Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNetshituni, Vincent Takalani.en_US
dc.contributor.authorCuthbert, Ross N.en_US
dc.contributor.authorDondofema, Farai.en_US
dc.contributor.authorDalu, Tatenda.en_US
dc.description.abstractWildfires are natural or anthropogenic phenomena increasing at alarming rates globally due to land-use alterations, droughts, climatic warming, hunting and biological invasions. Whereas wildfire effects on terrestrial ecosystems are marked and relatively well-studied, ash depositions into aquatic ecosystems have often remained overlooked, but have the potential to significantly impact bottom-up processes. This study assessed ash-water-phytoplankton biomass dynamics using six plant species [i.e., three natives (apple leaf Philenoptera violacea, Transvaal milk plum Englerophytum magalismontanum, quinine tree Rauvolfia caffra) and three aliens (lantana Lantana camara, gum Eucalyp tus camaldulensis, guava Psidium guajava)] based on a six-week mesocosm experiment with different ash concentrations (1 and 2 g L−1 ). We assessed concentrations of chemical elements, i.e., N, P, K, Ca, Mg, Na, Mn, Fe, Cu, Zn and B from ash collected, and examined potential differences among the species. High concentrations of P, K, Mn, Fe, Cu, Zn and B were recorded from Transvaal milk plum ash and low concentrations of P, K, Ca, Mg, Cu and Zn were recorded from apple leaf. An increase in phytoplankton biomass (using chlorophyll-a concentration as a proxy) for all treatments i.e., 1 and 2 g L−1 and plant species was observed one week after, followed by decreases in the following weeks, with the exception of 2 g L−1 for lantana, gum and control groups. Silicate concentrations (i.e., used as a proxy for di atom abundance) showed increasing patterns among all ash treatments, with the exception of controls. However, no clear patterns were observed between native and alien plant ash for both chl-a and silicate concentrations. We found that ash has notable effects on water chemistry, particularly nitrate, which increased throughout the weeks, whereas, pH and conductivity were high at low ash concentrations. The impacts of ash on water chemistry, chl-a and silicate concentrations vary with individual species and the amount of ash deposited into the system.en_US
dc.relation.ispartofScience of the Total Environmenten_US
dc.subjectPrimary productivity.en_US
dc.subjectWater chemistry.en_US
dc.titleEffects of wildfire ash from native and alien plants on phytoplankton biomass.en_US
dc.typejournal articleen_US
dc.contributor.affiliationUniversity of Vendaen_US
dc.contributor.affiliationQueen's University Belfasen_US
dc.contributor.affiliationUniversity of Vendaen_US
dc.contributor.affiliationSchool of Biology and Environmental Sciencesen_US
item.openairetypejournal article-
item.fulltextWith Fulltext-
Appears in Collections:Journal articles
Files in This Item:
File Description SizeFormat 
Effects-of-wildfire-ash-from-native-and-alien-plants-on-phytoplankton-biomass..pdfPublished version3.51 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM



Items in UMP Scholarship are protected by copyright, with all rights reserved, unless otherwise indicated.