevant when there are grounds to believe that the long-run equilibrium

relationship between the variables is consistent across countries, or at least a subset of them

(Mensah et al., 2019).

This approach is appropriate since it is more efficient and compatible with the presence of long-
term relationships. According to this framework concept, the long-run equilibrium relationship
between variables is consistent across countries (Pesaran et al,1999). The PMG estimator is based
on the assumptions below. First, the error terms are not serially correlated. Second, there is a long-
term association between the dependent and independent variables, and the long-term
characteristics are consistent across nations (Lee et al, 2015). Failure to meet these parameters will
result in inconsistent PMG estimation. Compared to other existing estimators, the pooled mean
group (PMG)-ARDL econometric technique fits into this research paradigm since the study
assumes a short- and long-term relationship between the variables under consideration. This
econometric estimation technique also gives consistent coefficient estimates in the presence of
potential endogeneity and serial correlation challenges given that it covers both lagged dependent

and independent variables (Pesaran et al, 1999).

4.5.7. Panel Data Analytic Models

The study uses two panel data analytic models to generate its results. These models contain both
fixed-effects and random-effects models. The primary contrast between fixed and random effects
is whether the unobserved individual effect contains parts that are correlated with the model's
regressors, rather than whether these effects are stochastic or not (Hill et al., 2020). The Hausman

test determines the best fitting model for data analysis.
Fixed Effects Model

When examining the impact of variables that change over time, the fixed effects model is applied
(Kelejian & Piras, 2017). Every entity (country, organization, or individual) has unique traits
known as time invariant variables, which may alter the quantitative relationship between
the regressed and regressors (Hill et al., 2020). The basic premise is that certain qualities, such as
culture or gender, remain constant across time. To compensate for unobservable variables that can

bias parameter estimates, a study by Hsiao (2022), suggests treating them as fixed parameters
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during model estimation. Given that each element will have unique properties, it is predicted that
the error terms and constants will be uncorrelated. If these conditions are satisfied, the fixed effects
model can be used in model estimate to account for unobserved heterogeneity (Bell et al., 2019).
In this case, should the error terms be associated, the fixed effects model will not be applicable.

The following equation describes the fixed effects model, which controls for both entities and time:
Yie = o + PXic+ i (1)
Where:

Y is the regressing, and ai (i=1.... n) is the intercept for the ith entity/unknown intercept for each

entity.

Bisakx 1 vector of parameters to estimate/coefficient for the regressors, while Xjtis a 1 x k vector

of explanatory variables/independent variable.

uj¢ is the remaining disturbance, which is the error term minus the effect of the time invariant

variables (Marandu, 2018).
Random Effects Model

The random effects model assumes that change between entities is random and unrelated to the
model's regressors (Bell et al., 2019). Furthermore, the model must incorporate all feasible
variables, including the invariant temporal fixed features; otherwise, the model will be skewed by
missing data. In essence, if variations across the entities have a significant impact on the model
output values for the regressed, use the random effects model (Wooldridge, 2019). As a result, the
study can incorporate time-invariant variables into the model; however, one significant drawback
is that data for such variables may not be available. However, the random effects model has the
advantage of providing results that are applicable outside of the sample (Dettori et al., 2022). The
random effects model has an additional advantage over the fixed effects model in that it has fewer
parameters and avoids losing degrees of freedom since the error component is considered random

(Bell and Jones, 2015).
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The model below represents a random effects panel data regression model:
Yi=a+ BXit + Ui + & (2)
Where:

Torres-Marandu (2018), defines &i; as the within-entity error for the ith independent variable at

time t, and Uj; as the between-entity error for the same variable at time t.
Hausman Test

When analyzing panel data with a time-varying covariate, a preliminary Hausman test is usually
performed to identify whether subsequent inference should be made using the random effects
model or the fixed effects model. The Hausman test is based on the null hypothesis that the
random-effects model is the best fit, with the alternative hypothesis that the fixed-effects model is
better (Baltagi, 2024). Fundamentally, the assessments strive to evaluate whether there is a
relationship between the unique errors and the model's regressors. The null hypothesis states that
there is no relationship between the two; however, if the p-value is below 0.05, the null hypothesis
must be rejected. If the Hausman test rejects the null hypothesis that there is no association between
random effects and time-varying covariates, the fixed effects model is applied for further inference;
otherwise, the random effects model is preferred (Mainzer, 2018). This promptly model selection
technique is frequently used in econometrics and has been integrated into major computer
programs such as SAS, Stata, and EViews (Baltagi, 2024). The Hausman test is employed in this
study to find the best-fitting model.

4.6. Diagnostic tests

Since the study uses panel ARDL, the diagnostic tests that are employed are the normality test and
the cross-section dependence test to further validate the findings and guarantee that they are
statistically significant. Results from the model can be used for analysis if it produces results that

are satisfactory and do not contain any biases.

4.6.1. Normality Test

The Jarque-Bera normality test, which is based on OLS residuals, will be used in this study. The
Jarque-Bera normality test assesses whether sample data residuals are regularly distributed

(Nosakhare and Bright, 2017). This test is necessary as unreliable test results will occur if the
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residuals lack normality. The Jarque-Bera (JB) test primarily estimates the skewness and kurtosis
measures of the OLS residuals, with the null hypothesis that the residuals have a normal
distribution (Adenomon and Ojo, 2020). The null hypothesis is accepted when the residuals are
regularly distributed. The probability must be greater than 0.05 to accept the null hypothesis
(Khatun, 2021). If the JB statistic differs sufficiently from zero, the hypothesis that the residuals
have a normal distribution can be rejected. Alternatively, if the p-value is large enough (i.e., the JB

statistic is near zero), the null hypothesis of residual normality cannot be rejected (Khatun, 2021).

4.6.2. Cross-section Dependence Test

A cross-sectional dependence diagnostic test is used in economic and statistical analysis to identify
cross-sectional dependence (or correlation) in panel data models (Pesaran, 2021). This dependence
arises when observations from multiple cross-sectional units, such as countries, firms, or
individuals, are not independent of one another, which is frequently caused by common shocks or
interactions among the units. Avoiding cross-sectional dependence might result in biassed and
inconsistent parameter estimations, inaccurate statistical inferences, and reduced model efficiency

(Xie and Pesaran, 2022).

The Breusch-Pagan LM test, which is used for large panels by calculating the correlation between
residuals of each pair of cross-sectional units, and Pesaran's Cross Dependence (CD) test, which
is appropriate for both small and large panels and looks for average pairwise correlations of the
residuals, are two common cross-sectional dependence tests, according to Akgun et al. (2021).
Pesaran's test computes the correlation coefficient to identify cross-sectional dependence, whereas
Friedman's test is a non-parametric technique that ranks data across cross-sections to evaluate
independence (Baltagi et al., 2016). The alternative hypothesis contends that cross-sectional
dependence exists, whereas the null hypothesis maintains that there is none. The presence of cross-
sectional dependency is indicated by the rejection of the null hypothesis if the test statistic differs
significantly from zero (Pesaran, 2021). The following discussion of these tests argues for the

importance of their application in this study:
Pesaran CD Test

According to Baltagi et al. (2016), the Pesaran CD test for cross-sectional dependency is used

under the null hypothesis of cross-section independence and can be applied even in cases when
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the dataset's sample size is very small. Additionally, as each cross-sectional unit parameter is
calculated using that unit's time series observation alone, the Pesaran CD test is unaffected by the
presence of individual specific effects (potentially correlated with the regressors) (Juodis and
Reese, 2022). However, the CD test is useful for a high number of cross-sectional units (N)
observed across (T) time periods, in contrast to the conventional Breusch Pagan LM test (Khalid
and Shafiullah, 2021). Since the time periods (T) exceed the number of cross-sectional units (N),

this test is therefore inappropriate for the purpose of this study.
Breusch-Pagan LM test

The Breusch and Pagan (1980) cross-sectional dependence test, according to Pala (2020), is a
technique that examines the null hypothesis of dependence among panel members and is applicable
to a variety of panel data with a long time period (T) and few cross-sections (N). Arshad, Roba,
and Botelho (2020), also point out that panels with N<T, that is, panels whose cross-sectional
dimensions are smaller than their time dimensions perform better when using the Breusch-Pagan
Langrage Multiplier (Yal¢in and Unliikaplan, 2024). The study's cross-sectional dimensions
amount to eight, but its time dimensions amount to forty-two, indicating that T>N. Consequently,

the Breusch-Pagan LM test is suitable for the present study.

4.7. Chapter Summary

This chapter presented the research methodology employed to investigate the impact of climate
change on agricultural production and food inflation in Southern Africa. It began by outlining the
research design, detailed data sources and sampling methods, followed by the model specification
and description of variables. Lastly, estimation methods were discussed in the ways in which
statistical techniques are considered to ensure the findings of the study are robust and valid.
Climate change has been a critical issue across the world with its impacts extending from the
environmental perspective into different economic aspects. Overall, this is a very good

methodology from which the results of the study can be derived.
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CHAPTER 5: EMPIRICAL ANALYSIS AND RESULTS

5.1. Introduction

In this chapter, a series of tests have been employed to investigate the impact of climate change on
agricultural production and food inflation in Southern Africa. The first section of this chapter
analyzes the agricultural production model, while the last section focuses on the food inflation
model. For both models, trends or descriptive statistics of the data are presented. These are
followed by panel unit root test results to detect and assess the stability of the variables using the
Levin, Lin, and Chu (LLC), Im, Pesaran, and Shin (IPS), and Augmented Dickey Fuller tests. The
long-run estimation equation is then conducted based on the panel cointegration test, followed by
empirical results from the estimation model using the Pooled Mean Group estimator of the panel
ARDL method. Finally, the diagnostic test results are highlighted to assess whether there are

omissions in the residuals that could lead to a biassed or ineffective model.

Model 1: Agricultural Production

5.2. Descriptive Statistics Test

Table 5.1: Individual Sample: Descriptive Statistics of Variables from 1981-2020

Observations | Mean Std. Dev. | Min Max
AGRP 320 80.55 38.88 19.07 178.33
LIV 320 75.86 34.97 13.97 183.69
LNAGRL 320 14.41 1.26 12.11 16.44
LAB 320 36.92 29.32 0.00 85.06
TFC 320 25.99 24.06 0.00 99.88
AMAC 320 10820.62 | 34588.60 | 0.00 175557.0
RAIN 320 63.10 61.29 0.88 276.67
TEMP 320 32.16 4.19 20.45 39.81

Source: Author’s computation using EViews

The descriptive statistics demonstrate that the variables in Table 5.1 display high variation.
Agricultural production (AGRP) has a mean of 80.55, a standard deviation of 38.88 with minimum

and maximum ranging from 19.07 to 178.33, highlighting significant variability in output levels
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for the region. Livestock (LIV) displays comparable variability around its mean, indicating an
irregular distribution of livestock. While agricultural land (LNAGRL) has a limited range of 12.11
to 16.44 with a minimal standard deviation, signifying more equitable agricultural land access.
Agricultural labour has a considerable range of 0 to 85.06, while TFC demonstrates extensive
variation of 0 to 99.88, reflecting disparities in farming practices and availability to resources. The
abnormally increased maximum value of agricultural machinery (AMAC), paired with its
substantial standard deviation, indicates considerable disparity in mechanisation levels. Rainfall
exhibits significant variability throughout the region, evidenced by its extensive range and
standard deviation, whereas temperature remains comparatively stable, with minimal
fluctuation around the mean. The summary statistics for regressors clearly demonstrate greater

dispersion between the mean and standard deviation.

5.3. Correlation Analysis

Table 5.2: Correlation Analysis Results

Variable | AGRP | LIV AGRL | LAB TFC AMAC | RAIN | TEMP
AGRP 1.0000 | 0.4960 |-0.0322 | 0.1494 | 0.2826 |-0.0481 | -0.4698 | -0.2190

LIV 0.4960 | 1.0000 |-0.3756 |0.0346 |-0.0971 |-0.2015 | -0.4734 | -0.0941
LNAGRL | -0.0322 | -0.3756 | 1.0000 | 0.2532 | 0.5300 | 0.4215 |0.1013 | 0.3657
LAB 0.1494 | 0.0346 |0.2532 |1.0000 |-0.1092 |-0.2686 | 0.2072 | 0.1102
TFC 0.2826 |-0.0971 | 0.5300 |[-0.1092 | 1.0000 | 0.4746 |-0.1524 | 0.0325
AMAC -0.0481 | -0.2015 | 0.4215 |-0.2686 | 0.4746 | 1.0000 |-0.1722 | 0.0346
RAIN -0.4698 | -0.4734 | 0.1013 | 0.2072 | -0.1524 | -0.1722 | 1.0000 | -0.0572

TEMP -0.2190 | -0.0941 | 0.3657 | 0.1102 | 0.0325 |0.0346 |-0.0572 | 1.0000

Source: Author s computation using EViews

Through correlation analysis, it can be determined whether agricultural output and its potential
determinants are significantly correlated. Livestock (LIV) and agricultural production (AGRP)
have the strongest relationship with a correlation of about 0.496, indicating that livestock
contributes to the significantly and positively to agriculture production. A moderate positive
relationship of 0.283 exists with total fertiliser consumption (TFC) which means that there is a
tendency for more fertiliser use to correspond with higher agricultural output. Although the

relationship between LAB and AGRP is positive, there is low correlation. The relationship between
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agricultural productivity and the two climatic variables is however negative, indicating that
Southern African agricultural productivity is negatively impacted by climatic factors. Rather
surprisingly, very low, though negative, correlations exist between AGRP and agricultural land in
its natural lag period (LNAL) and agricultural machinery use (AMAC), both correlation
coefficients of -0.048 and -0.032, respectively. This entails that both LNAL and AMAC have a

slight contribution towards increasing agricultural production.

5.4. Unit Root Test

To assess the stationarity properties of model variables, the unit-root test results are presented in
Table 5.3. Before determining whether agricultural output and climate variables are cointegrated,
the study examined into the order of integration for each series. Three separate unit root tests were
used to evaluate the integration order of the series: (i) Levin, Lin and Chu (LLC); (i) Im-Pesaran-
Shin (IPS) and (iii) Augmented Dickey-Fuller (ADF) test. The probabilities of the three-unit root
tests are significant at 1% level of significance for all the variables in question, thus indicating
stationarity of the variables. Based on the depicted unit root results, the null hypothesis which

states that there is unit root among the variables is rejected.

Table 5.3: Panel Unit-Root Test Results

HO: all variables have unit root
(non-stationary)

Variables LLC IPS ADF Order of Acceptance
P-value P-value P-value Integration | Region
P <0.05
AGRP I’ Difference: P =0.0000%*** P =0.0000*** | P=0.0000%** I(1) Reject Ho
Intercept
LIV 1" Difference: P =0.0000%*** P =0.0000%** | P =0.0000%** I(1) Reject Ho
Intercept
LNAGRL | I* Difference: P =0.0000%*** P =0.0000*** | P=0.0000%** I(1) Reject Ho
Intercept
LAB 1" Difference: P =0.0000%*** P =0.0000%** | P =0.0000%** I(1) Reject Ho
Intercept
TFC I’ Difference: P =0.0000%*** P =0.0000*** | P=0.0000%** I(1) Reject Ho
Intercept
AMAC 1" Difference: P =0.0000%*** P =0.0000%** | P =0.0000%** I(1) Reject Ho
Intercept
RAIN Level: P =0.0000%*** P =0.0000*%** | P=0.0000%** 1(0) Reject Ho
Intercept
TEMP Level: None P =0.0000%*** P =0.0000%** | P =0.0000*** 1(0) Reject Ho
NB: (***) Denotes significance at 1% level of significance

Source: Author’s computation using EViews
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As indicated in Table 5.3, the study employed the unit root test at the level and first difference
forms, with an order of integration that combines 1(0) and I(1). In this case, the findings show that
rainfall and temperature are stationary at the level, whereas agricultural production and associated
regressors are stationary at the first difference. Due to the existence of mixed levels of integration
among the variables, the study proceeds to apply the Panel Pooled Mean Group ARDL approach.

However, before that, a panel cointegration test is employed.
5.5. Panel PMG/ARDL Results

5.5.1. Optimal Lag Selection

Generally, the lag length selected is based on values for which either Akaike Information Criterion
(AIC) or Schwarz Criterion (SC) are minimized, indicated by the asterisks in Table 5.4. From the
table, the best criterion that best fits the model is the Akaike Information Criterion with the lowest
figure of 41.82 in contrast to that of the Schwarz Criterion which is 43.293. It is therefore
concluded that the lag length selection is made based on the AIC value because the lower the AIC
value, the better the model. According to the results below as shown by the asterisk sign of AIC,

the optimal lag length to use for the model is 3.

Table 5.4: Optimal Lag Length Results

Lag | LogL LR FPE AIC SC HQ

0 -6809.4 NA 5.36e+15 53.245 53.329 53.279
1 -5425.1 2693.0 1.43e+11 42.711 43.293* 42.945
2 -5329.1 182.2 8.94e+10 42.243 43.323 42.677
3 -5239.0 166.7 5.87e+10* | 41.821%* 43.399 42.455%*

Source: Author s computation using EViews

5.6. Panel Cointegration Test

After determining the order of integration of the different variables, ARDL is estimated based on

the cointegration to analyze the long-term correlation between the variables.
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5.6.1. Pedroni test

Table 5.5: Pedroni Residual Co-integration Test Results

Ho: No cointegration

Panel cointegration statistics(within-dimension)

Statistic Probabilities
Panel v-statistic 1.780535 0.0375**
Panel rho-statistic -2.516770 0.0059%**
Panel PP-statistic -6.862833 0.0000%**
Panel ADF-Statistic -7.031124 0.0000%***

Group mean cointegration statistics (between-dimension)

Group rho-statistic -0.990628 0.1609
Group PP-statistic -8.069380 0.0000%**
Group ADF-statistic -7.049184 0.0000%**

NB: (***) and (**) indicate rejection of the null hypothesis of no co-integration at 1% and 5%

significance level.

Source: Author s computation using EViews

The Pedroni Cointegration test was conducted with eight cross-sections over a sample period of
1981 to 2020, totaling 320 observations. The null hypothesis of no cointegration was tested under
both the within-dimension and between-dimension of the Pedroni test. For the within-dimension
statistics, all the four statistics in the panel co-integration statistics are found to be significant at
both 1 and 5% level of significance, thus, strongly supporting the rejection of the null hypothesis

of no cointegration.

Within the interdimensional analysis, the Group rho-Statistic would have a probability of 0.16,
which is not sufficient to reject the null hypothesis. On the other hand, both the Group PP-Statistic
and Group ADF-Statistic come out highly significant with a probability of 0.00, which gives strong
evidence in support of cointegration among the variables. Taking these results as a whole, in six
out of the seven Pedroni statistic tests, there is sufficient evidence to reject the null hypothesis of
no cointegration, which implies that the variables under study share a long-run equilibrium

relationship.
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5.5.2. Kao Test

Table 5.6: Kao Cointegration Test Results

Ho: No cointegration

Prob.
0.0143%**

t-Statistics
-2.188623

ADF

(**) indicates rejection of the null hypothesis of no co-integration at 5% significance level.

Source: Author s computation using EViews

In line with the Pedroni test, the Kao cointegration test results also demonstrate a rejection of the
null hypothesis of no cointegration at the 5% significance level, as indicated by the ADF t-statistic
of -2.188623 and the corresponding p-value of 0.0143. This implies that the variables selected for

the study have a long-term, statistically significant relationship.

5.6.2. Long run panel ARDL empirical results

The panel Autoregressive Distributed Lag (ARDL) is employed to analyze the long term as well
as the short-term effects of a host of variables, including climate variables on agricultural output
in Southern Africa for the period from 1981 to 2020. In the model, agricultural production (AGRP)
is used as the dependent variable, presumably representing the first difference of agricultural
output, and the independent variables are livestock (LIV), labor (LAB), rainfall (RAIN),
temperature (TEMP), and total agricultural fertilizer (TFC). Agricultural land with its natural log
(LNAGRL) and agricultural machinery (AMAC) variables are excluded from the Panel ARDL
model due to their contribution to a positive and statistically insignificant error correction term,

which undermines the model's capacity to capture short-run equilibrium relationships effectively.

Table 5.7: Long-run panel ARDL estimates

Long Run: Dependent Variable: D(AGRP)
Variable Coefficient Std. Error t-statistics Prob*
LIV 0.3392 0.0869 3.9024 0.0001 ***
LAB 0.2348 0.0661 3.5543 0.0005%***
TFC 1.3659 0.1390 9.8238 0.0000%***
RAIN -0.1110 0.2744 -4.0494 0.000] ***
TEMP -16.6312 5.7640 -4.4185 0.0000%***
NB: (***) Denotes significance at 1% level of significance

Source: Author s computation using EViews
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In the long run, total fertilizer consumption, with a large and statistically significant coefficient,
emerges as a critical factor affecting agricultural productivity and thus highlighting the importance
of input-intensive approaches to increase crop yields under environmental and soil fertility
stresses. Labor represents the region's dependence on labor-intensive agricultural practices, while
temperature is a strong negative element, underlining the crucial importance of climate adjustment

measures to safeguard productivity; the variable-specific findings are presented in detail below:
Livestock Production (Index)

A 1 unit increase in the livestock production index (LIV) leads to 0.34 units increase in the
agricultural production index (AGRP), indicating that livestock production plays a complementary
role in supporting agricultural systems in Southern Africa. Livestock production benefits
agriculture by contributing manure, which enriches soil fertility and structure, and by providing
draft power, especially on mixed farms where crop-livestock integration is common. In many parts
of Southern Africa, smallholder agricultural practices rely on livestock as an additional source of
income, which allows the farmer to invest in inputs for agriculture, thereby increasing crop
production. For example, studies by Dhehibi et al. (2023) emphasize the very relevant synergy
obtained between mixed crop-livestock systems. Resources such as manure coming from animals
increase crop production and bring about issues of sustainability in developing economies where

chemical fertilizers are not easy to access.

The positive interrelationship between livestock and crop production in this regard highlights the
importance of policy interventions that promote integrated farming practices. In the regions where
farmers strike a balance between livestock and crop production, improving the health and
productivity of livestock can, therefore, increase crop production, thus helping to alleviate the food
insecurity exacerbated by climate change. However, this relationship requires careful management
since excessive livestock can stress the limited resources, as noted by World Bank highlighting the
urgency of fair agriculture policies (Thornton and Herrero, 2010). Similarly, related current studies
also caution against overdependence on livestock in resource-constrained ecosystems due to
competition between livestock and its needs regarding the available water and feed. This can
further result in the degradation of resources used to grow crops hence weakening general

agricultural production as evidenced by the research done by Mabhaudhi et al. (2023).
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Agricultural Labor (% of total labor force)

The coefficient of labor is positive and statistically significant at the 1% level, as expected. As a
result, increasing the labor force in agriculture by 1% raises agricultural output by 0.23 units; this,
therefore, explains the roles of manual labor in regions where there is no wide application of
mechanized devices. Many studies are consistent in the emphasizing that labor-intensive
techniques in agriculture are fundamental in regions such as Southern Africa, where technological
resources may be inaccessible. A recent study by Murray et al. (2016), found that manual labor,
particularly for smallholder farmers, is heavily involved in planting and harvesting, directly

affecting crop yields and enhancing food security at a household level.

Results are in agreement with those identified by Amare et al. (2017), in a study that assessed the
impact of agricultural productivity on improved welfare of farm households, using nationally
representative panel data from the Living Standards Measurement Study-Integrated Surveys on
Agriculture (LSMS-ISA) in Nigeria. The results showed a positive association between
agricultural productivity and labor and farm inputs. This would suggest that agricultural
productivity increases are related to a larger input of labor into agricultural production, measured
in person-days, together with fertilizer and herbicide use. This may further imply that the
introduction of inputs and the use of farming technologies contribute positively to increased
agricultural productivity. The study also found that climatic risks and biophysical factors also

contribute largely to agricultural productivity.
Total Fertilizer Consumption (kilograms per hectare of arable land (kg/ha)

Total Fertilizer Consumption has the expected sign and is statistically significant at the 1% level.
This means that a 1 kg/ha increase in the use of fertilizer is associated with an increase of 1.37
units in agricultural production in the long run. The positive and statistically significant
relationship indicates the importance of fertilizers in improving soil fertility, which remains crucial
for crop yields in the Southern African region. Most regions face challenges such as soil
degradation, nutrient depletion, and reduction in natural soil fertility, which reduce agricultural
output (Gomiero, 2016). Thus, fertilizers provide essential nutrients that renovate the soil and
enhance its fertility, hence allowing for better yields of crops. In the face of the soil degradation
malaises faced in Southern Africa, a judiciously tailored expansion in fertilizer use is apt to bring

in decisive improvements in both maintenance and improvement of agricultural productivity. For
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a sector that occupies the prime status in the economies of most countries, it implies that the
positive contribution that fertilizers can make to agricultural production underlines their

importance for food security.

Fertilizer-driven agricultural productivity growth can be expected to enhance local food
availability, reduce reliance on imports, and therefore contribute to price stability. However, in
addition to these benefits, the need to use fertilizers more sustainably must be recognized. This
approach will contribute to avoiding over-application, which can cause environmental problems
like soil acidification, water pollution, and greenhouse gas emissions (Shanmugavel et al., 2023).
Long-term productivity in agriculture in Southern Africa calls for efficient and environmentally

compatible fertilizer use, given the prevalence of small-scale farming.

The findings further support those of a study by (Huang and Jiang, 2019), which analyzed the
efficiency in the use of fertilizers in Chinese arable agricultural production from 2011 to 2015. The
average annual index of overuse of fertilizer varies between 0.008 and 3.139, with an average
value of 0.685, signifying that the fertilizers have contributed positively and significantly to the
output of the Chinese arable agricultural sector. Similarly, other scholars such as Amare et al.
(2017), also found evidence from their study that fertilizer use, and the application of herbicides
have highly significant positive effects on agricultural productivity. This evidence tends to imply
that the use of other farm management practices can also promote significant improvements in

agricultural productivity.
Rainfall (mm per year)

Rainfall is statistically significant at 1%, but the estimated coefficient is negative against the
expected direction. This implies that each additional mm per year makes agricultural output lower
by 0.11 units. Probably its negative coefficient could mean that whereas its optimum or average
level is favorable, too much is deterring to crops due to erosion, waterlogging, and even making
them more vulnerable to certain crop diseases. Rain-fed farming is mainly practiced in Southern
Africa, where farming relies on seasonal rainfall. With the changing weather, the rainfall pattern
becomes erratic, and most places are prone to either drought or heavy rains; thus, this increases

the risk of crop failures (Godde et al., 2021).
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This finding points out the urgent need for better systems of water management across Southern
Africa. Investment in irrigation infrastructure and drainage systems will help farmers to manage
water resources so as not to destroy crops with heavy floods after receiving scanty rain. Programs
for developing climate-resilient crops that could stand erratic rainfall might mitigate some of the
negative impacts of such findings. Policies promoting water conservation and the use of such
techniques as contour farming and terracing would further enable farmers to maintain production

in spite of erratic rainfall (Matchaya et al., 2019).

These findings agree with those obtained from the study designed and undertaken by Amare et al.
(2018), to explore the effect of rainfall shocks on agricultural productivity and hence on rural
household consumption. It then revealed that a negative rainfall disruption reduces agricultural
production by about 38%. According to the present study, the plausible reason may be that rainfall
being a source of risk to crop production enhanced the adoption of farm technology risk and, as
such, reduced productivity in a rainfed, liquidity-constrained, and imperfect market environment.
The findings presented herein are in consistency with earlier research, such as Borgomeo et al.
(2018), that shows how the variability in precipitation triggers farmers to make decisions on the
adoption of external input factors, which increase productivity but raise the risk of crop failure,

hence affecting agricultural productivity.
Temperature (°C per year)

As expected, the temperature variable carries a negative sign and is significant at 1% in the long-
run estimation of the model. In essence, this means that for every increase in mean annual
temperature by 1°C, the agricultural output is reduced by approximately 16.63 units. From this
very negative coefficient in the long run, the increase in temperature has significantly negatively
affected agriculture in Southern Africa. Warmer temperatures increase plant respiration rates that
make crops metabolize their food more rapidly, thus reducing growth and yields, especially in the
case of the more temperature-sensitive staple crops like maize and wheat. On the other hand,
increasing temperatures raise evapotranspiration, which reduces available soil moisture (Moore et
al., 2021). High temperatures also favor infestation and diseases that thrive under high
temperatures, thus further aggravating the pressure that such pests exert on agricultural crops and

leading to even greater losses in yields. The yield losses that accrue from this also means increased
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food prices, preventing households from accessing adequate foodstuffs and increasing their

vulnerability to hunger and malnutrition in the process accordingly (Mutengwa et al., 2023).

Given that agriculture contributes much to the GDP in most Southern African countries, such
declines in productivity also weaken the economy because they reduce export volumes, shrink
incomes for farming households, and increase food import needs, therefore straining national
budgets (Jayne et al., 2021). Adaptation measures required on the ground with immediate effect,
henceforth, to prevail over these challenges, involve drought-resistant types, better irrigation, and
ways of soil conservation to enhance crops' resilience against temperature fluctuation so as to

ensure a future that is sustainable for agriculture in Southern Africa.

The obtained results are consistent with those found in the study of Mbingui (2022), which sought
to analyze the impact of climate change on agricultural production in the Republic of Congo using
the ARDL methodology. In this study, agricultural yield was modeled as the dependent variable,
while the independent variables were GDP, temperature, and rainfall. The results from the study
indicate that, in the short run, there is a negative and statistically significant effect of temperature
and gross domestic product on agricultural yield and a positive and statistically significant
relationship between rainfall and agricultural yield. Thus, ceteris paribus, a 1°C increase in
temperature, GDP, and rainfall all lead to a significant reduction of 4.70 and 0.30 (at 1% level of
significance), respectively, and to a substantial rise of 0.02 at the 1% level of significance in

agricultural yields.

5.6.3. Short run panel ARDL empirical results

Table 5.8: Short run results of panel ARDL

Short Run: Dependent Variable: D(AGRP)
Variables Coefficient Std. Error t-statistic Prob
CointEq(-1) | -0.2602 0.1321 -1.9700 0.0505%*
D(AGRP(-1)) | -0.2707 0.1076 -2.5161 0.0128**
D(AGRP(-2)) | -0.2002 0.0719 -2.7821 0.0060***
D(LAB(-1)) |-0.8518 0.3194 -2.6668 0.0084***
D(TFC(-2)) |0.2797 0.1450 1.9283 0.0556*
C 144.6408 69.9305 2.0684 0.0402**
NB: (**%*), (**) and (*) indicate rejection of the null hypothesis of no co-integration at 1%,

5% and 10% significance level.

Source: Author s computation using EViews
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Some of the variables that were in the long-run model, inclusive of livestock, rainfall, and
temperature, are not significant in the short-run and therefore have been eliminated from the above
table. The error correction term, CointEq(-1) falls within the benchmark range since it is negative
and between -1 and 0. This suggests that about 26percent of any disequilibrium in the previous
period is corrected in the current period. This adjustment speed is statistically significant at 10%

level, indicating a slow meaningful pace toward re-establishing equilibrium after short-run shocks.

The short-run current production is driven by the agricultural production of the previous periods.
With the coefficients of D(AGRP(-1)) and D(AGRP(-2)) being -0.27 and -0.20, respectively, it is
evident that increases in production of the previous 2 years reduces current output. This pattern is
highly significant at 5% and 1%, respectively, suggesting that agricultural production may
experience natural cycles or adjustments over time. The lagged labor input, LAB, also enters
negatively and significantly at the 1% level of significance, suggesting that the input of labor in
the previous periods may lower the current period's production, probably due to diminishing
marginal returns or adjustment in the use of labor. The coefficient of the second lag TFC is positive
and statistically significant at 10% level of significance; this means that the shock of fertilizer
consumption is gradual because its impact is apparently present after 2 years. The constant term is
significant and explains the minimum level of output in agriculture when all variables are held

constant.

5.7. Hausman Test

The null hypothesis of the Hausman test is that Random Effect Model (REM) is the appropriate
estimator meaning that the error terms are not correlated with regressors, however, the alternative
hypothesis states that Fixed Effect Model (FEM) is the appropriate estimator. If the null hypothesis
is rejected, it can be concluded that the REM is not the appropriate estimator because random

effects are probably correlated with the dependent variable.

Table 5.7 displays the regression results of random and fixed effect panel analyses for the four
versions of the model outlined in equation 4.1 in the research methodology chapter. The initial
version of the model includes precipitation and temperature as climate variables. In the second
version, the study includes rainfall, its quadratic term, and temperature as climate variables. The
third version replaces the quadratic term of rainfall with the quadratic term of temperature. The

final version considers temperature, rainfall, and their quadratic terms. The Hausman test indeed
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surprisingly suggests REM for the first version, as a result of its simpler specification, with only

precipitation and temperature, which may not be sufficient to capture the individual-specific

effects across countries. Therefore, the random effects model appears to be appropriate, as it

assumes that the individual effects are uncorrelated with the regressors. However, in the second,

third, and fourth specifications of the model, where squared climatic terms are added to account

for nonlinearities, the Hausman test prefers the FEM. These quadratic climate variables are likely

to add to the correlation of individual effects and the regressors, thereby indicating that the

estimation method should be FEM, to capture unobserved heterogeneity and time-invariant factors

impacting the nexus between climate and agricultural production across selected countries.

Table 5.9: Hausman test results

Models Model 1 Model 2 Model 3 Model 4
Variables Coeff Prob Coeff Prob Coeff Prob Coeff Prob
LIV 0.350 0.0000%** | 0.348 0.0000%** | 0.349 0.0000%** | 0.349 0.0000%**
LAB 0.205 0.0000%** | 0.208 0.0000*** | 0.206 0.0000%** | 0.206 0.0000%**
TFC 0.686 0.0000*** | 0.700 0.0000*** | 0.699 0.0000*** | 0.699 0.0000%**
RAIN -0.114 0.0003*** | -0.118 0.4613 -0.118 | 0.0036*** | -0.115 0.4748
TEMP -3.276 0.0009*** | -3.930 0.0049*** | -8.500 | 0.2846 -8.489 0.2871
RAIN? - - -2.92e-06 | 0.9954 - - -1.04¢- 0.9837

05
TEMP? - - - - 0.071 0.5609 0.071 0.5613
C 141.129 | 0.0000*** | 162.1334 | 0.0009*** | 233.632 | 0.0702* 233.107 | 0.0769*
Obs 320 - 320 - 320 - 320 -
R-squared | 0.499 - 0.683 - 0.683 - 0.683 -
F-stat 62.618 | 0.0000%** | 50.769 0.0000%** | 50.851 | 0.0000*** | 47.065 0.0000%**
Chi- 3.754 0.5853 156.082 | 0.0000*** | 114.423 | 0.0000*** | 103.85 0.0000%***
square

NB: (***) and (*) indicate rejection of the null hypothesis of no co-integration at 1% and 10% significance

level.

Source: Author s computation using EViews

Given that the model includes a quadratic component for each climate variable to describe the non-

linear relationship with agricultural productivity, the sign of a linear and quadratic term is always

contrary. The regression findings indicate that the rainfall coefficients are unexpectedly negative

in all four models and statistically significant in models 1 and 3 at the 1% level. Temperature has

the predicted negative sign in all four model versions, although it is only significant in models 1
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and 2. As predicted, the coefficients of the quadratic rainfall term are negative but insignificant in
models 2 and 4. The squared term of temperature bears the expected positive sign in models 3 and
4 but insignificant in the two models. The insignificance of the squared terms for both precipitation
and temperature suggests that the quadratic effects might not strongly influence agricultural
production in this dataset and that their impact is not robust enough to reach statistical significance.
Additionally, while rainfall’s linear coefficient is significant in some models, the negative sign
may indicate that excessive rainfall adversely impacts agricultural output, yet the nonlinear
(squared) effect is not strong enough to show a significant additional impact. These results are in
alignment with those obtained from a study by Belloumi (2014), which aimed at examining
investigating the impact of climate change on agricultural production in Eastern and Southern

Africa.

5.8. Diagnostic Tests

The diagnostic tests namely, normality and cross section dependence test are employed to verify
the variable evaluation of the outcomes obtained by the model. Diagnostic tests aid in identifying
errors within the estimated model's residuals, consequently preventing a biassed and inefficient
model. The normality test employs the Jarque-Bera test to determine whether the residuals have a
normal distribution, and the Cross Section Dependence test to determine whether the residual

variance is constant (Oganesyan, 2017).

5.8.1. Normality Test

Figure 5.1. Normality Test

50
Series: Standardized Residuals
Sample 1981 2020
40 Observations 320
30 Mean 1.23e-14
Median 0.013697
Maximum 81.01000
20 Minimum -58.41085
Std. Dev. 22.49144
10 Skewness 0.324049
II I Kurtosis 3.374771
60 _40 20 0 20 40 60 20 Jargque-Bera 7.473108
Probability 0.023836

Source: EViews Computation
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The histogram of the normality test suggests that there is no normal distribution among the
residuals. The Jarque-Bera statistic of 7.47 and 0.02 p-values mean that the residuals are not
normally distributed at a statistically significant value as the p-value is below the benchmark
acceptance of 5% level of significance. These findings suggest that the climate variables of
temperature, rainfall, and other agricultural production factors have nonlinear or asymmetric
effects on the residuals. According to Frain (2007), massive samples do not necessarily indicate a
"stable" distribution. Therefore, the null hypothesis of normally distributed residuals can be
rejected in large samples. This addresses the problem that some regressions are not stable across
time, despite the normality test being sensitive at large sample sizes (Kundu et al., 2011). This can
lead to the null hypothesis test for normality being rejected more often than expected (Chen &
Kuan, 2003).

5.8.2. Cross Section Independence Test

Table 5.10: Cross Section dependence results

Ho: No cross section dependence
Test Statistics Degrees of freedom | Probability
Breusch-Pagan LM 199.8589 0.4588
Pesaran Scaled LM 22.96561 28 0.9887
Pesaran CD 10.68899 0.4740

Source: Author s computation using EViews

The CSD test consists of three types of statistical tests: the Breusch-Pagan LM (Lagrange
Multiplier) Test, the Pesaran Scaled LM Test, and the Pesaran CD (Cross-Dependence) Test. Since
the p-value is above the 5% level of significance, the null hypothesis of no cross-sectional
dependence cannot be rejected for all three tests. The absence of cross-section dependence in this
study indicates the independence of agricultural productivity measures through different countries.
The agricultural outputs of every country are determined individually and separately by the
respective climate conditions and agricultural inputs. This independence is therefore helpful in
making the model structure simple and thus allows for examining specific impacts of climate
change on agriculture, without having to consider the correlated effects between the selected
countries. This finding increases the validity of the outcomes concerning the specific impact that

climate and agricultural inputs might have in each of these countries within the region.
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Model 2: Food Inflation

5.9. Descriptive statistics

Table 5.11: Individual Sample: Descriptive Statistics of Variables from 1981-2020

Observations | Mean Std. Dev. | Min Max
FCPI 320 69.747 585.139 -15.080 7375.300
CROP 320 80.553 31.881 19.070 178.330
FEX 320 19.807 27.730 0.000 96.023
ARMI 320 0.851 0.8881 0.000 4.153
FCON 320 25.991 24.055 0.000 99.877
RAIN 320 63.101 61.292 0.878 276.674
TEMP 320 32.158 4.190 20.449 39.819

Source: Author s computation using EViews

Descriptive statistics highlight the magnitude of variation in the variables. FCPI has the highest
coefficient of variation, indicating high variability in food prices, characterized by a standard
deviation of 585.1 and a wide range, from -15.1 to 7375.3, which suggests extreme variability.
RAIN with a mean of 63.1 and standard deviation of 61.3 shows extensive variation in rainfall,
further evidenced by its range of 0.9 to 276.7, indicating enormous fluctuations in the precipitation
levels. CROP with a mean of 80.6 and standard deviation of 31.9 has moderate variation in crop
yield, with arange of 19.1 to 178.3, indicating fluctuations, however, on a narrower scale compared
to rainfall. TEMP, with a mean of 32.2 and low standard deviation of 4.2, indicates stable
temperature conditions over the period, as corroborated by its narrow range of 20.4 to 39.8,
suggesting low variation. FEX and ARMI show high variation, with standard deviations of 27.7
and 0.9, respectively. FEX's range of 0 to 96.0 and ARMI's range of 0 to 4.2 further suggest
changing agricultural export values and raw material imports. While rainfall and food prices
exhibit the greatest variability, agricultural production and temperature experience more limited

variation across the period under consideration.
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5.10. Correlation Analysis

Table 5.12: Correlation Analysis Results

Variable | FCPI CROP | FEX ARMI | FCON | RAIN | TEMP
FCPI 1.0000 | 0.0749 |0.0019 |0.1325 |0.0937 |-0.0901 | 0.0185
CROP 0.0749 | 1.0000 |-0.0972 |0.2533 |-0.0649 | -0.4697 | -0.2190
FEX 0.0019 |-0.0972 | 1.0000 |0.3732 |0.0169 |0.5504 | 0.0720
ARMI 0.1325 |0.2533 |0.3732 | 1.0000 | 0.1558 |-0.0113 |-0.0902
FCON 0.0937 |-0.0649 | 0.0169 |0.1558 | 1.0000 |-0.1022 | 0.0284-
RAIN -0.0901 |-0.4697 | 0.5504 | -0.0113 |-0.1022 | 1.0000 | 0.0573
TEMP 0.0185 |-0.2190 | 0.0720 |-0.0902 | 0.0284 |-0.0573 | 1.0000

Source: Author’s computation using EViews

The results from the correlation analysis illustrate that food inflation, indicated by the Food
Consumer Price Index (FCPI), has weak linear relationships with the regressors. The crop
production index (CROP) shows a minor positive correlation of 0.0749 with food inflation
suggesting that increased crop yield does not necessarily result in reduced food prices, considering
post-harvest inefficiencies that outweigh the advantages of higher production. There is an
extremely weak positive relationship between food exports (FEX) and food inflation. ARMI
(agricultural raw material imports) and food inflation exhibit a weak positive correlation of 0.1325,

which suggests that more imports may increase food prices as they directly affect production costs.

Fertiliser consumption (FCON) exhibits a weak positive correlation of 0.0937 with food inflation,
potentially indicating the cost-push effect of input costs on food prices. Rainfall exhibits a negative
correlation of -0.0901 with food inflation, consistent with the theoretical expectation which asserts
that favorable rainfall enhances agricultural output and alleviates food price pressures.
Temperature exhibits a weak positive correlation of 0.0185, indicating a minor linear impact on
food inflation. These correlations are relatively low, suggesting that individual variables have
minimal direct impact, however, their cumulative effects may be more accurately captured through

advanced econometric models.
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5.11. Unit Root Test

Table 5.13 illustrates the unit-root test results when assessing the stationarity of model variables.

Before determining whether agricultural output and climate variables are cointegrated, the study

evaluated the order of integration for each series. Three different unit root tests were employed to

assess the integration order of the series: (i) Levin, Lin and Chu (LLC); (ii) Im-Pesaran-Shin (IPS)

and (ii1) Augmented Dickey-Fuller (ADF) test. The probabilities of the three-unit root tests are

significant for all the variables in question, thus indicating stationarity of the variables. Based on

the depicted unit root results, the null hypothesis which states that there is unit root among the

variables is rejected.

Table 5.13: Panel Unit-Root Test Results

Ho: all variables have unit root

(non-stationary)

Variables LLC IPS ADF Order of Acceptance
P-value P-value P-value Integration Region
P <0.05
FCPI Level: P =0.0000*%** | P=0.0000%** | P=0.0000%** 1(0) Reject Ho
Intercept
CROP I P =0.0000*%** | P=0.0000%** | P=0.0000%** I(1) Reject Ho
Difference:
Intercept
FEX Level: P =0.0000%** | P=0.0000*** | P=0.0000%*** 1(0) Reject Ho
Intercept
ARMI I* P =0.0000%** | P=0.0000*** | P=0.0000%*** I(1) Reject Ho
Difference:
Intercept
FCON Level: P =0.0000%** | P=0.0000*** | P=0.0000%*** 1(0) Reject Ho
Intercept
RAIN Level: P =0.0000%** | P=0.0000*** | P=0.0000%*** 1(0) Reject Ho
Intercept
TEMP Level: None | P=0.0000*** | P=0.0000*%** | P=0.0000%** 1(0) Reject Ho

NB: (***) Denotes significance at 1% level of significance

Source: Author’s computation using EViews

The study used the unit root test at the level and first difference forms, as illustrated, with an order

of integration that combines 1(0) and I(1). Due to the existence of mixed levels of integration

among the variables, the study proceeds to apply the Panel PMG/ARDL approach. However, prior
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running the ARDL model, panel cointegration is performed to check whether the model variables

are cointegrated in the long run.
5.12. Panel PMG/ARDL Results

5.12.1. Optimal Lag Selection

Generally, the lag length selected is based on values for which either Akaike Information Criterion
(AIC) or Schwarz Criterion (SC) are minimized, indicated by the asterisks in Table 5.14. From the
table, the best criterion that best fits the model is the Akaike Information Criterion with the lowest
figure of 51.82 in contrast to that of the Schwarz Criterion which is 53.78. It is therefore concluded
that the lag length selection is made based on the AIC value because the lower the AIC value, the
better the model. According to the results below as shown by the asterisk sign of AIC, the optimal
lag length is 3 and the best criterion to adopt for the model is AIC.

Table 5.14. Optimal Lag Length Results

Lag | LogL LR FPE AIC SC HQ

0 -7961.898 | NA 2.57e+18 62.257 62.353 62.296

1 -6729.808 | 2387.174 2.49¢+14 53.014 53.789* 53.326

2 -6610.450 | 224.727 1.44¢+14 52.464 53.918 53.049

3 -6479.207 | 239.929 7.58e+13* | 51.821%* 53.954 52.679*
Source: Author s computation using EViews

5.13. Panel Cointegration Test

After determining the order of integration of each variable, ARDL is estimated through

cointegration to examine the long-run relationship between the variables of interest.
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5.13.1. Pedroni test

Table 5.15. Pedroni Residual Co-integration Test Results

Ho: No cointegration

Panel cointegration statistics(within-dimension)

Statistic Probabilities
Panel v-statistic -4.287462 1.0000
Panel rho-statistic -1.300491 0.0967*
Panel PP-statistic -6.637621 0.0000%**
Panel ADF-Statistic -6.715991 0.0000%**

Group mean cointegration statistics (between-dimension)

Group rho-statistic 1.170329 0.8791
Group PP-statistic -7.504847 0.0000%**
Group ADF-statistic -5.505580 0.0000%**

NB: (***) and (*) indicate rejection of the null hypothesis of no co-integration at 1% and 10%

significance level.

Source: Author s computation using EViews

The null hypothesis of no cointegration was tested under both the within-dimension and between-
dimension of the Pedroni test. The panel cointegration results suggest mixed presence of

cointegration across the different test statistics and dimensions.

For the within-dimension statistics, only three statistics in the panel co-integration statistics are
found to be significant at both 1 and 10% level of significance, thus, strongly supporting the
rejection of the null hypothesis of no cointegration. In the between-dimension framework, the
Group rho-Statistic is not significant with a probability of 0.87, hence weak evidence against the
null hypothesis is suggested. On the contrary, the Group PP-Statistic and Group ADF-Statistic are
highly significant at the 1% level of significance, indicating strong evidence for variable
cointegration. The combined findings thus indicate that for five of the seven Pedroni statistics,
there is adequate evidence to reject the null hypothesis of no cointegration, implying the presence

of a long-run equilibrium relationship between these variables.
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5.12.2. Kao test
Table 5.16: Kao Cointegration Test Results

Ho: No cointegration

Prob.
0.0002*

t-Statistics
-3.542043

ADF

(***) indicates rejection of the null hypothesis of no co-integration at 1% significance level.

Source: Author’s computation using EViews

The Kao cointegration test yields an ADF t-statistic of -3.542043 with a p-value of 0.0002, which
is significant at the 1% level. This leads to the rejection of the null hypothesis of no cointegration,
providing strong evidence of a long-run equilibrium relationship among the variables. The result
suggests that the variables in the panel are cointegrated and move together over time, despite any

short-run deviations.

5.13.2 Long run panel ARDL empirical results

The panel Autoregressive Distributed Lag (ARDL) model is applied to investigate the long- and
short-run effects of various factors, including climate variables, on food inflation in Southern
Africa over the period 1981 to 2020. Due to unavailability of data at regional scale, the oil price
index variable has been omitted, while the fertilizer price index variable is replaced by fertilizer
consumption. The dependent variable in the model is food consumption price index (FCPI) and
the independent variables include crop production index (CROP), food exports (FEX), agricultural
raw material imports (ARMI), fertilizer consumption (FCON), rainfall (RAIN) and temperature
(TEMP).

Table 5.17: Long-run panel ARDL estimates

Long Run: Dependent Variable: D(AGRP)
Variable Coefficient Std. Error t-statistics Prob*
CROP 0.0209 0.0130 1.6012 0.1127
FEX 0.1272 0.0417 3.0532 0.0030%***
ARMI -3.6974 0.4193 -8.8180 0.0000%**
FCON 0.6121 0.0720 8.5062 0.0000%**
RAIN -0.0198 0.0151 -1.3085 0.1940
TEMP 0.3015 0.0673 4.4819 0.0000%**
NB: (***) Denotes significance at 1% level of significance

Source: Author s computation using EViews
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Crop Production (Index)

The coefficient for CROP has a positive value, contrary to the expected negative sign, and it is not
statistically significant. This positive value of the coefficient implies that increased crop
production does not lead to a decrease in food prices, as initially assumed. Instead, factors such as
poor distribution or concentration on exporting instead of being concerned about domestic supply

might be increasing the price of food, regardless of the improved production.
Food Exports (% of merchandise exports)

FEX has a positive coefficient, 0.12, which is statistically significant at the 1% level of significance
as expected, meaning that a 1% increase in food exports leads to a 0.12% increase in domestic
food consumption prices. These findings suggest that an increase in agricultural production by the
region for export may decrease the domestic supply of food, hence exerting upward pressure on
food prices. In the Southern African context, this observation represents a key trade-off, while
exports bring economic benefits, they can limit domestic food availability in the selected countries,
especially where surpluses in production are being used to supply exports rather than being sold
in local markets. This stresses the need for policies that ensure domestic food security while

expanding exports to be in place.

These findings are consistent with those obtained in the study by Qayyum and Sultana (2018),
which seeks to examine the factors influencing food price inflation in Pakistan from 1970 to 2017.
To evaluate food inflation, the study examined the following independent determinants: GDP, food
exports, food imports, taxes, and money supply. The estimation findings showed that there is a
positive and significant link between food prices and export imports. Keeping all other variables
fixed, a one-percent increase in export imports raises food prices by 10% and 20%. When food
exports grow, supply within the country falls, increasing demand for food in the country and, as a

result, food inflation rises.
Agricultural Raw Material Imports (% merchandise exports)

The results show a negative and significant coefficient value of -3.6974, meaning an increase in
the import of agricultural raw materials is associated with a 3.70% reduction in prices of food
consumption. This means that increased imported agricultural inputs most likely increase

agricultural productivity, which subsequently leads to lower production costs and hence reduced
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prices of foods. This outcome is in sharp contrast to the expected positive impact, where increased
import costs would translate into higher production costs and, consequently, higher food prices.
The findings instead suggest that access to these raw materials, whether imported or not, may
temper domestic supply constraints and improve yield quality, thus helping to reduce prices of
food. In Southern Africa, the supply of these raw materials at lower prices could help to stabilize
market prices, so improving the importation of agricultural produce may help to improve food

affordability.

These results are in line with those of the study by Erdogan et al. (2024), which analyzed the
relationship between climate change and food prices in Nigeria using different nonlinear and
quantile-based methods with data covering the period 2008 to 2020. The results obtained
empirically indicated that there is a negative and significant relationship between ARMI and food
inflation. The study recommended that, given the declining impact of agricultural raw material
imports, which are critical for the production of food and affect food prices in Nigeria, combined
with the increasing impact of food exportation on food prices, it would be more sensible to
encourage agricultural material imports while restricting food product exports. Reducing tariffs on
agricultural product imports could thus assist to lower food prices in Nigeria by increasing supply.
Furthermore, an increase in food export duties may stimulate the Nigerian food industry to produce

more food for the domestic market.
Fertilizer Consumption (kilograms per hectare of arable land (kg/ha))

FCON has a positive coefficient and is statistically significant at the 1% level of significance as
expected due to the hypothesized positive relationship. The result shows that for every 1 kg/ha
increase in fertilizer application, food consumption prices would go up by 0.61%. This indicates
that while increased use of fertilizers promotes agricultural production, the associated cost pulls
up the food price level. This result flags an important concern for Southern Africa, where the high
fertilizer prices are mostly borne by import costs. The effect on food prices shows that bringing in
subsidies or seeking for alternative inputs that could decrease reliance on expensive fertilizers may

lower their ability to drive up food prices.

The findings obtained are in close agreement with the findings of a study by Zhang et al. (2014),
which initiated an inquiry into the relationship between food pricing and inflationary trends in

China. The empirical results suggested that the relationship between consumer price inflation and
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food prices has not weakened; besides, food price inflation, specifically in cereals due to increased
fertilizer costs, remains a key driver of overall consumer price inflation. In addition, international

food prices also play an essential role in driving the inflation process in China.
Rainfall (mm per year)

The majority of the sample countries rely on agriculture that depends on rainfall to meet their food
and cash crop production needs. Thus, variations in the quantity and frequency of precipitation
throughout the season, combined with an increase in weather changes, reduce agricultural quantity,
particularly food commodities, resulting in high food prices and overall inflation. Precipitation in
millimeters yields a coefficient of -0.01 with the expected negative sign. This negative coefficient
implies that adequate rainfall reduces production costs by improving agricultural yield without the
adoption of costly irrigation practices. However, its insignificance at standard levels implies that
precipitation alone might not have a long-run significant effect on food prices unless accompanied
by other complementary support systems including water infrastructure and drought resilience

approaches.

These results corroborate with findings from Odongo et al. (2022), except that the coefficient of
rainfall in the aforementioned study was both negative and significant as expected. The study
concluded that, based on its findings, the importance of precipitation levels in lowering prices
highlighted a need to prioritize investment in policies that contribute to regular water supplies,
such as irrigation and food self-sufficiency programs. Some of these measures have been
implemented in some of the study's sample countries, however they continue to be far away from
achieving independence from agriculture, as was the case in Israel, where irrigation proved
effective. Even if this policy is advised, it may be necessary to assess the impact of irrigation on
food yield against national expenditures, and possibly to include the expertise of different countries
with successful irrigation projects. At the macro level, the study highlights the need for additional
research to build successful climate change policies and best practices in other nations that can be

adapted for Africa.
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Temperature (°C per year)

The positive coefficient of 0.30 implies that, holding other factors constant, a rise of 1°C leads to
an increase of approximately 30.15% food inflation, and this effect is statistically significant, as

indicated by the p-value of 0.00.

This means that temperature plays a role in influencing food inflation in the long run. A positive
relationship indicates that high temperatures may contribute to the rise in food prices through
various mechanisms, such as reduced agricultural production and increased energy costs related to
food production. Temperature has become the prima facia agent as a basic input to determine crop
yields; hence, rising temperatures can potentially hurt the growth process of many staple crops
either by causing heat stress or by lessening the water supply through altered precipitation patterns.
This decline in the production of agriculture may lead to reduced supply of food, hence rising food
prices. For example, main staple crops such as wheat, maize, and rice are quite sensitive to extreme
temperatures; therefore, even a slight rise in average temperatures may cause a reduction in yields,

which finally rises food prices.

5.13.3. Short run panel ARDL empirical results

Table 5.18: Short run results of panel ARDL

Short Run: Dependent Variable: D(AGRP)
Variables Coefficient Std. Error t-statistic Prob
CointEq(-1) | -0.453458 0.215064 -2.108484 0.0378**
D(FCPI(-3)) | 0.302569 0.177608 1.703576 0.0919*
D(CROP(-1)) | -0.482499 0.269738 -1.788771 0.0770%*
D(TEMP(-2)) | -8.054747 4.129310 -1.950628 0.0542%*
NB: (**) and (*) Denote significance at 5% and 10% level of significance

Source: Author s computation using EViews

The ECT coefficient of -0.453 implies a fair speed of adjustment back towards the long-run
equilibrium after some short-run shock. Its value is statistically significant at 5%, meaning that
roughly 45% of every deviation from equilibrium is being corrected each year. Short-run panel
ARDL results show that with a 3-year increase in food inflation, the current food inflation increases

by 0.30%. A lagged crop production increase is associated with falling food prices, reflecting the
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downward price impact of the output increase in the previous year. Lagged temperature increases

tend to negatively affect food prices; this may indicate that in the year following hot conditions,

prices stabilize or go down.

5.14. Hausman test results

Table 5.19: Hausman test results — Random Effects Model

Ho: REM is appropriate
Variables Coeff Prob
CROP -0.202 0.8849
FEX -5.465 0.0331°%**
ARMI 131.546 0.0043%**
FCON 2.234 0.3154
RAIN 0.824 0.5120
TEMP 45.006 0.2151
C -1477.464 0.2994
Obs 320 -
R-squared 0.097033 -
F-stat 2.529445 0.0025%**
Chi-square 3.472834 0.6275
NB: (***) and (**) indicate rejection of the null hypothesis of no co-integration at 1%
and 5% significance level.

Source: Author s computation using EViews

The Hausman test results support the null hypothesis of the REM being appropriate in this data.
The signs of significance of FEX and ARMI at 5% and 1%, respectively, suggest that these
variables have statistically significant impacts under REM, but other variables are not statistically
significant in explaining the variation in the food price. With an R-squared of 0.097, the model

explains approximately 9.7% of the variance in food prices.

5.15. Diagnostic Tests

The diagnostic tests namely, normality and cross section dependence test are employed to verify

the variable evaluation of the outcomes obtained by the model.
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5.15.1. Normality Test

Figure 5.2. Normality Test

240
Series: Standardized Residuals
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160 Mean -1.31e-14
Median -40.89165
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Minimum -325.9672
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40 Kurtosis 145.0313
o ™ I — —— Jarque-Bera 276327.1
0 1000 2000 3000 4000 5000 6000 7000 Probability ~ 0.000000

Source: EViews Computation

Results from the normality test of the food inflation model show that residuals are not normally
distributed; the Jarque-Bera test statistic is high, at 276327.1, while its probability is 0.00, thus
leading to a rejection of the null hypothesis because the p-value obtained was below the acceptance
region of 0.05. The histogram confirms this non-normality, with residuals concentrated around the
lower end and few extreme positive outliers. Overall, these results imply that the model’s residuals
are not normally distributed, which may affect the reliability of standard inferential statistics in the
model. However, according to Frain (2007), large sample sizes are not necessarily normally
distributed, which in this case often results in an inability to fail to reject the null hypothesis of
normality. Meaning that, with great samples, the distribution does not stay constant, and over time,
regression results might not be the same. According to Kundu et al. (2011), tests of normality are
sensitive when samples are large, which may lead to the rejection of the null hypothesis more
frequently than it deserves. Chen and Kuan (2003) added that normality tests on large samples
may overestimate the deviation from normality and question the robustness of some statistical

models in such situations.
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5.15.2. Cross Section Dependence

Table 5.20: Cross Section Dependence results

Ho: No cross section dependence

Test Statistics Degrees of freedom | Probability
Breusch-Pagan LM 151.5026 0.0000%**
Pesaran Scaled LM 16.50373 28 0.0000%**
Pesaran CD 9.410627 0.0000***

NB: (***) Denotes significance at 1% level of significance

Source: Author s computation using EViews

The cross-section dependence test results for the food inflation model indicates significant
evidence of cross-sectional dependence across the countries in the panel data. All three tests, the
Breusch-Pagan LM, Pesaran Scaled LM and Pesaran CD have extremely low p-values, leading to
the rejection of the null hypothesis of no cross-sectional dependence at the 1% significance level.
These selected countries all have similar climate conditions, while agricultural production and the
price of food in each varies according to shared variables such as droughts and variable rain
conditions. Furthermore, the selected countries are economically interconnected as they exchange
agricultural commodities and food produce. Regional policies, including those determined by trade
agreements within the region and common socio-economic issues such as fluctuating currency,
inflationary pressures, and reliance on the same staple crops, further help in dismissing the null
hypothesis. Such dynamics explain the situation whereby food inflation in one country is highly

likely to have strong effects on another country in the region.

5.16. Chapter summary

This chapter sought to employ a series of tests to investigate the impact of climate change on
agricultural production and food inflation in Southern Africa over the period 1981 to 2020. The
chapter began by analyzing the agricultural production model, followed by a focus on the food
inflation model. Descriptive statistics and data trends for both models were then presented,
followed by the panel unit root tests: LLC by Levin, Lin and Chu, IPS by Im, Pesaran and Shin,
and Augmented Dickey Fuller tests to determine the stability of the variables. The Panel

cointegration test established the equation for long-run estimation. Empirical results within the
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Panel ARDL framework using the Pooled Mean Group estimator are then estimated. Diagnostic

test results were also provided with regard to residual issues that could affect model accuracy.

Results indicate that climate change, as measured by average rainfall and temperature,
significantly affects agricultural production and food inflation. While rainfall has a negative and
insignificant effect in model 2, temperature has a negative and significant effect on the agricultural
output model and a positive significant effect on food inflation as expected. In the agricultural
production model, temperature impact implies that, for Southern Africa, the rise in temperature

has a significant negative effect on agricultural productivity.
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CHAPTER 6: SUMMARY, RECOMMENDATIONS AND CONCLUSION

6.1. Introduction

This study investigated the relationship between climate change, agricultural production and food
inflation in Southern Africa using panel data from 1981 and 2020. This chapter therefore
commences with the summary of the study. This is followed by recommendations for both models
analyzed in the study. Furthermore, conclusion is based on the findings of the study and lastly

opportunities for further research are presented.

6.2. Summary of the findings

The results demonstrate how climate variables significantly affect agricultural productivity in
Southern Africa, according to the agricultural production model. Of particular concern are rising
temperatures, which cause a significant drop in agricultural productivity. This emphasizes the
pressing need for adaptation strategies, including better irrigation and drought-resistant crop
variations, to mitigate the negative consequences of rising temperatures, which increase pest
pressures, decrease soil moisture, and hasten evapotranspiration. Rainfall also has a negative
correlation with production, high levels of rainfall cause crop diseases, waterlogging, and soil
erosion, highlighting the need for climate-resilient farming methods and water management

systems.

The findings from the food inflation model indicate that climate variables have a substantial impact
on food inflation in Southern Africa. Particularly, increasing temperatures have a major impact on
food inflation as the findings point out the negative consequences of heat stress on crop yields,
resulting in lower agricultural productivity and higher production costs, all of which contribute to
a tighter food supply and higher prices. The negative coefficient of rainfall implies that adequate
rainfall can reduce food prices by enhancing crop growth and lowering dependency on costly
irrigation. However, the lack of significance implies that rainfall by itself is inadequate to stabilize
food prices in the absence of further investment in water supply systems and drought-resistant
measures. These findings, therefore, emphasize the crucial need for comprehensive climate
mitigation strategies to reduce the price increases on the region's food systems caused by higher

temperatures and irregular rainfall patterns.
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6.3. Policy Recommendations

6.3.1. Model 1: Agricultural Production Model

The agricultural sector faces a challenging task in adapting to changing weather conditions while
lowering greenhouse gas (GHG) emissions, conserving biodiversity, and maintaining food
security. According to Bezner et al. (2022), a wide range of initiatives have been established to
assist agriculture in adapting to climate change, however, greater emphasis may have to be placed
on implementation, monitoring, and evaluation. In order to address the challenges brought about
by worldwide climate change, agricultural sector must apply an extensive array of strategies. These
strategies can be divided into short-term (I), mid-term (II), and long-term strategies (II1) and (IV),

as illustrated below. Consequently, the study recommends the following:

(I) Targeted interventions to strengthen climate change adaptation

Agricultural support programs in Southern Africa should be more tailored to meet the requirements
of farmers in an equitable manner. Current policies frequently result in inadequate transfers of
revenue and fail to empower farmers to change their farming practices effectively. Support
strategies should therefore include various adaptation methods, such as increasing sustainable
productivity, increasing farm household incomes, and transitioning to non-agricultural livelihoods
when appropriate. For instance, Malawi’s Farm Input Subsidy Programme (FISP), which aims to
strengthen food security by subsidizing fertilizers and seeds, has experienced inefficiencies and
unforeseen consequences (Walls et al., 2023). The program's emphasis on maize production
limited the diversification of crops, whereas larger farmers disproportionately benefited from

asymmetrical access compared to smaller and more vulnerable farmers.

When farming becomes unsustainable, policies such as these must change to incorporate more
comprehensive tactics that enable farmers to switch to alternate livelihoods, diversify their sources
of income, or embrace climate-resilient techniques. The ability of farmers to adapt can be improved
by investments in research, extension services, entrepreneurship, human capital, and climate-
resilient technologies. Payments linked to ecosystem services, such as the preservation of
biodiversity and the management of invasive species, can have dual benefits, but their efficacy has
to be carefully evaluated to ensure effectiveness. Furthermore, planned adaptation projects that
lower risks and improve long-term resilience should be given priority when budgetary resources

are limited.
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(IT) Feasible solutions for sustainable fertilizer production

Environmental contamination and large GHG emissions are frequently linked with the
manufacture and use of traditional fertilizers. Sustainable fertilizer production systems, on the
other hand, efficiently lower carbon footprints through material selection and production process
optimization. The findings of the present study demonstrate a significant relationship between total
fertilizer consumption and agricultural production. However, the model conveys that extensive
dependence on fertilizers may reach a point of diminishing returns, indicating that a more balanced,
sustainable approach to fertilizer consumption is mandatory. A transition toward organic and bio-
based fertilizers can help improve soil fertility, mitigate long-term degradation of the environment,
and enhance agricultural yield or production. According to Avsar (2024), using bio-fertilizers and
organic fertilizers entails recycling organic matter and agricultural waste, increasing soil fertility,
decreasing greenhouse gas emissions and fossil fuel consumption, and improving resource
efficiency and material recyclability. Additionally, microbial fertilizers and sophisticated synthetic
biology processes greatly improve the efficiency of nutrient utilization, lower fertilizer runoff and

water contamination, and improve soil, all of which increase crop yields.

Furthermore, smart fertilization technologies and environmentally friendly chemical processes are
part of sustainable fertilizer production. Green chemical methods minimize the environmental
impact of chemical synthesis and manufacture by reducing dependency on fossil fuels for chemical
and fuel production (Ganesh et al., 2021). Through reliable fertilization and release control,
intelligent fertilization systems reduce excess fertilizer usage while optimizing fertilizer efficiency
and minimizing impact on the environment (Ahsan et al., 2024). By decreasing dependence on
chemical fertilizers and GHG emissions, these creative solutions not only boost the quantity and
quality of crops and strengthen the resilience of agricultural systems, however, they also promote
sustainability of agriculture and climate change adaptation. All things considered, sustainable
fertilizer production technologies are essential to maintaining security of food, safeguarding the

environment, and advancing agricultural sustainability.
(IIT) Smart agriculture water reuse and recycling

Alternative solutions of recycling and reusing water are important and comprehensive in reducing
the negative effects of climate change on agricultural output. These techniques efficiently lower

the agricultural water demand by streamlining water resource management, therefore mitigating
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climate change-related water scarcity challenges. For example, the adoption of technologies such
as trickle irrigation and rainwater-harvesting systems in farmland irrigation systems may
substantially improve water use efficiency, reduce waste, and guarantee that crops receive
sufficient water even during droughts (Freng et al., 2024). By turning household and commercial
wastewater into irrigation water, wastewater regeneration and treatment technologies can lessen
the need for freshwater resources and the pollution that wastewater discharge causes to the
environment. Furthermore, the study’s findings revealed that rainfall, although statistically
significant, adversely affects agricultural productivity, thus, indicating that excessive or irregular
rainfall, which is prevalent in Southern Africa, can result in diminished productivity due to soil
erosion, waterlogging, and increased susceptibility of crops to disease. This requires water
management strategies that not only respond to water scarcity but also mitigate the detrimental

impacts of excessive rainfall.

By recycling and reducing pollution, water reuse techniques improve the stability and health of
agricultural ecosystems in addition to preserving soil moisture, increasing soil fertility, and
supplying nutrients for crops to support growth (Leonel and Tonetti, 2021). In general, water reuse
and recycling programs are essential for combating climate change, protecting the environment,
and guaranteeing food security in addition to improving the sustainability and efficiency of
agricultural output. Thus, promoting and implementing these water resource management
technologies are practical ways to address the issues of climate change and achieve sustainable

agricultural development.
(IV) Establishing Sustainable Closed-Loop Systems

The development of sustainable closed-loop systems seeks to minimize waste production and
pollution in the environment while achieving effective resource recycling. Closed-loop systems
can minimize greenhouse gas emissions, lessen dependency on fossil fuels and chemical fertilizers,
and turn agricultural waste into useful resources by combining waste management, energy
production, and agricultural output. Although the study did not directly assess closed-loop systems,
it suggests that minimizing inefficiencies in agricultural production (AGRP) is essential for
achieving sustainable outcomes. By optimizing resource use and reducing waste, closed-loop
systems could significantly reduce production costs, increase efficiency, and enhance the long-

term resilience of agricultural systems, indirectly stabilizing food prices. Furthermore, irrigation
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water can be efficiently collected and recycled in closed-loop systems, giving crops sufficient
protection from weather fluctuations. Food safety is improved, and the environmental impact of
chemicals is decreased as plants are grown in controlled settings without the need for pesticides,

fertilizers, or herbicides (Sharma et al., 2024).

Worldwide research on closed-loop ecosystems shows that this comprehensive management
strategy improves agricultural production resilience and resource efficiency while simultaneously
offering crucial data and technology support for prospective space exploration (Nelson, 2021).
Conclusively, the development of sustainable closed-loop systems presents innovative strategies
to combat climate change and advance agricultural sustainability, with important ecological and

financial considerations.

6.3.2. Model 2: Food Inflation Model

According to the results obtained from this study, severe weather occurrences have an impact on
inflation through agricultural productivity. As demonstrated by increasing temperatures and
unpredictable weather patterns that have a direct impact on agricultural productivity and food
costs, climate change is a major contributor to food inflation in Southern Africa. Therefore, the

study recommends the following:
(I) Enhancing climate-resilient agricultural practices

Policymakers should urgently address these challenges by strengthening adaptive capacity to

climate hazards in alignment with Sustainable Development Goals (SDGs).

This necessitates prioritizing investments in climate-resilient agricultural technologies and
practices, including diversification of crops, enhanced systems for irrigation, and climate-smart
agriculture. Governments should also fund research and development to encourage innovations
such as hydroponic and vertical farming, which allow farmers to produce more effectively in
climate-vulnerable regions. The study determined that temperature increase significantly impacts
food prices, with prices increasing by about 30.15% with each 1°C increase, indicating the need
for adaptive measures to mitigate the heat stress on crops and stabilize food inflation. As
recommended by Seppelt et al. (2022), modifying cropping patterns and aligning planting seasons
with local climatic conditions might improve resource efficiency while lowering food production

losses, providing an uninterrupted supply of food and minimizing inflationary pressures.
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(IT) Addressing structural barriers in agricultural inputs and trade

To combat food inflation, the selected Southern African countries have to tackle the structural
factors that affect agricultural input availability and trade dynamics. According to the results of
this study, lowering tariffs on agricultural raw material imports (ARMI) is key to increasing access
to critical inputs such as fertilizers and seeds, which are essential for increasing productivity. The
findings of the study further reveal that availability of agricultural raw materials could reduce food
prices considerably, and therefore it is mandatory to improve supply chains for such inputs.
Simultaneously, limiting food exports by means of export levies and temporary limitations during
domestic shortages can help prioritize local markets and stabilize food prices. The positive export
coefficient shows that high food exports could trigger rising food prices in the local market, and
therefore policymakers need to regulate exports in periods of scarcity of food to prevent
inflationary surges. As further recommended in the study by Abraham (2018), improving regional
trade integration through SADC-supported initiatives will improve food security by encouraging

equitable trade and minimizing supply disruptions across member states.
(IIT) Promoting energy diversification for agricultural sustainability

Another crucial tactic for the region is energy diversification, since reliance on fossil fuels not only
contributes to climate change but also links food inflation to fluctuating oil prices worldwide. Food
inflation can be indirectly lowered by transitioning to renewable energy sources, such as solar,
wind, and hydroelectric power, which can minimize operating costs in transportation and
agriculture. Governments should, therefore, encourage the use of green technologies by providing
tax incentives and subsidies for renewable energy projects in the agricultural sector, as
suggested by McIntyre and Ashram (2017). In addition to promoting long-term environmental
sustainability, investments in extending Southern Africa's renewable energy infrastructure would

help decouple food inflation from fluctuations in the price of fossil fuels.
(IV) Adapting monetary policies to food price volatility

The study recommends that monetary policymakers consider the short- and long-term effects of
supply shocks caused by major weather events on food prices and the overall price level. Given
that central banks' primary responsibilities are price and production stability, even short-term

effects of extreme weather events could have catastrophic consequences for poor households in
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Southern Africa, as well as long-term ramifications for macroeconomic policy in general. Findings
of this study suggest that climate factors, specifically, rainfall and temperature, account for food
inflation. While rainfall had a forecasted negative coefficient, its statistical insignificance suggests
the contribution of rainfall is conditional based on additional factors such as water infrastructure.
Monetary policy should subsequently incorporate climate risk assessments into forecasting
inflation dynamics. The findings further suggest that food price volatility, which is driven by trade
and climate, presents a structural challenge to inflation targeting frameworks for central banks in

the region.

Therefore, in order to effectively forecast and reduce increases in food prices, inflation targeting
should be supplemented with increased monitoring of agricultural and trade conditions. For
instance, the study indicates that trade variables such as agricultural raw material imports (ARMI)
and food exports (FEX) directly influence food prices, emphasizing the need for central banks to
monitor these variables alongside traditional inflation indicators. In order to anchor inflation, a
study by Kunawotor et al. (2022), further recommends that a buffer of food items should
be regularly maintained to serve as a reprieve during weather-related disasters. It is important to
note that this study does not in any way imply that monetary policy should be the remedy to climate
change, but instead suggests that monetary policy authorities should take climate change into

account in their decision-making process.

6.4. Conclusion

The purpose of this study was to determine the influence of climate change on agricultural
production and food inflation in the selected Southern African countries. The study applied various
theoretical and empirical objectives outlined at the onset of this study. Theoretical objectives
included a provision of literature review on inflation theories, climate-related factors that give rise
to inflation and a conceptual approach that aims to narrate then impact of climate change on
agricultural production. On the other hand, empirical literature was cited as a source of information
from previous studies on how the findings varied with respect to how climate change impacts

agricultural output and food inflation.

The results showed that temperature and rainfall patterns, indicators of climatic change, had
massive impacts on agricultural productivity and the costs of food. It could therefore be contended

that the agricultural sector in Southern Africa is particularly at risk from climate change because
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of the unique geology and farming systems of this region. To mitigate these challenges, this study
recommends climate-resilient farming practices, input tariff reductions, enhancement of regional
trade integration, and support for renewable energies to answer these challenges, so that
productivity improves while food prices remain stable. Flexible monetary policies and increased
social protection measures will thus be very instrumental in safeguarding livelihoods and food
security for the people, fostering a strong agricultural economy against both structural and climatic

challenges.

6.5. Future Directions

This study adopted the production function approach since the available input data for Southern
African countries is aggregated and hence detailed analysis at commodity level is restricted. This,
however, can be improved upon in future research using more detailed datasets or devising
methods to disaggregate input data for major crops such as rice, maize, millet, and wheat. Besides,
the inconsistent time-series data on temperature and precipitation limited alternative models.
Future research could integrate satellite-derived climate data or embed regional climate models in
this framework to bring down the analysis to higher resolutions. The inclusion of other modelling
approaches, such as crop-climate interaction models, could further expand the scope and offer
more holistic insights into climate change and agricultural productivity. Having this limitation
overcome by data, future research would further polish the methodologies and bring out more

exact and tailor-made recommendations for policy and practice.
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APPENDIX

Model 1: Agricultural Production

Appendix 1: Descriptive Statistics

AGRP LIV LNAGRL LAB TFC AMAC
Mean 80.55353 75.85794 14.40618 36.92003 25.99124 10820.62
Median 82.04000 87.04000 14.83976 30.80857 20.25891 0.000000
Maximum 178.3300 183.6900 16.44105 85.06357 99.87735 175557.0
Minimum 19.07000 13.97000 12.11176 0.000000 0.000000 0.000000
Std. Dev. 31.88167 34.97479 1.259591 29.32446 24.05584 34588.60
Skewness 0.011120 -0.119093 -0.202321 0.095373 0.798552 3.633117
Kurtosis 2.322160 2.303285 1.872605 1481961 2.779997 15.18967
Jarque-Bera 6.132827 7.228597 19.13006 31.21103 34.65526 2685.148
Probability 0.046588 0.026936 0.000070 0.000000 0.000000 0.000000
Sum 25777.13 2427454 4609.979 11814.41 8317.197 3462598.
Sum Sqg. Dev. 3242447 390212.3 506.1153 274315.7 184600.1 3.82E+11
Observations 320 320 320 320 320 320
Appendix 2: Unit Root Test
AGRP: 1*' Difference
Panel unit root test: Summary
Series: D(AGRP)
Date: 10/30/24 Time: 08:42
Sample; 1981 2020
Exogenous variables: Individual effects
User-specified lags: 1
Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test

Cross-

Method Statistic  Prob.** sections Obs
Null: Unit root (assumes common unit root process)
Levin, Lin & Chu t* -10.0512 0.0000 8 296
Null: Unit root (assumes individual unit root process)
Im, Pesaran and Shin W-stat -15.8759  0.0000 8 296
ADF - Fisher Chi-square 199.940 0.0000 8 296
PP - Fisher Chi-square 244.029  0.0000 8 304

** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.

RAIN
63.10138
47.89917
276.6742
0.878333
61.29251
1.785385
5.784460

273.3815
0.000000

20192.44
1198410.

320

TEMP
32.15822
32.85000
39.81917
20.44917
4190739

-1.378189

4411737

127.8750
0.000000

10290.63
5602.373

320
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LIV: 1% Difference

Panel unit root test: Summary

Series: D(LIV)

Date: 10/30/24 Time: 08:51

Sample: 1981 2020

Exogenous variables: Individual effects

User-specified lags: 1

Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test

Cross-

Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process)

Levin, Lin & Chu t* -11.4862 0.0000 8 296
Null: Unit root (assumes individual unit root process)

Im, Pesaran and Shin W-stat -11.0965 0.0000 8 296
ADF - Fisher Chi-square 137.996 0.0000 8 296
PP - Fisher Chi-square 193.278 0.0000 8 304

** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.

LNAGRL: 1% Difference

Panel unit root test: Summary

Series: D(LNAGRL)

Date: 10/30/24 Time: 08:52

Sample: 1981 2020

Exogenous variables: Individual effects

User-specified lags: 1

Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test

Cross-

Method Statistic Prob.** __sections Obs
Null: Unit root (assumes common unit root process)

Levin, Lin & Chu t* -7.80772 0.0000 8 296
Null: Unit root (assumes individual unit root process)

Im, Pesaran and Shin W-stat -9.08513 0.0000 8 296
ADF - Fisher Chi-square 109.675 0.0000 8 296
PP - Fisher Chi-square 205.987 0.0000 8 304

** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.

LAB: 1% Difference

Panel unit root test: Summary

Series: D(LAB)

Date: 10/30/24 Time: 08:54

Sample: 1981 2020

Exogenous variables: Individual effects

User-specified lags: 1

Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test

Cross-

Method Statistic Prob.** _sections Obs
Null: Unit root (assumes common unit root process)

Levin, Lin & Chu t* -10.4143 0.0000 8 296
Null: Unit root (assumes individual unit root process)

Im, Pesaran and Shin W-stat -8.33837 0.0000 8 296
ADF - Fisher Chi-square 97.1372 0.0000 8 296
PP - Fisher Chi-square 181.752 0.0000 8 304

** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.
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TFC: 1% Difference

Panel unit root test: Summary

Series: D(TFC)

Date: 10/30/24 Time: 08:54

Sample: 1981 2020

Exogenous variables: Individual effects

User-specified lags: 1

Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test

Cross-

Method Statistic Prob.** _sections Obs
Null: Unit root (assumes common unit root process)

Levin, Lin & Chu t* -6.45917 0.0000 8 296
Null: Unit root (assumes individual unit root process)

Im, Pesaran and Shin W-stat -12.1624 0.0000 8 296
ADF - Fisher Chi-square 152.745 0.0000 8 296
PP - Fisher Chi-square 214.803 0.0000 8 304

** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.

AMAC: 1% Difference

Panel unit root test: Summary

Series: D(AMAC)

Date: 10/30/24 Time: 08:55

Sample: 1981 2020

Exogenous variables: Individual effects

User-specified lags: 1

Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test

Cross-

Method Statistic Prob.** _sections Obs
Null: Unit root (assumes common unit root process)

Levin, Lin & Chu t* -8.65260 0.0000 5 185
Null: Unit root (assumes individual unit root process)

Im, Pesaran and Shin W-stat -7.06068 0.0000 5 185
ADF - Fisher Chi-square 65.9217 0.0000 5 185
PP - Fisher Chi-square 126.000 0.0000 5 190

** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.
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RAIN: Level

Panel unit root test: Summary

Series: RAIN

Date: 10/30/24 Time: 08:56

Sample: 1981 2020

Exogenous variables: Individual effects

User-specified lags: 1

Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test

Cross-

Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process)

Levin, Lin & Chu t* -4.70422  0.0000 8 304
Null: Unit root (assumes individual unit root process)

Im, Pesaran and Shin W-stat -8.18039  0.0000 8 304
ADF - Fisher Chi-square 102.889 0.0000 8 304
PP - Fisher Chi-square 158.078 0.0000 8 312

** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.

TEMP: Level

Panel unit root test: Summary

Series: TEMP

Date: 10/30/24 Time: 09:01

Sample: 1981 2020

Exogenous variables: Individual effects

User-specified lags: 1

Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test

Cross-

Method Statistic  Prob.** _sections Obs
Null: Unit root (assumes common unit root process)

Levin, Lin & Chu t* -8.85009  0.0000 8 304
Null: Unit root (assumes individual unit root process)

Im, Pesaran and Shin W-stat -9.85671  0.0000 8 304
ADF - Fisher Chi-square 120.569  0.0000 8 304
PP - Fisher Chi-square 188.975  0.0000 8 312

** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.
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Appendix 3: Panel Cointegration

Pedroni Residual Cointegration Test
Series: AGRP LIV LAB TFC RAIN TEMP
Date: 10/30/24 Time: 10:27

Sample: 1981 2020
Included observations: 320
Cross-sections included: 8

Null Hypothesis: No cointegration
Trend assumption: Deterministic intercept and trend

Automatic lag length selection based on SIC with a max lag of 8
Newey-West automatic bandwidth selection and Bartlett kernel

Alternative hypothesis: common AR coefs. (within-dimension)

Weighted
Statistic Prob. Statistic Prob.
Panel v-Statistic 1.780535 0.0375 2.041157 0.0206
Panel rho-Statistic -2.516770 0.0059 -1.844263 0.0326
Panel PP-Statistic -6.862833 0.0000 -6.688734 0.0000
Panel ADF-Statistic -7.031124 0.0000 -6.852969 0.0000

Alternative hypothesis: individual AR coefs. (between-dimension)

Statistic Prob.
Group rho-Statistic -0.990628 0.1609
Group PP-Statistic -8.069380 0.0000
Group ADF-Statistic -7.049184 0.0000
Cross section specific results
Phillips-Peron results (non-parametric)
Cross ID AR(1)  Variance HAC Bandwidth Obs
Zimbabwe 0.103 160.1336 159.1767 1.00 39
Mozambigue 0.454 55.68151 59.17648 2.00 39
Malawi 0.091 21.03540 18.67217 3.00 39
South Africa -0.193 34.41887 32.34102 3.00 39
Lesotho -0.092 278.8772 232.3517 5.00 39
Botswana 0.189 156.7008 156.7008 0.00 39
Namibia 0.094 16.42088 16.12177 3.00 39
Zambia 0.235 31.70737 2.834864 38.00 39
Augmented Dickey-Fuller results (parametric)
Cross ID AR(1)  Variance Lag Max lag Obs
Zimbabwe 0.103 160.1336 0 8 39
Mozambigue 0.454 55.68151 0 8 39
Malawi 0.091 21.03540 0 8 39
South Africa -0.193  34.41887 0 8 39
Lesotho -0.092 278.8772 0 8 39
Botswana 0.189 156.7008 0 8 39
Namibia 0.094 16.42088 0 8 39
Zambia 0.235 31.70737 0 8 39
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Appendix 4: Optimal lag length

VAR Lag Order Selection Criteria

Endogenous variables: AGRP LIV LAB TFC RAIN TEMP
Exogenous variables: C

Date: 12/02/24 Time: 06:45

Sample: 1981 2020

Included observations: 256

Lag LogL LR FPE AIC SC HQ

0 -6809.479 NA 5.36e+15 53.24593 53.32902 53.27935
1 -5425.115 2693.022 1.43e+11 4271183 43.29346* 42.94576
2 -5329.135 182.2107 8.94e+10 42.24324 43.32342 42.67768
3 -5239.089 166.7267 5.87e+10* 41.82101* 43.39972 42.45596*
4 -5210.524 51.54988 6.23e+10 41.87910 43.95635 42.71456
5 -5187.729 40.07059 6.93e+10 41.98225 4455805 43.01823
6 -5165.069 38.76863 7.73e+10 42.08648 45.16081 43.32296
7 -5144.197 34.73296 8.77e+10 42.20466 45.77754 43.64166
8 -5107.925 58.65775* 8.83e+10 42.20254 46.27396 43.84005

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)
FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarzinformation criterion

HQ: Hannan-Quinn information criterion
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Appendix 5: PMG/Panel ARDL

Dependent Variable: D(AGRP)
Method: ARDL

Date: 12/02/24 Time: 05:45
Sample: 1984 2020

Included observations: 296
Dependentlags: 3 (Fixed)

Dynamic regressors (3 lags, fixed): LIVLAB TFC RAIN TEMP

Fixed regressors: C

Variable Coefficient Std. Error t-Statistic Prob.*
Long Run Equation
LIV 0.339199 0.086921 3.902397 0.0001
LAB 0.234819 0.066067 3.554273 0.0005
TFC 1.365937 0.139044 9.823762 0.0000
RAIN -1.111003 0.274359 -4.049444 0.0001
TEMP -16.63122 3.763963 -4.418541 0.0000
Short Run Equation
COINTEQO1 -0.260199 0.132078 -1.970034 0.0505
D(AGRP(-1)) -0.270735 0.107602 -2.516075 0.0128
D(AGRP(-2)) -0.200158 0.071946 -2.782056 0.0060
D(LIV) -0.144108 0.225894 -0.637945 0.5244
D(LIV(-1)) -0.156617 0.214831 -0.729023 0.4670
D(LIV(-2)) 0.009541 0.166479 0.057310 0.9544
D(LAB) -0.224834 0.162205 -1.386109 0.1676
D(LAB(-1)) -0.851849 0.319426 -2.666814 0.0084
D(LAB(-2)) 0.059659 0.245419 0.243089 0.8082
D(TFC) -0.073550 0.129995 -0.565793 0.5723
D(TFC(-1)) 0.029784 0.158228 0.188238 0.8509
D(TFC(-2)) 0.279678 0.145041 1.928263 0.0556
D(RAIN) 0.544487 0.510425 1.066733 0.2877
D(RAIN(-1)) 0.618320 0.505360 1.223525 0.2229
D(RAIN(-2)) -0.519872 0.651990 -0.797363 0.4264
D(TEMP) -0.627595 1.236193 -0.507684 0.6124
D(TEMP(-1)) -0.187486 0.963928 -0.194502 0.8460
D(TEMP(-2)) 0.322429 0.539589 0.597546 0.5510
C 144.6408 69.93051 2.068351 0.0402
Root MSE 7.118829 Mean dependentvar 2.068007
S.D. dependent var 14.88309 S.E.ofregression 9.974468
Akaike info criterion 6.770562 Sum squared resid 16216.87
Schwarz criterion 8.619395 Log likelihood -926.2900
Hannan-Quinn criter. 7.508836

*Note: p-values and any subsequent tests do not account for model

selection.
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Appendix 6: Hausman Test of the Four versions of the Model

(I) Model 1: RAIN and TEMP

Correlated Random Effects - Hausman Test
Equation: Untitled
Test cross-section random effects

Test Summary Chi-Sq. Statistic  Chi-Sq. d.f. Prob.
Cross-section random 3.754370 5 0.5853
Cross-section random effects test comparisons:
Variable Fixed Random Var(Diff.) Prob.
LIV 0.348593 0.350120 0.000038 0.8032
LAB 0.208152 0.205734 0.000064 0.7624
TFC 0.700773 0.686881 0.000229 0.3582
RAIN -0.119758 -0.114620 0.000164 0.6885
TEMP -3.934629 -3.276017 0.424648 0.3122
Cross-section random effects test equation:
Dependent Variable: AGRP
Method: Panel Least Squares
Date: 12/02/24 Time: 05:57
Sample: 1981 2020
Periods included: 40
Cross-sections included: 8
Total panel (balanced) observations: 320
Variable Coefficient Std. Error t-Statistic Prob.
C 162.2986 38.93338 4.168624 0.0000
LIV 0.348593 0.043510 8.011806 0.0000
LAB 0.208152 0.048421 4.298794 0.0000
TFC 0.700773 0.073527 9.530857 0.0000
RAIN -0.119758 0.040428 -2.962256 0.0033
TEMP -3.934629 1.174523 -3.349980 0.0009
Effects Specification
Cross-section fixed (dummy variables)
R-squared 0.683231 Mean dependent var 80.55353
Adjusted R-squared 0.670849 S.D.dependentvar 31.88167
S.E. of regression 18.29104 Akaike info criterion 8.690476
Sum squared resid 102710.6 Schwarz criterion 8.843564
Log likelihood -1377.476 Hannan-Quinn criter. 8.751607
F-statistic 55.18013 Durbin-Watson stat 0.749157

Prob(F-statistic) 0.000000
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(IT) Model 2: RAIN, SQRAIN and TEMP

Correlated Random Effects - Hausman Test
Equation: Untitled
Test cross-section random effects

Test Summary Chi-Sq. Statistic  Chi-Sq. d.f. Prob.
Cross-section random 156.082699 6 0.0000
Cross-section random effects test comparisons:
Variable Fixed Random Var(Diff.) Prob.
LIV 0.348554 0.312482 0.000702 0.1733
LAB 0.208159 0.284704 0.000944 0.0127
TFC 0.700732 0.407369 0.003318 0.0000
RAIN -0.118864 -0.218844 0.022373 0.5039
SQRAIN -0.000003 0.000208 0.000000 0.6417
TEMP -3.930427 -1.915848 1.849544 0.1385
Cross-section random effects test equation:
Dependent Variable: AGRP
Method: Panel Least Squares
Date: 12/02/24 Time: 06:05
Sample: 1981 2020
Periods included: 40
Cross-sections included: 8
Total panel (balanced) observations: 320
Variable Coefficient Std. Error t-Statistic Prob.
C 162.1334 48.49598 3.343235 0.0009
LIV 0.348554 0.044100 7.903687 0.0000
LAB 0.208159 0.048517 4.290422 0.0000
TFC 0.700732 0.074000 9.469350 0.0000
RAIN -0.118864 0.161138 -0.737657 0.4613
SQRAIN -2.92E-06 0.000510 -0.005730 0.9954
TEMP -3.930427 1.386298 -2.835197 0.0049
Effects Specification
Cross-section fixed (dummy variables)
R-squared 0.683231 Mean dependentvar 80.55353
Adjusted R-squared 0.669774 S.D.dependentvar 31.88167
S.E. of regression 18.32090 Akaike info criterion 8.696726
Sum squared resid 102710.6 Schwarz criterion 8.861590
Log likelihood -1377.476 Hannan-Quinn criter. 8.762560
F-statistic 50.76959 Durbin-Watson stat 0.749204

Prob(F-statistic) 0.000000
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(III) Model 3: RAIN, TEMP, SQTEMP

Correlated Random Effects - Hausman Test
Equation: Untitled
Test cross-section random effects

Test Summary Chi-Sq. Statistic  Chi-Sq. d.f. Prob.
Cross-section random 114.423067 6 0.0000
** WARNING: estimated cross-section random effects variance is zero.
Cross-section random effects test comparisons:
Variable Fixed Random Var(Diff.) Prob.
LIV 0.349687 0.299405 0.000696 0.0567
LAB 0.206628 0.283816 0.001014 0.0154
TFC 0.699160 0.581044 0.002941 0.0294
RAIN -0.118703 -0.151363 0.001221 0.3499
SQTEMP 0.071725 0.423720 0.012217 0.0014
TEMP -8.500043 -26.693703 52.654628 0.0122
Cross-section random effects test equation:
Dependent Variable: AGRP
Method: Panel Least Squares
Date: 12/02/24 Time: 06:14
Sample: 1981 2020
Periods included: 40
Cross-sections included: 8
Total panel (balanced) observations: 320
Variable Coefficient Std. Error t-Statistic Prob.
C 233.6326 128.5873 1.816918 0.0702
LIV 0.349687 0.043597 8.020830 0.0000
LAB 0.206628 0.048544 4.256526 0.0000
TFC 0.699160 0.073658 9.491960 0.0000
RAIN -0.118703 0.040512 -2.930063 0.0036
SQTEMP 0.071725 0.123210 0.582136 0.5609
TEMP -8.500043 7.930167 -1.071862 0.2846
Effects Specification
Cross-section fixed (dummy variables)
R-squared 0.683582 Mean dependent var 80.55353
Adjusted R-squared 0.670139 S.D.dependentvar 31.88167
S.E. of regression 18.31077 Akaike info criterion 8.695620
Sum squared resid 102596.9 Schwarz criterion 8.860484
Log likelihood -1377.299 Hannan-Quinn criter. 8.761453
F-statistic 50.85188 Durbin-Watson stat 0.753739
Prob(F-statistic) 0.000000
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(IV) Model 4: RAIN, SQRAIN, TEMP, SQTEMP

Correlated Random Effects - Hausman Test
Equation: Untitled
Test cross-section random effects

Test Summary Chi-Sq. Statistic  Chi-Sq. d.f. Prob.
Cross-section random 103.853222 7 0.0000
Cross-section random effects test comparisons:
Variable Fixed Random Var(Diff.) Prob.
LIV 0.349550 0.301722 0.000743 0.0793
LAB 0.206653 0.294632 0.001008 0.0056
TFC 0.699012 0.570687 0.002994 0.0190
RAIN -0.115517 -0.331983 0.022588 0.1498
SQRAIN -0.000010 0.000767 0.000000 0.0873
SQTEMP 0.071789 0.472677 0.012043 0.0003
TEMP -8.489110 -29.696327 52.273236 0.0034
Cross-section random effects test equation:
Dependent Variable: AGRP
Method: Panel Least Squares
Date: 12/02/24 Time: 06:13
Sample: 1981 2020
Periods included: 40
Cross-sections included: 8
Total panel (balanced) observations: 320
Variable Coefficient Std. Error t-Statistic Prob.
C 233.1071 131.3511 1.774688 0.0769
LIV 0.349550 0.044181 7.911742 0.0000
LAB 0.206653 0.048639 4248732 0.0000
TFC 0.699012 0.074139 9.428372 0.0000
RAIN -0.115517 0.161415 -0.715656 0.4748
SQRAIN -1.04E-05 0.000511 -0.020390 0.9837
SQTEMP 0.071789 0.123451 0.581514 0.5613
TEMP -8.489110 7.961227 -1.066307 0.2871
Effects Specification
Cross-section fixed (dummy variables)
R-squared 0.683582 Mean dependentvar 80.55353
Adjusted R-squared 0.669058 S.D.dependentvar 31.88167
S.E. of regression 18.34075 Akaike info criterion 8.701868
Sum squared resid 102596.8 Schwarz criterion 8.878508
Log likelihood -1377.299 Hannan-Quinn criter. 8.772404
F-statistic 47.06538 Durbin-Watson stat 0.753911

Prob(F-statistic) 0.000000
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Appendix 7: Diagnostic Tests
(I) Normality Test
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(IT) Cross Section Dependence Test

Residual Cross-Section Dependence Test

Null hypothesis: No cross-section dependence (correlation) in
weighted residuals

Equation: Untitled

Periods included: 40

Cross-sections included: 8

Total panel observations: 320

Note: non-zero cross-section means detected in data

Cross-section means were removed during computation of

-60 -50 -40 -30 -20 -10 O 10 20 30 40 50 60 70 80

correlations
Test Statistic d.f. Prob.
Breusch-Pagan LM 28.10603 28 0.4588
Pesaran scaled LM 0.014169 0.9887
Pesaran CD 0.715967 0.4740

Series: Standardized Residuals
Sample 1981 2020
Observations 320

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis

Jarque-Bera
Probability

2.45e-14
-2.840938
75.39412
-55.43050
24.49417
0.487771
2.983650

12.69268
0.001753
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Model 2: Food Inflation

Appendix 1: Descriptive Statistics

FCPI CROP FEX ARMI FCON

Mean 69.74708 80.55353 19.80734 0.851625 25.99124
Median 10.78271 82.04000 8.665654 0.684363 20.25891
Maximum 7375.300 178.3300 96.02369 4.153999 99.87735
Minimum -15.08000 19.07000 0.000000 0.000000 0.000000
Std. Dev. 585.1390 31.88167 27.73022 0.881837 24.05584
Skewness 12.23730 0.011120 1.612010 1.031663 0.798552
Kurtosis 152.8441 2.322160 4.348777 3.497080 2.779997
Jarque-Bera 307363.3 6.132827 162.8467 60.05871 34.65526
Probability 0.000000 0.046588 0.000000 0.000000 0.000000
Sum 22319.07 25777.13 6338.350 272.5200 8317.197
Sum Sa. Dev. 1.09E+08 3242447 245299.8 248.0659 184600.1
Observations 320 320 320 320 320

Appendix 2: Unit Root Test

FCPI: Level

Panel unit root test;: Summary

Series: FCPI

Date: 10/30/24 Time: 19:28

Sample: 1981 2020

Exogenous variables: Individual effects

User-specified lags: 1

Newey-West automatic bandwidth selection and Bartlett kernel

Balanced observations for each test

Cross-

Method Statistic  Prob.** sections Obs

Null: Unit root (assumes common unit root process)

Levin, Lin & Chu t* -6.19515 0.0000 8 304

Null: Unit root (assumes individual unit root process)

Im, Pesaran and Shin W-stat -6.12046  0.0000 8 304

ADF - Fisher Chi-square 70.5727  0.0000 8 304

PP - Fisher Chi-square 73.9673  0.0000 8 312

** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.

RAIN
63.10138
47.89917
276.6742
0.878333
61.29251
1.785385
5.784460

273.3815
0.000000

20192.44
1198410.

320

TEMP
32.15822
32.85000
39.81917
20.44917
4.190739

-1.378189
4.411737

127.8750
0.000000

10290.63
5602.373

320
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CROP: 1% difference

Panel unit root test: Summary

Series: D(CROP)

Date: 10/30/24 Time: 19:27

Sample: 1981 2020

Exogenous variables: Individual effects

User-specified lags: 1

Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test

Cross-

Method Statistic ~ Prob.** sections Obs
Null: Unit root (assumes common unit root process)

Levin, Lin & Chu t* -10.0512  0.0000 8 296
Null: Unit root (assumes individual unit root process)

Im, Pesaran and Shin W-stat -15.8759  0.0000 8 296
ADF - Fisher Chi-square 199.940 0.0000 8 296
PP - Fisher Chi-square 244,029  0.0000 8 304

** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.

FEX: Level

Panel unit root test: Summary

Series: FEX

Date: 10/30/24 Time: 19:59

Sample: 1981 2020

Exogenous variables: Individual effects, individual linear trends
User-specified lags: 1

Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test

Cross-

Method Statistic  Prob.** sections  Obs
Null: Unit root (assumes common unit root process)

Levin, Lin & Chu t* -0.97599  0.1645 8 304
Breitung t-stat -3.89343  0.0000 8 296
Null: Unit root (assumes individual unit root process)

Im, Pesaran and Shin W-stat  -2.52724  0.0057 8 304
ADF - Fisher Chi-square 34.7582  0.0043 8 304
PP - Fisher Chi-square 33.3163  0.0067 8 312

** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.
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ARMI: 1% difference

Panel unit root test: Summary

Series: D(ARMI)

Date: 10/30/24 Time: 20:02

Sample: 1981 2020

Exogenous variables: Individual effects

User-specified lags: 1

Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test

Cross-

Method Statistic ~ Prob.** sections Obs
Null: Unit root (assumes common unit root process)

Levin, Lin & Chu t* -8.43096  0.0000 8 296
Null: Unit root (assumes individual unit root process)

Im, Pesaran and Shin W-stat -9.59015  0.0000 8 296
ADF - Fisher Chi-square 115.224  0.0000 8 296
PP - Fisher Chi-square 245518 0.0000 8 304

** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.

FCON: Level

Panel unit root test: Summary

Series: FCON

Date: 10/30/24 Time: 20:02

Sample: 1981 2020

Exogenous variables: Individual effects

User-specified lags: 1

Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test

Cross-

Method Statistic ~ Prob.** sections Obs
Null: Unit root (assumes common unit root process)

Levin, Lin & Chu t* -2.64008 0.0041 8 304
Null: Unit root (assumes individual unit root process)

Im, Pesaran and Shin W-stat  -4.09203  0.0000 8 304
ADF - Fisher Chi-square 459171  0.0001 8 304
PP - Fisher Chi-square 80.3911  0.0000 8 312

** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.
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RAIN: Level

Panel unit root test: Summary

Series: RAIN

Date: 10/30/24 Time: 08:56

Sample: 1981 2020

Exogenous variables: Individual effects

User-specified lags: 1

Newey-W est automatic bandwidth selection and Bartlett kernel
Balanced observations for each test

Cross-

Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process)

Levin, Lin & Chu t* -4.70422 0.0000 8 304
Null: Unit root (assumes individual unit root process)

Im, Pesaran and Shin W-stat -8.18039 0.0000 8 304
ADF - Fisher Chi-square 102.889 0.0000 8 304
PP - Fisher Chi-square 158.078 0.0000 8 312

** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.

TEMP: Level

Panel unit root test: Summary

Series: TEMP

Date: 10/30/24 Time: 09:01

Sample: 1981 2020

Exogenous variables: Individual effects

User-specified lags: 1

Newey-West automatic bandwidth selection and Bartlett kernel
Balanced observations for each test

Cross-

Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process)

Levin, Lin & Chu t* -8.85009 0.0000 8 304
Null: Unit root (assumes individual unit root process)

Im, Pesaran and Shin W-stat -9.85671 0.0000 8 304
ADF - Fisher Chi-square 120.569 0.0000 8 304
PP - Fisher Chi-square 188.975 0.0000 8 312

** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic hormality.
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Appendix 3: Panel Cointegration Test

Pedroni Residual Cointegration Test

Series: FCPI CROP FEX ARMI FCON RAIN TEMP

Date: 10/30/24 Time: 20:09
Sample: 1981 2020

Included observations: 320
Cross-sections included: 8

Null Hypothesis: No cointegration

Trend assumption: Deterministic intercept and trend

Automatic lag length selection based on SIC with a max lag of 8
Newey-West automatic bandwidth selection and Bartlett kernel

Alternative hypothesis: common AR coefs. (within-dimension)

Weighted
Statistic Prob. Statistic Prob.
Panel v-Statistic -4.287462 1.0000 -4.013769 1.0000
Panel rho-Statistic -1.300491 0.0967 0.398372 0.6548
Panel PP-Statistic -6.637621 0.0000 -5.014555 0.0000
Panel ADF-Statistic -6.715991 0.0000 -5.138696 0.0000

Alternative hypothesis: individual AR coefs. (between-dimension)

Statistic Prob.

Group rho-Statistic 1.170329 0.8791
Group PP-Statistic -7.504847 0.0000
Group ADF-Statistic -5.505580 0.0000

Cross section specific results

Phillips-Peron results (non-parametric)

Cross ID AR(1)  Variance HAC  Bandwidth Obs
Zimbabwe 0.094 1255035. 1139294. 3.00 39
Mozambigue 0.129 110.2592 110.2592 0.00 39
Malawi 0.388 170.4616 157.6640 4.00 39
South Africa 0.051 16.88796 10.28619 10.00 39
Lesotho 0.053 16.25854 1.414972 28.00 39
Botswana 0.348 11.42278 11.64736 2.00 39
Namibia 0.036 17.34003 11.55476 6.00 39
Zambia 0.362 773.3316 681.2801 2.00 39
Augmented Dickey-Fuller results (parametric)

Cross ID AR(1)  Variance Lag Max lag Obs
Zimbabwe 0.094 1255035. 0 8 39
Mozambigue 0.129 110.2592 0 8 39
Malawi 0.388 170.4616 0 8 39
South Africa 0.051 16.88796 0 8 39
Lesotho -0.295 14.35394 1 8 38
Botswana 0.348 11.42278 0 8 39
Namibia 0.036 17.34003 0 8 39
Zambia 0.362 773.3316 0 8 39
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Appendix 4: Optimal lag length

VAR Lag Order Selection Criteria

Endogenous variables: FCPI CROP FEX ARMI FCON RAIN TEMP
Exogenous variables: C

Date: 12/02/24 Time: 07:17

Sample: 1981 2020

Included observations: 256

Lag LogL LR FPE AC SC HQ
0 -7961.898 NA 2.57e+18 62.25701 62.35395 62.29600
1 -6729.808 2387.174 2.49e+14 53.01412 53.78963* 53.32603
2 -6610.450 224.7274 1.44e+14 52.46446 53.91853 53.04928
3 -6479.207 239.9292 7.58e+13* 51.82193* 53.95458 52.67967*
4 -6436.731 75.32789* 8.01e+13 51.87290 54.68412 53.00356
5 -6405.297 54.02726 9.25e+13 52.01014 55.49992 53.41371
6 -6371.465 56.29993 1.05e+14 52.12863 56.29698 53.80513
7 -6344.938 42.69191 1.27e+14 52.30420 57.15112 54.25361
8 -6316.451 44.28779 1.52e+14 52.46446 57.98995 54.68679

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)
FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarzinformation criterion

HQ: Hannan-Quinn information criterion
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Appendix 5: PMG/Panel ARDL

Dependent Variable: D(FCPI)
Method: ARDL

Date: 12/02/24 Time: 07:25
Sample: 1984 2020

Included observations: 296
Dependent lags: 3 (Fixed)

Dynamic regressors (3 lags, fixed): CROP FEX ARMI FCON RAIN TEMP

Fixed regressors:

Variable Coefficient

Std. Error t-Statistic Prob.*

Long Run Equation

CROP 0.020886
FEX 0.127261
ARMI -3.697446
FCON 0.612101
RAIN -0.019810
TEMP 0.301518

0.013041 1.601605 0.1127
0.041682 3.053161 0.0030
0.419302 -8.818091 0.0000
0.071959 8.506206 0.0000
0.015140 -1.308472 0.1940
0.067274 4.481925 0.0000

Short Run Equation

0.215064 -2.108484 0.0378
0.235392 1.221415 0.2251
0.158440 -0.431389 0.6672
0.177608 1.703576 0.0919
1.179497 -1.290508 0.2002
0.269738 -1.788771 0.0770
0.486677 0.112059 0.9110
2.924944 1.054918 0.2943
12.19591 -0.891110 0.3752
5.622147 -1.262014 0.2102
4.416176 0.976166 0.3316
0.825297 -1.236016 0.2197
248.1145 1.060687 0.2917
99.33121 0.983277 0.3281
80.72050 -0.932787 0.3534
35.87968 1.062210 0.2910
1.882651 1.018367 0.3112
0.903747 -0.864940 0.3894
2.533380 -1.054885 0.2943
3.125143 -1.022956 0.3091
55.14847 -1.009764 0.3153
37.31937 0.989494 0.3251
15.56062 0.971146 0.3341
65.96584 0.998053 0.3209
23.86817 -1.202021 0.2325
27.79379 0.856269 0.3941
4.129310 -1.950628 0.0542
63.22871 0.967323 0.3360

COINTEQO1 -0.453458
D(FCPI(-1)) 0.287511
D(FCPI(-2)) -0.068349
D(FCPI(-3)) 0.302569
D(CROP) -1.522149
D(CROP(-1)) -0.482499
D(CROP(-2)) 0.054536
D(CROP(-3)) 3.085577
D(FEX) -10.86789
D(FEX(-1)) -7.095231
D(FEX(-2)) 4.310921
D(FEX(-3)) -1.020080
D(ARMI) 263.1718
D(ARMI(-1)) 97.67005
D(ARMI(-2)) -75.29501
D(ARMI(-3)) 38.11176
D(FCON) 1.917229
D(FCON(-1)) -0.781687
D(FCON(-2)) -2.672423
D(FCON(-3)) -3.196884
D(RAIN) -55.68692
D(RAIN(-1)) 36.92729
D(RAIN(-2)) 15.11163
D(RAIN(-3)) 65.83740
D(TEMP) -28.69005
D(TEMP(-1)) 23.79896
D(TEMP(-2)) -8.054747
D(TEMP(-3)) 61.16259

Root MSE 91.46366
S.D. dependent var 578.0528
Akaike info criterion 7.013033
Schwarz criterion 9.721514
Hannan-Quinn criter. 8.094581

Mean dependent var 1.901882
S.E. of regression 172.4655
Sum squared resid 2676992.
Log likelihood -892.0853

*Note: p-values and any subsequent tests do not account for model

selection.
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Appendix 6: Hausman Test

Correlated Random Effects - Hausman Test

Equation: Untitled
Test cross-section random effects

Test Summary Chi-Sq. Statistic Chi-Sq. d.f. Prob.
Cross-section random 3.472834 5 0.6275
Cross-section random effects test comparisons:
Variable Fixed Random Var(Diff.) Prob.
RAIN 0.769388 -0.321120 0.756317 0.2099
TEMP 48.575792 8.354478 1079.130123 0.2208
FCON 2.199265 2.053559 1.617083 0.9088
ARMI 85.633105 80.355877 73.896949 0.5393
CROP -0.662882  -0.454205 0.117836 0.5433
Cross-section random effects test equation:
Dependent Variable: FCPI
Method: Panel Least Squares
Date: 10/30/24 Time: 20:20
Sample: 1981 2020
Periods included: 40
Cross-sections included: 8
Total panel (balanced) observations: 320
Variable Coefficient ~ Std. Error t-Statistic Prob.
C -1617.605 1232.132 -1.312850 0.1902
RAIN 0.769388 1.263310 0.609025 0.5430
TEMP 48.57579 36.40209 1.334423 0.1831
FCON 2.199265 2.324568 0.946096 0.3448
ARMI 85.63310 40.66473 2.105832 0.0360
CROP -0.662882 1.391145 -0.476501 0.6341
Effects Specification
Cross-section fixed (dummy variables)
R-squared 0.083516 Mean dependent var 69.74708
Adjusted R-squared 0.047692 S.D. dependent var 585.1390
S.E. of regression 571.0153 Akaike info criterion 15.57249
Sum squared resid 1.00E+08 Schwarz criterion 15.72557
Log likelihood -2478.598 Hannan-Quinn criter. 15.63362
F-statistic 2.331307 Durbin-Watson stat 0.943727
Prob(F-statistic) 0.007219
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Appendix 7: Diagnostic Tests
(I) Normality Test

240

200

160

120

80

40

0
0 1000 2000 3000 4000 5000 6000 7000

(IT) Cross Section Dependence Test

Residual Cross-Section Dependence Test

Null hypothesis: No cross-section dependence (correlation) in
weighted residuals

Equation: Untitled

Periods included: 40

Cross-sections included: 8

Total panel observations: 320

Note: non-zero cross-section means detected in data

Cross-section means were removed during computation of

correlations
Test Statistic d.f. Prob.
Breusch-Pagan LM 303.5008 28 0.0000
Pesaran scaled LM 36.81534 0.0000
Pesaran CD 3.977204 0.0001

Series: Standardized Residuals
Sample 1981 2020
Observations 320

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis

Jarque-Bera
Probability

-1.31e-14
-40.89165

7241.877

-325.9672

576.1359
11.74370
145.0313

276327.1
0.000000
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