Please use this identifier to cite or link to this item: https://openscholar.ump.ac.za/handle/20.500.12714/591
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMpakairi, Kudzai Shaun.en_US
dc.contributor.authorDube, Timothy.en_US
dc.contributor.authorDondofema, Farai.en_US
dc.contributor.authorDalu, Tatenda.en_US
dc.date.accessioned2023-03-31T12:19:29Z-
dc.date.available2023-03-31T12:19:29Z-
dc.date.issued2022-
dc.identifier.urihttps://openscholar.ump.ac.za/handle/20.500.12714/591-
dc.description.abstractClimate change, land cover change and the over–abstraction of groundwater threaten the existence of Groundwater-Dependent Ecosystems (GDE), despite these environments being regarded as biodiversity hotspots. The vegetation heterogeneity in GDEs requires routine monitoring in order to conserve and preserve the ecosystem services in these environments. However, in–situ monitoring of vegetation heterogeneity in extensive, or transboundary, groundwater resources remain a challenge. Inherently, the Spectral Variation Hypothesis (SVH) and remotely-sensed data provide a unique way to monitor the response of GDEs to seasonal or intra –annual environmental stressors, which is the key for achieving the national and regional biodiversity targets. This study presents the first attempt at monitoring the intra–annual, spatio–temporal variations in vegetation heterogeneity in the Khakea–Bray Transboundary Aquifer, which is located between Botswana and South Africa, by using the coefficient of variation derived from the Landsat 8 OLI Operational Land Imager (OLI). The coef ficient of variation was used to measure spectral heterogeneity, which is a function of environmental hetero geneity. Heterogenous environments are more diverse, compared to homogenous environments, and the vegetation heterogeneity can be inferred from the heterogeneity of a landscape. The coefficient of variation was used to calculate the α- and β measures of vegetation heterogeneity (the Shannon–Weiner Index and the Rao’s Q, respectively), whilst the monotonic trends in the spatio–temporal variation (January–December) of vegetation heterogeneity were derived by using the Mann–Kendall non–parametric test. Lastly, to explain the spa tio–temporal variations of vegetation heterogeneity, a set of environmental variables were used, along with a machine-learning algorithm (random forest). The vegetation heterogeneity was observed to be relatively high during the wet season and low during the dry season, and these changes were mainly driven by landcover- and climate–related variables. More specifically, significant changes in vegetation heterogeneity were observed around natural water pans, along roads and rivers, as well as in cropping areas. Furthermore, these changes were better predicted by the Rao’s Q (MAE = 5.81, RMSE = 6.63 and %RMSE = 42.41), than by the Shannon–Weiner Index (MAE = 30.37, RMSE = 33.25 and %RMSE = 63.94). These observations on the drivers and changes in vegetation heterogeneity provide new insights into the possible effects of future landcover changes and climate variability on GDEs. This information is imperative, considering that these environments are biodiversity hot spots that are capable of supporting many livelihoods. More importantly, this work provides a spatially explicit framework on how GDEs can be monitored to achieve Sustainable Development Goal (SDG) Number 15.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofEcological Informaticsen_US
dc.subjectKhakea–bray.en_US
dc.subjectRao’s Q.en_US
dc.subjectRandom forest.en_US
dc.subjectVegetation heterogeneity.en_US
dc.subjectSpectral variation hypothesis (SVH).en_US
dc.subjectShannon–Weiner.en_US
dc.titleSpatio–temporal variation of vegetation heterogeneity in groundwater dependent ecosystems within arid environments.en_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.ecoinf.2022.101667-
dc.contributor.affiliationUniversity of the Western Capeen_US
dc.contributor.affiliationUniversity of Western Capeen_US
dc.contributor.affiliationUniversity of Vendaen_US
dc.contributor.affiliationSchool of Biology and Environmental Sciencesen_US
dc.description.startpage1en_US
dc.description.endpage13en_US
item.grantfulltextopen-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextWith Fulltext-
item.openairetypejournal article-
Appears in Collections:Journal articles
Show simple item record

Google ScholarTM

Check

Altmetric


Items in UMP Scholarship are protected by copyright, with all rights reserved, unless otherwise indicated.